
Core Principles and Properties of HL7 

Version 3 Models 

 
HL7 V3 MODELS, R1 

HL7 Version 3 Standard: Core Principles and Properties of Version 3 Models, 

Release 1 

Normative Ballot 1 - May 2008  

Primary Contributer and 

Infrastructure & Management 

Co-Chair 

Grahame Grieve 

Kestral Computing Pty. Ltd.  

Primary Contributer and 

Vocabulary Co-Chair 

W. Ted Klein 

Klein Consulting, Inc.  

Primary Contributer and 

Modeling & Methodology Co-

Chair 

George Beeler, Jr., PhD. 

Beeler Consulting LLC  

Primary Contributor, Vocabulary 

WG member 

Dr. Jobst Landgrebe, ii4sm 

Primary Contributor Harold Solbrig, Mayo Clinic 

Primary Contributor Alan Honey, ii4sm 

Modeling & Methodology Co-

Chair 

Lloyd McKenzie 

McKenzie Consulting  

Modeling & Methodology Co-

Chair 

Dale Nelson 

Zed Logic, Inc.  

Modeling & Methodology Co-

Chair 

Craig Parker, MD 

RemedyMD, Inc  

Modeling & Methodology Co-

Chair 

Ioana Singureanu 

U.S. Department of Veterans Affairs  

Last Published: XXX 

HL7® Version 3 Standard, © 2008 Health Level Seven®, Inc. All Rights Reserved.  

HL7 and Health Level Seven are registered trademarks of Health Level Seven, Inc. 

Reg. U.S. Pat & TM Off  

 



Table of Contents 

 
1. The Rationale for V3: Semantic interoperability ............................................................................. 4 
2. Models: RIM and its derivatives. .................................................................................................... 4 

2.1. Instances ........................................................................................................................... 4 
2.1.1. Serialization....................................................................................................................... 4 

2.2. RIM: Reference Information Model ................................................................................... 5 
2.2.1. How the RIM is maintained ............................................................................................... 5 

2.3. Other V3 Static Models ..................................................................................................... 5 
2.3.1. DIM : Domain Information Model ....................................................................................... 5 
2.3.2. CIM : Constrained Information Model ................................................................................ 6 
2.3.3. LIM : Local Information Model ........................................................................................... 6 

2.4. Dynamic Models ................................................................................................................ 6 
3. Types as domains for model classes and attributes [chapter title to be adjusted] .......................... 7 

3.1. How RIM and datatypes fit together (was 14) ................................................................... 7 
3.2. Datatype Flavors (was 5.2) ............................................................................................... 7 
3.3. Null Flavor (was 6) ............................................................................................................ 7 

3.3.1. Note about the name nullFlavor ........................................................................................ 9 
3.3.2. Implementation Considerations ....................................................................................... 10 

3.4. Identifying classes and data types in instances (was 5) .................................................. 11 
3.4.1. Model Types for Classes ................................................................................................. 11 

3.4.1.1. Expressed Models ...................................................................................................... 11 
3.4.1.2. Implied Models ........................................................................................................... 12 
3.4.1.3. Applied Models ........................................................................................................... 12 

4. Identifying elements ..................................................................................................................... 13 
4.1. Referencing Objects (was 8) ........................................................................................... 13 
4.2. Identifying Objects (was 9) .............................................................................................. 13 
4.3. Global Uniqueness (was 12) ........................................................................................... 14 
4.4. OID registry ..................................................................................................................... 14 
4.5. OID Conflict Resolution ................................................................................................... 16 
4.6. HL7 OID branch .............................................................................................................. 16 

5. Coded model elements and their vocabularies ............................................................................ 18 
5.1. Structural properties of concepts, code systems and value sets ..................................... 18 

5.1.1. Concepts ......................................................................................................................... 18 
5.1.2. Code systems ................................................................................................................. 19 
5.1.3. Value sets and their definitions ....................................................................................... 21 

5.1.3.1.1. Extension Value Set definition  ................................ Error! Bookmark not defined. 
5.1.3.1.2. Intensional Value Set Definition ............................... Error! Bookmark not defined. 
5.1.3.1.3. Unique meaning rule.............................................................................................. 22 

5.1.3.2. Value set definition resolution ..................................................................................... 22 
5.1.3.3. Value set definition versioning .................................................................................... 23 

5.2. Binding – the usage of vocabulary – realms, concept domains, and binding strategies .. 23 
5.2.1. Realms ............................................................................................................................ 24 

5.2.1.1. Binding Realms (3) ....................................................... Error! Bookmark not defined. 
5.2.1.2. Defined Realms .......................................................................................................... 25 

5.2.1.2.1. Affiliate and Sub-binding Realms ...................................................................... 25 
5.2.1.2.2. Combination Realms ......................................................................................... 25 
5.2.1.2.3. Sub-Realms ........................................................ Error! Bookmark not defined. 

5.2.1.3. Generic Realms .......................................................................................................... 25 
5.2.1.3.1. Universal Realm................................................................................................ 25 
5.2.1.3.2. Example Realm................................................................................................. 26 
5.2.1.3.3. Representative Realm ...................................................................................... 26 
5.2.1.3.4. Unclassified Realm ........................................................................................... 26 

5.2.2. Concept domains and usage context .............................................................................. 26 
5.2.2.1. Examples of Concept Domains .................................................................................. 27 

5.2.2.2. Sub-Domains .............................................................................................................. 27 
5.2.2.3. Associating Concept Domains and Value Sets .......................................................... 27 
5.2.2.4. Usage contexts ............................................................. Error! Bookmark not defined. 
5.2.3. Binding Mechanisms and Strategies ............................................................................... 28 

5.2.3.1. Biding mechanisms .................................................................................................... 28 
5.2.3.1.1. Binding Schedule Mechanisms ......................................................................... 28 
5.2.3.1.2. Binding Version Mechanisms ............................................................................ 29 
5.2.3.1.3. Unbound domains ............................................................................................. 29 

5.2.3.2. Binding Strategies ...................................................................................................... 30 



5.2.3.2.1. Strategies for Model Binding ............................................................................. 30 
5.2.3.2.2. Strategies for Context Binding .......................................................................... 31 

5.2.3.3. Additional notes on domains and value-sets .............................................................. 32 
5.2.3.3.1. Concept Domain and Value Set Naming Conventions...................................... 32 
5.2.3.3.2. Root concepts ................................................................................................... 33 
5.2.3.3.3. X-Domain (X-Value Set) [Deprecated] .............................................................. 34 

6. Accountability and Updates (was 11) ........................................................................................... 34 
6.1. Update control (was 7) .................................................................................................... 35 
6.2. Update Mode ................................................................................................................... 37 

7. Model Designer Guidance (was 10) ............................................................................................. 38 
Appendix A: Code system types ............................................................................................................. 40 

 

 



1.The Rationale for V3: Semantic 

interoperability  

(MnM) 

 

2.Models: RIM and its derivatives.  

(MnM, Refer to HDF, RIM) 

2.1. Instances 

The fundamental notion of V3 is that in order to exchange data, systems exchange 

serialised streams of data that are an "instance" of a V3 model under a set of rules that 

describe why and when the data is exchanged.  

All V3 models are valid of classes linked by associations. The classes and assocations 

are defined in the RIM. The classes have a series of named attributes which are 

assigned a type defined in the datatypes. Some attributes are associated with 

controlled vocabularies which provide clearly defined semantic meaning to the static 

models. Together, the structural vocabularies, the data types and the RIM classes 

constitute the reference model.  

All V3 instances are instances of the reference model, and conform with the rules of 

the reference model. V3 models usually also conform to other additional constraint 

models that describe how the general reference model is used to describe particular 

administrative or clinical healthcare information.  

Instance of V3 models may have any forms of expression and be used in many 

contexts, such as a message payload in a message associated with an HL7 defined 

interaction, a CDA document, or a payload as part of a service interaction, etc.  

Instances of V3 models are exchanged in the context of a dynamic model that 

specifies why and when the data is exchanged. 

Dynamic models are discussed further below.  

2.1.1. Serialization 

In order for systems to exchange the instances of a V3 model, they need some 

particular form of representation. As a response to industry demand, HL7 offers a 

defined representation of the V3 instances in XML, known as the XML ITS. Other 

forms of representation could be imagined, such as XMI, HUTN, ASN.1 and so forth, 

but there has not been sufficient demand to justify the creation of alternatives to the 

standard XML form.  



The ITS must define not only how the instance is serialised, but also how the links 

from the instance to the many models that contribute to defining the meaning of the 

instance are expressed and/or derived from the serialized representation.  

2.2. RIM: Reference Information Model 

The RIM defines all the classes that are used in V3 instances. The RIM itself is a 

UML class model; the classes are standard classes in the UML sense, and have 

associations and attributes as defined in the RIM models. All classes defined in the 

RIM are specialisations of the base class InfrastructureRoot which defines the 

attributes that support the core behaviour of V3 models as described in this 

specification.  

The RIM makes extensive use of the two other parts of the V3 reference model, the 

structured vocabulary and the datatypes. Vocabulary and it's associated concepts are 

discussed below.  

The datatypes define the set of types that may be used to define the value domains and 

associated semantics of the RIM class attribute. The semantics of the types are 

defined in the the abstract datatypes (the ITS describes how the datatypes are actually 

represented when serialized).  

Known Issue 02 (§ 2.2 ) 

2.2.1. How the RIM is maintained 

Known Issue 03 (§ 2.3 ) 

2.3. Other V3 Static Models 

All other V3 Static Models are statements of constraint against the RIM to which 

instances of the V3 reference model may be required to conform in a particular 

context of use.  

These models are expressed using a modeling formalism and language developed by 

HL7 for the purpose. This is fully defined in the HL7 Development Framework. 

(HDF) and the HL7 Model Interchange Format (MIF). However this is only one 

possible form of expression. Other forms of expression have been imagined and 

proposed or are under development.  

Static models may be considered or represented as a direct statement of constraint or 

as a class model (UML) or some form of typing model (i.e. schema) in their own 

right. The difference in these two is largely an implementation issue; the semantics 

are always clear: all instances are instances of the reference model, and all other satic 

models are constraints on the reference model. The degree of success at representing a 

static model as a typing model depends on the target platform.  

2.3.1.  DIM : Domain Information Model 



The first level of constraint is a domain information model. This provides a solution 

to the information requirements of a particular problem domain. A DIM may have 

multiple entry points. As such, a DIM is not a directly implementable model, and is a 

fairly general statement of an domain with fairly general vocabulary bindings.  

Known Issue 05 (§ 2.5 ) 

2.3.2. CIM : Constrained Information Model 

CIMs represent a second level of constraint. CIMs must have single entry points, 

which makes them serialisable. CIMs are therefore suitable for use as implementation 

constructs on information systems and should be completely specified for this 

purpose. CIMs are generally focused on narrower problem domain that a DIM.  

CIMs are either derived from a DIM directly, or from another CIM. Though 

technically, a CIM could also be derived from the RIM directly, this is prohibited as a 

matter of policy to encourage consistent design.  

CIM cascades can be as deep as desired, but in most domains HL7 only defines a 

DIM and one layer of CIMs. 

Known Issue 06 (§ 2.6 ) 

2.3.3. LIM : Local Information Model 

Like CIMs, LIMs are a constraint model that has a single entry point. However LIMs 

differ from CIMs: 

• LIMs may be derived from the RIM directly as well as DIMs or CIMs (though 

derivation from the appropriate DIM is recommended) 

• LIMs may be defined and published by anyone (including HL7 and it's 

affiliates). 

• LIMs may be incomplete models (refer to the static model definitions for 

further information about incomplete models). 

LIMs are principally intended to be used as templates, but may be used in other 

fashion by site or realm agreement. 

2.4. Dynamic Models 

In the past, the HL7 work on dynamic models was an attempt to describe the 

behavioral semantics of messaging. HL7 now deals with this set of problems in the 

Services Aware Enterprise Architecture Framework (SAEAF) and the Behavioral 

Framework (BF), both published and maintained by the Architecture Board. 

 



3. Types as domains for model classes 

and attributes [chapter title to be 

adjusted] 

 

(MnM) 

3.1. How RIM and datatypes fit together (was 14) 

3.2. Datatype Flavors (was 5.2) 

For datatypes, the type must be the type from the reference model; the expressed 

model is always that specified in the abstract datatypes. This policy exists to ensure 

that implementations of the datatypes are robust for use in all the environments that 

V3 is used.  

Datatypes may also have additional constraints associated with them. These 

constraints are referred to as datatype flavors. Datatype flavors are very similar to 

applied models, but only one flavor can be specified.  

Reference: The Refinement, Constraint and Localisation should be consulted for 

further information about datatypes flavors.  

3.3. Null Flavor (was 6) 

It is common to encounter missing or incomplete information in healthcare. In some 

circumstances, why, how, or in what way the information is missing or incomplete 

may have some semantic significance that may make a difference to the workflow or 

clinical management the depends on the information.  

For this reason all datatypes and RIM classes have a property called "nullFlavor" 

which specifies why the information does not exist, is not known or available, or 

cannot be expressed in the allowed value domain.  

This table summarises the currently accepted values that the nullFlavor property may 

have it is not null: 

  Table 3: Domain NullFlavor (OID: 2.16.840.1.113883.11.10609, Source: 

Internal)  

lvl code name Definition 

1 NI 
no 

information 

The value is exceptional (missing, incomplete, 

improper). No information as to the reason for 

being an exceptional value is provided. This is 

the most general exceptional value. It is also the 

default exceptional value.  



  Table 3: Domain NullFlavor (OID: 2.16.840.1.113883.11.10609, Source: 

Internal)  

lvl code name Definition 

2  INV invalid 

The value as represented in the instance is not 

an element in the constrained value domain of a 

variable. 

3   OTH other 

The actual value is not an element in the 

constrained value domain of a variable. (e.g., 

concept not provided by required code system).  

4    NINF 
negative 

infinity 
Negative infinity of numbers. 

4    PINF 
positive 

infinity 
Positive infinity of numbers. 

3   UNC unencoded 

No attempt has been made to encode the 

information correctly but the raw source 

information is represented (usually in 

originalText). 

3   DER derived 

An actual value may exist, but it must be 

derived from the provided information (usually 

an expression is provided directly). 

2  UNK unknown A proper value is applicable, but not known. 

3   ASKU 
asked but 

unknown 

Information was sought but not found (e.g., 

patient was asked but didn't know) 

4    NAV 
temporarily 

unavailable 

Information is not available at this time but it is 

expected that it will be available later. 

3   QS 
sufficient 

quantity 

The specific quantity is not known, but is 

known to be non-zero and is not specified 

because it makes up the bulk of the 

material.'Add 10mg of ingredient X, 50mg of 

ingredient Y, and sufficient quantity of water to 

100mL.' The null flavor would be used to 

express the quantity of water.  

3   NASK not asked 
This information has not been sought (e.g., 

patient was not asked) 

3   TRC trace 
The content is greater than zero, but too small 

to be quantified. 

2  MSK masked 

There is information on this item available but 

it has not been provided by the sender due to 

security, privacy or other reasons. There may 

be an alternate mechanism for gaining access to 



  Table 3: Domain NullFlavor (OID: 2.16.840.1.113883.11.10609, Source: 

Internal)  

lvl code name Definition 

this information.Note: using this null flavor 

does provide information that may be a breach 

of confidentiality, even though no detail data is 

provided. Its primary purpose is for those 

circumstances where it is necessary to inform 

the receiver that the information does exist 

without providing any detail.  

2  NA 
not 

applicable 

No proper value is applicable in this context 

(e.g., last menstrual period for a male). 

A datatype or a class is known as a "null" class if it has a value for it's nullFlavor 

property. Null values are also known as "exceptional values". Null values are 

improper values that do not conform to the proper or expected value domain as 

described by the applicable specification (usually any model that the type claims 

conformance too - see typing below). The information may either be missing or 

partially present, or even completely present but not valid with respect to the 

constraints imposed by the models it conforms to. While null values may not conform 

to the "proper or expected value domain" as described by the specification, they must 

nevertheless conform to all the rules specified by the specifications to which they 

conform, null values SHALL only be used as specified by the models, both in regard 

to where and how they are used.  

In this sense, null is used to create a two level conformance strategy. In some cases, a 

properly acceptable value domain is defined, and only information that completely 

conforms to the specified value domain may be provided. In other cases, a properly 

acceptable value domain is defined, and some information must be provided, but it 

may not conform to the narrow value domain if it explicitly declares that it does not 

conform. See the conformance section for further details.  

3.3.1. Note about the name nullFlavor 

The property is named nullFlavor because of the similarities between the concept of a 

null value and the concept and behaviour of null in implementation technologies, 

particularly SQL and OCL. As in SQL and OCL, the value null is in the value domain 

of the all the types, and nulFlavors will generally propagate through operations such 

as comparison (i.e. the result of a comparison operation between a null value and 

some other value is null).  

However there are some important differences between the implementation of nulls in 

such technologies and the HL7 nullFlavor. Most notably, in most implementation 

technologies, a null instance has no further information associated with it (some 

variation of the concept of a null pointer). This is not true of the HL7 concept of null; 

if a datatype or class is null, the nullFlavor property is not null, and any of the other 

properties might not be null.  



Note: the nullFlavor property functions in a reverse sense to the data type or class; if 

the value is not null the nullFlavor will be null, and if the value is null, then the 

nullFlavor is not null - it will specify an actual nullFlavor that provides more detail as 

to in what way or why no proper value is supplied.  

Note: In OCL, null is an instance of OclVoid which is a super type of all types. 

nullFlavor is not modelled the same way in HL7: a null value is still a valid instance 

of a particular type (see types below). If a true null is encountered in an 

implementation environment (i.e. the class is not represented in the XML when using 

the XML ITS, or is present with an xsi:nil="true" attribute), it is semantically 

equivalent to a null-value of NI, and all other properties not related to nullFlavor will 

also have nullFlavor NI.  

3.3.2. Implementation Considerations 

When performing operations upon null values, the semantic meaning of the nullFlavor 

SHALL be considered. This is particularly important for equality. The only case 

where non-proper (NULL) values may be equal is where both values have a 

nullFlavor of NA and all other properties equal. In all most other cases, the outcome 

of comparing NULL values is also null. However, there are exceptions based on the 

semantic meaning of nullFlavor. For instance, in the datatypes, although direct 

comparison of two values with nullFlavor PINF is always null (NI), two intervals with 

the equal low bounds and high bounds of PINF will return true, since they specify the 

same set. Similarly, comparison of NINF and PINF is always False.  

The "actual value" refers to the value of the information itself, rather than the 

information as represented in the type itself. These two may diverge when the 

information provided is incomplete, such as when an expression is provided. The null 

flavor "other" is used whenever the actual value is not in the required value domain: 

this may occur, for example, when the value exceeds some constraints that are defined 

in too restrictive a manner. For example, if the value for age is 100 yrs, but the 

constraining model specifies that the age must be less than 100 years, the age may still 

be specified, provided that the model does not make the attribute mandatory.  

<value nullFlavor="OTH" value="120" unit="yr"/> 

Some of the null flavors are not generally applicable to all circumstances. The 

nullFlavors NINF, PINF, QS, and TRC SHALL only be used in associated with 

datatypes that are a specialisation of the QTY type. The nullFlavor UNC SHALL only 

be used with any data type that has an originalText, and when UNC is used the 

originalText property SHALL be populated. The nullFlavor "DER" SHALL only be 

used with the EXPR type, and an expression SHALL be provided.  

Note: NULL-flavors are potentially applicable to any class, any data type, and any 

property of a data value. Where the difference of null flavors is not semantically 

significant, ITS are not required to represent them. (this is usually appropriate for 

structural attributes in the RIM classes, and simple properties of the datatypes).  

 



3.4. Identifying classes and data types in instances 

(was 5) 

 

A type is a class or a datatype. 

All HL7 models are constraints on a reference model built from the classes defined in 

the RIM and the datatypes defined in the abstract datatypes.  

This reference model is further constrained by additional constraint models that 

associate new names for particular constraints on the associations and classes. These 

constraint models may come from a linear sequence of constraints where each model 

is an additional constraint on another model (and when the instance conforms to a 

model it also conforms to the models on which that model is derived), or an instance 

may conform to multiple different constraints that are not related to each other.  

So any given type is an instance of the class or datatype as specified in the reference 

model, while at the same time conforming to multiple other different design 

specifications within this cascading hierarchy of models.  

Every class and data type SHALL declare conformance to a single master type. This 

requirement exists to ease the path of implementations in common target 

technologies. The type as a duple: the name of the model, and the name of the 

type/constraint definition in the model. Both the name of the model and the name of 

the type may be defined by some applicable design contract rather than expressed 

directly as an attribute of the class.  

ITSs that describe how to represent V3 models SHALL make clear how the both parts 

of the type may be determined from examination of the instance, and what other 

resources are required at design and/or runtime to unambiguously resolve the type of 

the class or datatype.  

Note: The InfrastructureRoot class in the RIM defines the notional attribute typeId to 

represent the type of the class. ITSs are not required to represent this attribute 

directly; some other method of representation may be chosen that is more appropriate 

with the base technology and consistent with the way the ITS specifies that the type 

information is determined from the instance.  

3.4.1. Model Types for Classes 

For classes, the type need not be the type from a reference model; the context may 

specify that the expressed type is a name taken from one of the applicable 

constraining model. As a consequence, there are three types of models applicable to 

classes:  

3.4.1.1. Expressed Models 

The expressed model is the model that contains the type expressed by the class. 



Note: The existing XML ITS fixes the expressed model throughout the instance to be 

the static model associated with the interaction identifier specified in the root element 

of the interaction (or from "ClinicalDocument" for CDA). The type of a class is not 

usually represented directly; instead the names of the associations in the expressed 

model are used, and the type is determined by implication from the association name. 

For choices, elements of the type name may be pre-coordinated with the association 

name in the instance.  

Note: Only complete, implementable models with one entry point (CIMs and some 

LIMs) may be used as expressed models.  

3.4.1.2.  Implied Models 

The implied models are specified by the derivations contained in the definition of the 

expressed model. All expressed models SHALL specify derivations from the RIM. 

Additional derivations from other models may also be specified.  

Note: this means that the RIM is always an expressed or applied model.  

Implementation Note: A processor can correlate the instance data against an implied 

model by reading the full static model for the expressed model and tracing the 

derivations from the expressed model to the implied model of choice. This can also be 

done by the developer by hard coding the derivations in the application. HL7 XML 

ITS schemas also provide a partial link to the RIM level definition. The implied RIM 

model is of such consequence that a separate pattern for identifying the RIM classes 

in the instance exists, using structural codes.  

3.4.1.3. Applied Models 

Are other models to which the class conforms to but are not explicit or implicit in the 

type the the class conforms to. These models are usually known as templates. The 

applied model may be invoked explicitly in in the instance, or by specifying it in some 

form of design contract (e.g. interaction profile). Note that it is not necessary to 

declare all the constraint models that a class conforms to.  

Note: The InfrastructureRoot class defines an attribute called templateId which is 

used to represent the set of applied models that a class conforms to. Like the typeId 

attribute, the templateId is notional; ITSs may define alternate methods for 

representation of the applied models.  

ITSs that describe how to represent V3 models SHALL make clear how the applied 

models may be determined from examination of the instance, and what other 

resources are required at design and/or runtime to unambiguously resolve the applied 

models.  

Note: If an applied model specifies derivations, then the models specified in the 

derivations are also implied models.  

Reference: The templates specification should be consulted for further template 

related information.  



4. Identifying elements   

MnM/Vocab (OIDs, IIs, etc.) 

One of the founding principles of V3 models is the importance of the correct 

identification of classes and objects.  

4.1. Referencing Objects  

When source and destination systems share sufficient information to permit it, the 

source system may simply refer to an object rather than providing full details of the 

object. Rather than updating the object in either snapshot or update mode, the 

destination system should use the information provided to identify an existing 

instance of data.  

It is not necessary for the destination system to already have information, only for the 

system or the appropriate users to know how to locate the information that the 

reference pertains to.  

For this reason, object references are used more widely than update mode. 

Nevertheless, the concept of reference is tightly related to the concept of update mode 

- an object will either be passed in as a snapshot, an update, or a reference.  

Although complex scenarios involving combinations of these modes can be 

envisaged, HL7 does not support combining modes in order to reduce processing 

complexity. If an object is passed as a reference, there shall be no expectation that any 

updates to the object may occur. If an object is represented using update Mode, any 

information provided as part of the object that has no associated update instructions is 

ignored.  

4.2. Identifying Objects (was 9) 

Whether an object is being conveyed using snapshot mode, update mode, or as a 

reference, the first step for most processing systems is to correctly locate an existing 

record for the concept that the object represents, if one exists.  

In order to accomplish this, the system must correctly identify the object. In most 

cases, the identification will be implicit or explicit in the contracts that control the 

system communication. However in some cases it will be necessary for the source 

system to clearly indicate the attributes that should be used to identify the object.  

For example, a source system may wish to indicate which of several identifiers 

associated with an object should be used to identify the object. The semantic 

properties of the identifiers - scope and reliability - are generally preferred as the 

criteria for choosing which identifier should be used, but in some cases it may be 

necessary to specify a particular attribute.  



Another case is where the source system does not know the relevant identifiers for the 

object, but is able to define some key criterion for identification of the concept. For 

instance, the source system may know that the patient had an episode of care on a 

given date, but not the destination system's identifier assigned to the episode of care.  

A source system should clearly identify the attributes of an object that it expects to be 

used to identify the object correctly, if it does not assume that identifier scope and 

reliability suffice.  

The general implication of these rules is that when an object is sent using update 

mode or as a reference, only the information that is required in order to correctly 

identify the object is sent, along with any specific updates for update mode, and that 

all the information provided should be clearly labeled. However it isn't always clear 

how much information is required to correctly identify the reference, so additional 

useful information is always allowed. Generally, it would be expected that this 

additional information would be of use in some human intervention procedure if 

automated resolution of the reference failed.  

Data types are not subject to identification - the full value of the datatype is itself the 

identity of the value. 

In the absence of any explicit agreement or information in the instance, the default 

method for resolving identity is that all identifiers in the object's ID field must match 

the corresponding identifiers on the destination object. 

 

 

4.3. Global Uniqueness (was 12) 

Certain identifiers must be globally unique to prevent misidentification. 

Globally unique identifiers may be created as either Universally Unique Identifiers 

(UUIDs—see ISO/IEC 11578:1996) or Object Identifiers (OIDs—see ITU-T X.660 

or ISO/IEC 9834-3). UUIDs are globally unique by virtue of the method of their 

generation. OIDs are globally unique if the OID registration procedures defined by 

ISO in the 9834 series of standards are followed. A set of local identifiers may be 

made globally unique by prefixing them with a common global identifier.  

The instance identifier (II) type has a root, which must be populated, and an 

extension, which is optional. Together, the root and extension must be globally 

unique.  

Note that there are specific situations where only a local identifier is available. A 

typical example is on a point of care device. In these cases, either the context of use 

assigns a global identifier root, or the identifier is incomplete (some flavor of null).  

4.4. OID Registry 



For some scenarios, it is not enough that the identifier be globally unique; the 

identification must also be consistent among a group of systems exchanging V3 

instances. Some concepts must be consistently identified within a realm, such as 

Social Security Numbers in the USA. Other concepts, notably shared standards such 

as HL7-defined concepts, ISO standards, and ICD-N and SNOMED terminologies, 

need to be consistently identified by all systems producing and consuming V3 

instances.  

One way to produce common consistent identification of these various kinds of 

objects is to maintain a central system where these identification concepts are 

registered. HL7 maintains an OID registry for this exact purpose. Any identifiers of 

interest to HL7 implementers may be registered on the HL7 OID registry, which 

includes  

• OIDs issued by HL7 that refer to objects or concepts defined by HL7, 

• OIDs issued by HL7 that refer to externally defined objects or concepts, and 

• externally issued OIDs that refer to externally defined objects or concepts. 

Note that the presence of an OID on the HL7 OID registry does not mean that HL7 

claims responsibility for the concept of object identified, only that it is of interest to 

some HL7 customer. If the OID is in the HL7 OID branch, then HL7 has issued the 

OID and accepts responsibility for working with the owner of the object or concept to 

maintain the identification of the concept.  

HL7 assigns an OID to each of its code systems, as well as to external standard 

coding systems that are being used with HL7 and HL7 Affiliate specifications. HL7 

also assigns OIDs to public identifier-assigning authorities (e.g., U.S. State driver’s 

license bureaus, U.S. Social Security Administration, HIPAA Provider ID registry,  

other countries’ Social Security Administrations, Citizen ID registries, etc.).  

The HL7 registered OIDs should be used for these organizations and namespaces, 

regardless of whether these organizations have other OIDs assigned by other 

registrars.  

HL7 will also assign OIDs in its branch for HL7 users and vendors upon their request. 

When this is done, the registration authority (RA) for all OIDs under this assigned 

OID is delegated to the person or organization so assigned. The understanding is that 

they will have sole responsibility for further OID assignment under their new root and 

will perform such assignment consistent with the ISO standards governing OIDs. Any 

objects that are subsequently assigned by these RA delegates may be registered in the 

HL7 OID registry. Once this is done, the OID so registered will be used to identify the 

object in subsequent HL7 messages.  

In some cases, technical errors are made during the OID assignment and registration 

processes, and sometimes an OID that has been registered for some time for HL7 

purposes must be decommissioned and replaced. The OID itself is not retired.  The 

retired flag is associated with the OID entry in the registry.  This does not mean that 

the OID has been retired (the OID is merely “used up” for HL7 purposes). In these 

cases, the erroneous OID entry is identified as “Deprecated,” and the OID that 

replaces it is identified in the OID registry. After a period of 2 years, the deprecated 



OID will be set to “Retired,” but both it and its identified replacement remain in the 

HL7 OID registry. 

Known Issue 13 (§ 2.13 )  

 

4.5. OID Conflict Resolution 

When assigning OIDs to third parties or entities, HL7 investigates whether an OID is 

already assigned for such entities through other sources. If a preexisting OID is found, 

HL7 records the OID in the registry, and HL7 does not assign a duplicate OID in the 

HL7 branch. If no OID is found, HL7 will create one in the HL7 branch. If an 

appropriate third party can be identified, HL7 will notify the party when an OID is 

being assigned for that party in the HL7 branch.  

Though HL7 exercises due diligence before assigning an OID in the HL7 branch to 

third parties, it is not possible, given the lack of a global OID registry mechanism, to 

make absolutely certain that there is no preexisting OID assignment for such third-

party entities. Furthermore, external assigning authorities may encounter the same 

issue, failing to discover that HL7 has assigned an OID and assigning a duplicate. 

When such cases of duplicate assignment are discovered, HL7 works to resolve this 

situation via the deprecation process outlined above for technical errors.  

4.6. HL7 OID branch 

The HL7 root OID is 2.16.840.1.113883. All OIDs that HL7 assigns are issued within 

the space defined by this OID. This OID has immediate sub-spaces as summarized in 

this table:  

Table 5: Defined Sub-spaces 

Beneath the HL7 OID Root  

Identity 

Use 

0 HL7 Root OID  

1 
HL7 registered internal objects (other than published 

documents and organizational bodies) 

2 HL7 organizational bodies and groups 

3 
External groups that have been issued an HL7 OID 

root for their own use as Registration Authorities 

4 Registered externally maintained identifier systems 

5 HL7 Internal Coding Systems 



Table 5: Defined Sub-spaces 

Beneath the HL7 OID Root  

Identity 

Use 

6 
Registered external coding systems (with an HL7 

issued OID) 

7 HL7 published documents 

8 
HL7 OID registered documentation products and 

artifacts 

9 HL7 Registered conformance profiles 

10 HL7 Registered Templates 

11 HL7 defined and registered value sets 

12 HL7 Version 2.x tables as code systems 

13 
Externally authored and curated value sets, HL7 

registered 

19 

HL7 Examples Root used for published examples; 

meaningless identifier, not to be used for any actual 

entities 

 

4.7. Specifying Identity with Instance Identifiers 

and Concept Descriptors 

Both the Instance Identifier (II) and the Concept Descriptor (CD) data types are used 

to define how object identities are expressed in HL7 class attributes. Their basic 

structures are similar: each includes a namespace and an identifier class attribute, with 

other optional information in the case of the CD.  In a CD, the namespace is the 

codeSystem attribute, and the identifier is the code attribute.  In an II, the namespace 

is the root attribute and the identifier attribute is  the extension. Via the linkage to a 

terminology and its richer set of attributes, the CD class allows the system to make 

usage of behaviours of terminologies (e.g. synonyms, language specificity, 

relationships and reasoning logic), while the II data type can only identify a unique 

object. 

 

Due to their similar basic identification attributes, a guideline is offered to help 

modellers decide which data type to use for a given entity. 

 

1. When the entity described by the class attribute is a concept (a class of entities) 

and/or the modeler wants to allow machine behavior to be applied to the concept 

instance at run time, the data type CD should be chosen  (e.g. SNOMED CT code 

for headache). 



2. If the purpose of a class attribute is to uniquely identify an object, and it resolves 

only to a single object within a class of entities, then the modeler should chose an 

II (e.g. drivers license number). 

3. If, at design time, the purpose does not clearly fall into usages 1 or 2 above (e.g. 

because two perspectives allow to see one entity as class or as concrete object), a 

CD or II can be used arbitrarily. This does not impede interoperability, as the data 

type is defined in the model. 
 

5. Coded Model Elements and Their 

Vocabularies 

In HL7, a static model identifies and describes the information that can be recorded 

and exchanged in the form of classes and their attributes and associations.   

 

A class attribute includes a description of the characteristic that the attribute 

represents, a cardinality constraint that identifies whether or not the attribute must 

always be present in an instance of the class and whether the attribute can appear 

more than once, and a data type that defines the range of possible values for the 

attribute. Certain data types employ enumerated lists of values to represent controlled 

sets of concepts: these are expressed as coded elements.  In HL7 Version 3, a coded 

element is represented using one of the following data types: CD, CE, CV, CO, CR, 

and SC (see Data Types: Abstract or Data Types: Abstract R2). In HL7, the possible 

values for these elements and their associated meanings are defined in code systems, 

from which both the representations and the associated meanings are drawn. 

The following section (5.1) describes the structural properties of concepts, code 

systems and value sets, while the next section (5.2) describes the usage of concepts, 

code systems and value sets in the business context of HL7 information models and 

messages. 

5.1. Structural Properties of Concepts, Code 

Systems and Value Sets1 

 

5.1.1. Concepts 

A concept defines a unitary mental representation of a real or abstract thing; an atomic unit of 
thought. It should be unique in a given code system.  A concept may have synonyms in terms 
of representation and it may be a primitive or compositional term 

 

Concepts serve multiple purposes in the HL7 Version 3 model.  Every object (entity, 

act, role, act_relationship, etc.) is associated with a concept which provides at least 

part of its intended meaning. Further, object attributes may also be associated with 

concepts that specify some or all of the attribute’s meaning.  
                                                           
1
 This section is currently under harmonization with the CTS2 information model. 



 

A code is a concept representation published by the author of a code system as part of 

the code system, and it is an entity of that code system.  It is intended to be used as the 

preferred unique identifier for that concept in that code system and used in the code 

property of an HL7 coded data type.   

 

The meaning of a code within a particular code system entity is valid only within that 

code system.  For example, each table having enumerated codes in the HL7 Version 2 

standard represents a different code system, since codes are sometimes used in 

different tables to have different meanings (e.g., “M” in the gender table means 

"Male," while “M” in the marital status table means "Married"). 

 

An HL7 concept can also be used to define a set of subordinate concepts, each of 

which is represented by a code. This set is then used to construct a list of possible 

values for a coded data type, where each code in the list represents a particular 

individual, process, or characteristic that logically belongs to the set of meanings 

represented by the parent concept. 

 

HL7 has created a logical model of concept that specifies the characteristics used in 

the HL7 tooling.  This model includes 

1. An identifier that represents the concept within the context of a code system 

(described below).  This identifier, when combined with the name of the code 

system itself, provides a globally unique name for the particular element.  This 

globally unique name can be used in transactions and data records that span 

both space and time. 

2. One or more designations (terms, appellations, symbols) that signify the 

concept 

3. Additional text, annotations, references and other resources that serve to 

further identify and clarify what the concept is intended to denote 

4. Where appropriate, assertions about relationships that might or must exist 

between the referenced concept and other concepts 

 

5.1.2. Code Systems 

A code system is a managed collection of concept identifiers, usually codes, but sometimes 
more complex sets of rules and references. They are often described as collections of 
uniquely identifiable concepts with associated representations, designations, associations, 
and meanings.  Examples of code systems include ICD-9 CM, SNOMED CT, LOINC, and 
CPT. To meet the requirements of a code system as defined by HL7, a given concept 
representation must resolve to one and only one meaning within the code system. In the 
terminology model, a code system is represented by the Code System class. 

Code systems are often referred to as terminologies, vocabularies, or coding schemes. 

At a minimum, Code Systems have the following attributes: 

•  An identifier ("id") that uniquely identifies the Code System. In HL7, this ID is in the form of an ISO 
OID. 

•  A description ("description") that describes the Code System. This may include the code system 
uses and intent. 

•  Administrative information proper to the Code System, independent of any specific version of the 
Code System. 



A code system is typically created for a particular purpose, and may include finite collections, 
such as concepts that represent individual countries, colors, or states.  Code systems may 
also represent broad and complex collections of concepts, e.g., SNOMED-CT, ICD-9-CM, 
LOINC, and CPT. 

A Code System Entity is any element or component of a code system which may have 
property and information specific to it defined in the code system.  Concept representations, 
designations, and associations are all examples of code sytem entities. 

Where possible, HL7 modelers faced with a requirement for a coded concept will 

reference an existing code system. Some of these code systems are replicated within 

the HL7 standard repository for stability or convenience, while others are documented 

as references. HL7 will only create a new code system when an appropriate existing 

code system is not available. Such is the case with Act Codes, which are defined and 

maintained by the HL7 organization.  There are also cases where an otherwise 

appropriate external resource is not available due to licensing or other restrictions.  

Code systems evolve over time. Changes occur because of corrections and 

clarifications, because the understanding of the entities being modeled evolves (e.g., 

new genes and proteins are discovered), because the entities being modeled change 

(e.g., new countries emerge; old countries are absorbed), or because the assessment of 

the relevance of particular entities within the knowledge resource change (e.g., the 

addition of ICD-9-CM morbidity codes related to terrorism).  Because of this, it is 

important to be able to know which version of a given code system was used in the 

creation of an HL7 model or the recording of coded data.    

The HL7 model depends, however, on the meaning of a specific concept identifier 

remaining constant over time, independent of the particular version of the knowledge 

resource.  In cases where the knowledge resource itself doesn’t enforce this (e.g. older 

versions of ICD-9-CM, where codes were retired and subsequently re-used to 

represent something different), it may be necessary to construct a composite unique 

identifier that consists of both the code and version.   

Code systems may publish unitary concept representations composed of multiple indivisible 
or unitary concepts.  Concept representations such as these are referred to as pre-
coordinated, and are curated as part of the code system maintenance and publishing 
process.  Some code systems have a mechanism to construct a representation for a new 
concept making use of formal relationships, published unitary concept representations, and a 
syntax, permitting the construction of concept representations that do not exist in the 
knowledge resource as it is published.  Such externally created concept representations are 
called post-coordinated expressions.  Note also that it is possible for a post-coordinated 
expression to be constructed for concepts that already have pre-coordinated codes published 
in the code system.  For example, the concept "excision of pituitary gland"

2
 may be pre-

coordinated with a unique identifier and a designation of “hypohysectomy.” An alternative 
definition for this concept can be obtained by post-coordinating codes for "brain excision" and 
"pituitary gland," without adding a reusable designation to the source system. Post-
coordination allows us to derive complex composite terms by combining the concepts they 
are derived from, which reduces the number of concepts in the source system. Post-
coordination requires the explicit resolution of complex questions of context and semantic 
precedence (e.g., the preposition “of” in this example). 

                                                           
2
 This example is from Dolin RH et al.: Selective Retrieval of Pre- and Post-coordinated 

SNOMED Concepts, Proc AMIA Symp. 2002; 210–214 



5.1.3. Value Sets and Their Definitions 

  A Value Set represents a uniquely identifiable set of valid concept representations, 

where any concept representation can be tested to determine whether or not it is a 

member of the value set. A concept representation may be a single concept code or a 

post-coordinated combination of codes.  

Value sets exist to constrain the permissible content for a coded element in an HL7 

static model or data type property. A class attribute expressed as a coded data type 

must be associated with a list of codes that represent the possible concept designations 

that can be represented in that attribute. Value sets cannot have null content, and must 

contain at least one concept representation. Any given concept is generally (but not 

required to be) represented by only a single code within the Value Set. Identical codes 

from different code systems are allowed because they can be disambiguated by 

identifying the code system they come from.  

Ideally, a given concept should be represented only by a single code. However, in 

unusual circumstances, a given concept can have more than one code (e.g. where a 

different case is used to signify the same concept, as 'l' and 'L' in UCUM for 'litre').  

Value set complexity may range from a simple flat list of concept codes drawn from a 

single code system to an unbounded hierarchical set of implicit post-coordinated 

expressions drawn from multiple code systems.  

 

5.1.3.1.1. Value Set Definition Types 

There are two basic approaches that can be used to define the contents of a value set: 

• Extensional definition: Explicitly enumerating each of the value set elements. 

• Intensional definition: Defining an algorithm that, when executed by a 

machine (or interpreted by a human being), yields such a set of elements. 

 

An extensional definition is an enumeration of all of the concepts within the value set.   

Value sets defined by extension are composed of explicitly enumerated sets of 

concept representations (with the code system in which they are valid). The simplest 

case is when the value set consists of only one code.  

An intensional value set definition is a set of rules that can be resolved (ideally 

computationally) to an exact list of concept representations at a particular point in 

time.  While the construction rules can potentially be quite elaborate, HL7 has 

identified a core set of rules that appear to be useful in most circumstances.  For the 

sake of value set definition interoperability, HL7 strongly recommends that these 

algorithms be used whenever possible. 

Intensional definitions can specify 

• All active unique identifiers from a given coding system 



• All unique identifiers that participate in a specified relationship with a given 

concept in a coding system, which may or may not include the specified code 

itself 

• The transitive closure of a specified transitive relationship with a given code, 

including or excluding the code itself 

• A nested value set definition in which a value set entry references another 

value set (a child value set). There is no preset limit to the level of nesting 

allowed within value sets. Value sets cannot contain themselves, or any of 

their ancestors (i.e., they cannot be defined recursively). Nested value sets are 

always intensionally defined in HL7. 

• Unions, intersections and exclusions of any of the above 

The intentional definition must be specific enough that it is always possible at a point 

in time (within a specific version of the code system) to determine whether a given 

value (including post coordinated collections of codes) is a member of the value set. 

For example, an intensional value set definition might be defined as, “All SNOMED 

CT concepts that are children of the SNOMED CT concept ‘Diabetes Mellitus.’” 

 

5.1.3.1.2. Unique Meaning Rule 

HL7 recommends that, whenever possible, a value set be drawn from a single code 

system.  This is not always practical, however, and when it happens, it is the 

responsibility of creator of the value set definition to assure that the set doesn’t 

contain more than one globally unique identifier that could potentially denote the 

same entity. Care must be taken to ensure that every entity represented in the value set 

has only one possible globally unique identifier. For example, both CPT and LOINC 

have codes that represent hematocrit, meaning that there are two possible globally 

unique identifiers with approximately the same meaning: 

2.16.840.1.113883.6.1#4544-3 for LOINC and 2.16.840.1.113883.6.12#85014 for 

CPT-4.   If both of these are possible choices in a value set, data encoded with one 

code may be missed when searching using the other code, and interoperability in 

general may suffer. Further, dividing semantic stewardship for the value domain can 

introduce semantic traps: the different source system owners may define their 

concepts with differences that escape one user’s notice, but have a significant effect 

on another user’s interpretation. In the above example, the CPT code specifies a test 

order, but does not require that the test be filled by a specific method: it refers to any 

hematocrit. The LOINC code, on the other hand, specifies the automated count 

method, specifically excluding packed cell volume tests. Equating these codes may be 

permissible in some contexts, but would be incorrect in others. 

Extra care must be taken to assure that overlapping references do not appear in 

implicitly defined value sets, especially as there is no easy way to automatically 

determine when this situation exists.  Again, the easiest way to avoid this is to avoid 

the use of multiple code systems in a single value set where possible. 

5.1.3.2. Value Set Resolution 



To obtain a set of concept designations, value sets must be resolved. While this is 

straightforward for extensional value sets, an intensional value set definition must be 

resolved to an expansion.  This process must record the exact set of definitional rules 

used to resolve the value set in the desired version (see below). This can be done as 

early as the point of value set definition or as late as run time, but the definition needs 

to be available to accompany any data that is generated using the value set. Note that 

the resolution of post-coordinated designations is independent of how a value set is 

defined.  

 

5.1.3.3. Value Set Definition Versioning 

The definition of a value set can change over time.  New identifiers may be added to 

or removed from a value set definition, and the rules used to construct the set may 

change.  When a value set definition changes, it should be done in a way that ensures 

both the old and new versions are available for comparison.  

There are multiple strategies for tracking value set versions. Two of the most common 

are 

1. to increment the version number each time a change is made to the value set 

2. to track modification dates for each change to the value set. 

In HL7 standards, value set versions are determined by effective date (the date at 

which the value set version became effective), and not by available date (the date the 

value set version was made available within an organization) or by a version number. 

This policy has the following implications:  

1. For enumerated value sets maintained by HL7, the activation date and 

deactivation date for individual codes in the value set must be maintained as 

part of the value set database.  

2. For intensionally defined value sets in the HL7 value set database, the 

activation date and superseded date must be recorded (tracked) each time the 

logic of the definition is changed.  

3. For externally maintained terminologies that have named or numbered 

releases, a table must be maintained that shows the modification dates for the 

named or numbered releases.  

4. For externally maintained terminologies that maintain modification dates for 

each individual code change, no additional information is needed.  

 

A sub-value set is a sub-set of a parent superset. There may be no designations in a 

sub-value set that are not also contained in the superset. A sub-value set is generally 

created as part of the successive constraining process of model development. The 

CTS2 models this via the DesignationValueSetVersionMembership class. 

5.2. Binding Vocabulary for Use 



 

When HL7 information models and messages are designed and constrained for use, 

those attributes requiring coded values are associated with value sets. In HL7, this 

process is called vocabulary binding. Vocabulary bindings are specific to a model or 

message element’s realm, concept domain and usage context
3
.  

 

Binding consists of identifying the coded attributes in a model, defining value sets 

that must be used in those coded attributes and declaring the circumstances under 

which those value sets must be used with those coded attributes.  

 

The binding process associates a model element with the identifier of a value set.  

This identifier refers to the value set definition. Bindings also have an optional 

version identifier.  This is used to identify the particular expression of the definition 

(if it has changed over time) and to identify the correct version of the code systems 

involved.   

 

Both the definition of the value set and the binding of the model element to the value 

set definition are recorded for use when systems use the specification to 

communicate—whether to select, validate, or interpret a value. The location where 

definition and bindings are stored may differ from Realm to Realm. Some Realms 

may use the HL7 repository for both definition and binding; others may use resources 

stipulated by governmental authorities, regional cooperatives, or specialized 

institutions. In any case, any system using the HL7 specification requires access to 

these resources. 

 

An element may be bound to different value sets under different circumstances. The 

following subsections describe the way HL7 assigns the vocabulary structures 

described above to model elements.  

 

 

5.2.1. Realms 

In HL7, the broadest binding context is the realm
4
.  All model instances must declare 

a particular realm (or sub-realm) based on the jurisdiction from which they originate, 

for which they are destined, or for some third jurisdiction by site-specific agreement. 

The declared realm applies to the entire model or specification artifact: it is not 

specific to individual elements of that model or artifact. 

A Realm refers to a named interoperability conformance space, meaning that all static 

models within a particular Realm share the same conformance bindings. In 

nontechnical terms, it can be considered a dialect where speakers use the semantics of 

the language but agree to use certain terms that are specific to their community. A 

Realm is also commonly referred to as a Binding Realm, especially where other types 

of realms are being discussed. A binding realm has a unique realm code: the binding 

                                                           
3
 The CTS2 information model expresses the relationship the structural value set view and 

the HL7 usage view via the classes JurisdictionalDomain (which correspond to an HL7 
realm), ConceptDomain, UsageContext and ValueSetContextBinding. 
4
 A Realm is represented as a JursidictionalDomain in the CTS2 model 



realm Germany has a realm code of DE, and the steward is HL7 Germany.   In order 

to enable conformance, the name of the Realm is carried in the model instance.  

In the interest of maximizing interoperability, interoperability spaces should be as 

large as possible: Realms are preferred to be large-grained.  A Realm is used to 

provide and manage the bindings of value sets to reflect rules within a conformance 

space—e.g., a country. 

5.2.1.1. Defined Realms 

5.2.1.1.1. Affiliate Realms 

Each HL7 International Affiliate owns a Realm bounded by the geographic scope of 

the Affiliate.  

5.2.1.1.2. Sub-Realms 

In some circumstances, an International Affiliate might choose to create additional 

binding realms narrower in scope than the affiliate-wide binding realm. The sub-

binding realms might be constructed geographically (e.g., regions, states, provinces, 

etc.) or by type of implementation (e.g., human vs. veterinarian). Sub-binding realms 

can only be created by International Affiliates.  

Note: Because the purpose of binding sub-realms is to allow the use of different code 

sets for the same message within an affiliate, they can cause interoperability issues 

within the Affiliate. They should therefore only be introduced after careful 

consideration of the interoperability consequences.  

 

5.2.1.1.3. Combination Realms 

There is a need for Realms that combine more than one country. There is a North 

America Realm for Cancer Registries for the US and Canada. This Realm has been 

created as a combination of the US Realm and the Canadian Realm. Any Realms may 

be combined for such a purpose to make an interoperability space that extends beyond 

one country. The International Affiliates who agree to do so are the stewards of the 

combination realm. 

5.2.1.2. Generic Realms 

Four Generic Realms have been defined that are not specific to an International 

Affiliate (or to a delegated subset or coordinated alliance of International Affiliates). 

These generic realms should never appear in model instances: they are only used in 

the standards creation process.  

5.2.1.2.1. Universal Realm 



The Universal Realm constitutes the core HL7 realm which is by definition invariable 

and fully inherited by all HL7 models and compliant implementations. If a Universal 

Realm binding exists for any attribute, all implementations are expected to use the 

value set associated with that binding. No other bindings may exist. Structural 

elements (e.g., Act.classCode) and most data types are examples of content in this 

realm. Content from domain technical committees is rarely included in the Universal 

Realm and, when introduced, must go through special processes to ensure full 

international consensus on the universal constraint to a single binding.  

5.2.1.2.2. Example Realm 

The Example Realm is used for bindings to sets of codes that are known to provide 

incomplete or non-implementable coverage to the associated domain. They are used 

to fulfill the example requirement of concept domain definition: a concept domain 

definition (below) must include three examples. They may also be used in the 

construction of realm-independent example instances. Example realms are not needed 

when appropriate Representative Realms exist.  

5.2.1.2.3. Representative Realm 

Representative Realm bindings are intended to be complete and implementable 

examples. Unlike universal bindings, there is no expectation that all (or any, 

necessarily) affiliates will choose to adopt the representative realm bindings. 

Representative realm bindings provide a starting point and a focus for consensus, 

while recognizing that cultural and political variations between International 

Affiliates may result in alternative bindings. To qualify for Representative Realm 

designation, candidate content must be sufficiently comprehensive and internally 

consistent to be adoptable and implementable by specialized binding realms. A 

representative realm binding has no official force in an affiliate unless the affiliate 

chooses to adopt it with an Affiliate-specific binding. When an Affiliate does choose 

to use a binding from the representative realm, the binding definition is copied into 

the Affiliate realm: there is no persistent link that may result in unintended cascading 

changes. 

5.2.1.2.4. Unclassified Realm 

The Unclassified Realm accommodates content that is new and in the process of being 

refined as well as legacy content that has not yet been promoted to its destination 

realm. The Unclassified Realm may also serve as a transition point for content 

contributed from other Realms. The unclassified realm exists for HL7 administrative 

purposes and has no effect on implementations  

5.2.2. Concept Domains and Usage Context 

An HL7 Concept Domain is a named category of like concepts (a semantic type) that 

will be bound to one or more attributes in a static model whose data types are coded. 

Concept Domains exist to constrain the intent of the coded element while deferring 

the association of the element to a specific coded terminology until later in the model 

development process. Thus, Concept Domains are independent of any specific 

vocabulary or code system.  



Concept domains are universal in nature (independent of any realm), so the name for 

a concept domain should never contain any reference to a specific realm. Concept 

domains are and registered with HL7: they are proposed as part of the HL7 standards 

development process and are approved by the RIM harmonization process. Both 

processes are described in the HL7 Development Framework (HDF). 

A concept domain is documented by specifying a name and a narrative definition. In 

addition, at least three  concept identifier examples that represent possible values for 

the attribute are required. The identifiers should represent concepts that characterize 

the intent and purpose of the concept domain. This can be accomplished in one of the 

following ways:  

1. Including three example concept identifiers as part of the narrative 

definition; 

2. Associating the concept domain with  a value set that contains at least 

three example concept identifiers in the context of the Example Realm; 

or 

3. Associating the domain with a value set that contains a set of concept 

identifiers whose denotations completely cover the intended meaning 

of the domain, using either the Universal or the Representative Realm 

as a context. 

 

5.2.2.1. Examples of Concept Domains 

The concept domain HumanLanguage carries the description, “Codes for the 

representation of the names of human languages.” The set of concept identifiers that 

represent different human languages can be drawn from different code systems, 

depending on which realm or sub-realm is creating the message. For example, the 

United States Realm may choose to use a value set that includes concept identifiers 

for various Native American languages, while New Zealand may find such a value set 

inappropriate.  

[This would be the place to address structural codes, if that's where value sets are 

bound to concept domains rather than model attributes. If value sets are always bound 

to concept domains and never to model attributes, then 5.2 is incorrect.] 

5.2.2.2. Sub-Domains 

One concept domain may be defined to be “sub domain” of another.  This means that 

the intended meaning and reference of the sub-domain is intended to be narrower than 

the meaning of the parent.  For example, there is a domain called observation method, 

with a sub-domain of genetic observation method. This is not intended to be an 

ontological assertion; its primary purpose is to indicate that all of the coded identifiers 

in a value set that is associated with the sub-domain should also be valid identifiers 

for the parent domain, though the reverse may not be true. 

5.2.2.3. Constraining Concept Domains on Attributes 



The HL7 RIM specifies concept domains for all coded attributes.  It does not, 

however, associate all of these concept domains with value sets. When a specific HL7 

static model is produced, the modelers determine how to handle each coded element. 

They may choose to  

1. retain the concept domain that was specified in the RIM,  

2. substitute a sub-domain of the original RIM concept domain, restricting the 

possible values that can go in the associated attribute, or  

3. bind the element with a single value set, indicating that the identifiers in the 

associated value set must be used in this particular model. 

A static model is considered to be “abstract” as long as it contains at least one coded 

element that is not associated with a value set.  A model cannot be used to create 

instances until all coded elements have been associated with value sets.  The 

following sections describe different mechanisms by which concept domains are 

associated with value sets to render a model “concrete,” or usable. 

5.2.3. Binding Mechanisms and Strategies 

The Realm, concept domain, and usage context define the scope for a particular 

binding between a model element and a value set. This section explains how, given 

those parameters, the binding is defined. 

5.2.3.1. Binding Mechanisms  

5.2.3.1.1. Binding Schedule Mechanisms 

There are two schedule mechanisms for binding an attribute or data type property to a 

value set that HL7 has agreed to support. 

Model Binding involves binding a coded attribute or data type property in a static 

model to a specific value set. The contents of the value set must be consistent with the 

concept domain definition in the model's parent (DMIM, RIM, etc.). Where the 

corresponding attribute or property in the parent model is a value-set or is a domain 

which has been bound to a value-set, the value-set bound to the child model attribute 

or property must be the same or a subset of the parent model value-set.  

Context Binding involves binding a coded attribute or data type property to a 

combination of concept domain, realm, and (optionally) context of use, without 

knowing the value set at design time. This combination is later used to identify the 

appropriate value set. This type of binding is used primarily when the value set to be 

bound is not known at message design time. Because the realm associated with the 

instance is identified within the instance, it is possible for a receiver who knows the 

message specification (and thus the concept domain) to determine the appropriate 

value set to validate against. In this context, it is important to understand that a 

principle of HL7 is that after an HL7 model has been balloted and is complete it may 

still not be implementable, as certain coded attributes may not have been constrained 

beyond concept domains (to be implementable, every coded attribute must be 

associated with a value set of permissible codes).  Context binding is the mechanism 

whereby an abstract model specification can be made implementable by decoupling 

value set specification from model development.  



This distinction between Model and Context Binding affects the timing of activities, 

but it is driven by a division of labor. Model Binding is performed by modelers at 

model design time, and it is used for model elements that should be bound to a 

specific value set irrespective of Realm, e.g. structural codes. Context Binding is 

performed by Realm representatives, and it obtains for all elements using the Concept 

Domain in any model or artifact within the Realm. 

The two approaches may require coordination. A Realm may assert a context Binding, 

which a modeling team may further restrict, but not broaden or contravene, in a 

particular model. Similarly, if there is already a Model Binding where a given Realm 

wishes to assert a Context Binding, the Context Binding should identify a superset of 

the values in the extant model Binding(s).  Known Issue. 

5.2.3.1.2. Binding Version Mechanisms 

There are three version mechanisms for binding vocabulary to coded model elements, 

each of which may be used with each of the two schedule mechanisms described 

above: these are Static Binding, the Single Code, and Dynamic Binding.  

 Static binding is a binding to a specified version of a value set. As a result, the 

allowed values of the value set do not change automatically as new values are added 

to a value set, and the expanded list can be included in an implementation guide. A 

static binding is fully specified when the binding references a specific version (date) 

as well as the value-set OID/unique name. 

Dynamic binding is a binding to a value set without a specified version. As a result, 

the allowed values for a coded item automatically change as the value set or its 

underlying code system is maintained over time. This means that for dynamic 

binding, the binding is to the most current version of the value set at a given point in 

time. A documented expansion of a dynamically bound value set must always be 

checked for currency before use. 

Dynamic binding is fully specified when the binding references the value-set OID or 

unique name. It need not specify a version date: it stipulates that the most recent 

version be used at runtime.  

Single Code binding is defined as the binding of a single code to a coded attribute or 

data type property in a static model. It can be seen as a special case of static binding 

with a value set of size one. 

5.2.3.1.3. Unbound Domains 

In some situations, a concept domain referenced in an HL7 static model might not 

have an applicable binding for the affiliate making use of the model (no universal 

binding and no Affiliate binding for that affiliate). In that case, the domain is 

considered to be un-bound. The determination of the set of codes to use remains 

subject to site-specific negotiation until an applicable binding is created universally or 

for that affiliate.  



5.2.3.2. Binding Methods 

 

For each binding schedule mechanism (model, context), there are three available 

version mechanisms: dynamic, static and single code. This means that in HL7, six 

binding methods are available. We will first discuss model, then context binding 

methods.  

 

The following table outlines the key differences at a high level: 

 
 Model Context 

Static Realm known at design time 

Domain known at design time 

Value set known at design time 

Value set version known at design time 

Realm known at design time 

Domain known at design time 

Value set known at intermediate time 

Value set version known at intermediate time 

Dynamic Realm known at design time 

Domain known at design time 

Value set known at design time 

Value set version known at run time 

Realm known at design time 

Domain known at design time 

Value set known at intermediate time 

Value set version known at run time 

Single Code known at design time Code known at intermediate time 

 

 

 

5.2.3.2.1. Methods for Model Binding 

5.2.3.2.1.1. Dynamic Model Binding of Value sets 

This method is used when binding a value set to a coded attribute or data type 

property in a static model at design time where the coded content of the value set 

should change to reflect the most current thinking. Dynamic Model Binding for both 

extensionally and intensionally defined value sets (native or imported) is 

accomplished by referencing the OID or the name (or both) of the value set in the 

binding statement; the effective time of the operation on the value set (such as 

validation) is the date of the expansion of the value set.  

5.2.3.2.1.2. Static Model Binding of Value Set 

This method is used when binding a value set to a coded attribute or data type 

property in a static model at design time, where stability and predictability are more 

important than up-to-the-minute code system changes. Static Model Binding for both 

extensionally and intensionally defined value sets is accomplished by referencing the 

value set OID or name (or both) and the effective date of the value set in the binding 

statement. The date of the binding statement is the effective date of the expansion of 

the value set.  

5.2.3.2.1.3. Model Binding to a Single Code 



This method is used when binding a single code to a coded attribute or data type 

property in a static model at design time. The binding is accomplished by stating the 

code, the code system OID or name (or both), and, optionally, the effective date of the 

code system version.  

Known Issue 18 (§ 2.18 ) 

5.2.3.2.2. Methods for Context Binding 

5.2.3.2.2.1. Dynamic Context Binding of Value Sets 

This method is used when a concept domain is bound to a coded attribute or data type 

property in a static model and the reference is to be resolved to a dynamic value set at 

run time. A value set must be assigned to the combination of domain and  realm at 

some time between model design and run time. The following elements must be 

known in order to resolve the domain name to a specific value set:  

1. The identity of the static model 

2. The unique identity of the coded attribute or data type property in the static 

model (ClassName.attributeName[.datatypePropertyName]) 

3. The concept domain that is bound to the coded attribute or data type 

propertyKnown Issue 19 (§ 2.19 ) 

4. The binding-realm within which the data exchange is to occur 

The first three properties are part of the model binding statement for the model. The 

last two properties are part of the Context Binding statement contained in the 

terminology server. The Binding-Realm is passed as part of the context as the 

message is parsed (RealmCode); the concept domain, the realm, and the value set 

must be available to the terminology server, and may be included in an 

implementation guide. Known Issue 20 (§ 2.20 ) 

5.2.3.2.2.2. Static Context Binding of Value Sets 

This method is used when a concept domain is bound to a coded attribute or data type 

property in a static model and the reference is to be resolved to a static value at run or 

compile time. The following elements must be known to resolve the domain name to 

a specific value set:  

1. The five elements listed above for dynamic context binding  

2. The effective date of the value set  

The first three properties are part of the model binding statement for the model. The 

last three properties are part of the Situation Constrained statement. The Binding-

Realm is passed in a message instance wrapper (RealmCode); the concept domain, the 

realm, the value set, and the effective date must be available to the terminology 

server, and may be included in an implementation guide.  

 

5.2.3.2.2.3. Context Binding to a Single Code 



This method is used when a concept domain is bound to a coded attribute or data type 

property in a static model and the reference is to be resolved to a single code in a code 

set at runtime. The following elements must be known to resolve the domain name to 

a specific coded value:  

1. The identity of the static model 

2. The unique identity of the coded attribute or data type property in the static 

model (ClassName.attributeName[.datatypePropertyName]+) 

3. The concept domain that is bound to the coded attribute or data type 

propertyKnown Issue 19 (§ 2.19 ) 

4. The binding-realm within which the data exchange is to occur 

5. The code, the code system OID or name (or both) and optionally the effective 

date of the code system versionKnown Issue 19 (§ 2.19 ) 

 

5.2.3.2.3. Binding Syntax 

 

Binding syntax is determined by the conformance work group. It is documented in 

[source]. 

5.2.3.3. Additional Notes on Domains and Value Sets 

5.2.3.3.1. Concept Domain and Value Set Naming 
Conventions 

 

HL7 concept domains and value sets will be named according to the following rules: 

• All concept domains and value sets will use “camel back” style names.  

• The name will be restricted to the basic 26-character alphabet and the digits 0-

9 using ASCII characters. White space (tabs, spaces), punctuation (periods, 

commas, colons, semicolons, parentheses, quotes, etc.), underscores, hyphens or 

other separators are not allowed in the name.  

• The leading character must be upper-case alpha  

• Concept domain and concept sub-domain names should be accurate labels for 

the concept spaces that they designate. Concept domain and concept sub-domain 

names should never include realm or code-system specific information. The 

concept domain name should also be independent of the RIM attribute where 

possible, so that the concept domain can be re-used with different attributes. For 

example, a concept domain should be called “HumanGender” rather than 

“PatientGender” so that the same domain could be bound to the 

“GuarantorGender” attribute.  

• Value sets may be named by combining the name of the concept domain with 

other contextual information that will uniquely identify the value set; this is very 

helpful when a value set is appropriate for only a single sub-domain (which is most 

often the case). If a value set is expected to be used in more than one concept 

domain, then a more general name that clearly identifies the usage of the value set 

should be created. For example, the following would be appropriate names:  



o Concept Domain: HumanGender 

o Value Set: HumanGenderUSRealm 

o Concept Domain: Country 

o Value Set: CountryFIPS 

5.2.3.3.2. Root Concepts 

A Value set may be referenced as abstract or specializable. If a value set is referenced 

as abstract, the “navigational concept" - the root concept of which all other concepts 

in the value set are specializations - is not selectable. If specializable, the root concept 

(head code) is selectable, meaning that highest level concept can be selected without 

further refinement.  

The terms “abstract” and “specializable” may be thought of as referring to the root 

concept as an object-oriented class, which may be concrete (usable) and specializable, 

or abstract (not usable except via specialization). 

NOTE: Being abstract or specializable is not a property of value set itself, but is an 

indication that for any specified context, the value set should be referenced as either 

abstract or specializable.Known Issue 16 (§ 2.16 ) 

 

 

Value Sets 

 



5.2.3.3.3. X-Domain (X-Value Set) [Deprecated] 

In HL7, there are value sets called “X-domains.” “X-Domain” is a misnomer: a more 

proper name would be “x-value sets,” since they are really HL7-defined value sets or 

sub-value sets. X-Domains came into existence to address a muddling between the 

code system hierarchy and value sets. Earlier versions of the vocabulary maintenance 

tools didn’t distinguish between a value set that included concepts X, Y and Z and a 

concept code with subtypes X, Y and Z. The prefix “X-” was added to value sets that 

were intended to represent simple collections, not conceptual hierarchies. A rule was 

established that new concept codes couldn’t be introduced within an X-domain. They 

first had to be entered elsewhere in the coding scheme hierarchy and then added 

separately to the X-domain. As time permits, all X-Domains will be replaced by value 

sets.  

Known Issue 17 (§ 2.17 ) 

 

6. Accountability and Updates (was 11) 

MnM: include a conformance review referring back to appropriate sections 

 

 In addition to using update Mode to describe the changes that have happened or 

should happen, instances can also carry accountability information relating to the 

information in the message, both associations and attributes. The accountability 

information can include the time range during which the information was or is valid, 

and a link to the control act associated with the value. The control act can describe 

who made the change, when the change was made, what application made the change, 

and some context for the change in the overall dynamic model.  

Known Issue 12 (§ 2.12 ) 

Generally, this form of accountability history is used in registry-type systems where 

there is a strong need for the receiver to establish the authority on which a particular 

piece of data is being changed. Understanding the details can be important in helping 

a receiver make the determination whether they wish to adopt the change.  

Accountability information will be handled by using the HXIT generic type extension. 

This extension will be applicable to both attributes and to associations. To provide 

support for accountability information in addition to a time stamps, the HXIT 

extension will be modified to allow for the presence of either a simple time stamps or 

a ControlAct.id reference. The reference will allow the changes to an individual 

attribute or association to be associated with the ControlAct that changed it. The 

ControlAct can be used to convey such information as event time, author, authoring 

organization, data-enterer, reason, and any other accountability information deemed to 

be important.  

When working with interactions triggered by a state-transition notification, a state-

transition request or a state-transition fulfillment request, the individual ControlAct 



classes associated with the changes to each attribute or association will be sent as 

‘Components’ of the ControlAct in the ControlAct wrapper. When working with 

query response interactions, the ControlAct classes will be attached to the focal class 

of the query response via a subject association.  

Multiple associations and attributes may reference a single ControlAct, or each may 

reference a separate one. 

Committees must explicitly enable exposing the Accountability History link for a 

given attribute or association. 

6.1. Update control (was 7) 

HL7 Static models are used to represent information about the real world when it is 

exchanged between systems. The objects in the instance represent real world concepts 

about which a certain amount of information is known.  

Snapshot: A methodology in which the sending system includes all the data it has 

into the message with no specific indications of which data items were added, 

replaced, or removed. The term was chosen because the source system sends a 

“snapshot” of the objects as it knows them.  

Snapshot is typically used when information is exchanged between systems where the 

destination system is not known, or where it is not clear how much information the 

destination system already has about the real world concept.  

When a receiving application processes an object that is represented using a snap shot, 

and it already has information about the real world concept that matches this object, 

the application should match objects in the instance with the information it already 

has, and then appropriately process the information from the message to the 

information it has on file (for instance, in some cases it would make sense to merge 

all the attributes and associations of the objects).  

Potential Advantages: 

• Can be easier for senders to implement 

• Many sending systems implement Version 2 messages in this fashion 

Potential Disadvantages 

• Typically more complicated for receivers to process appropriately 

• Easier for relevant data to be deleted 

Update mode: A methodology in which the message designer specifies the allowable 

update mode values for items within the message and the message sender specifies the 

specific update mode value for items for items within the message.  

However in some contexts, the destination system is well known and there is an 

implicit or explicit contract between the source and destination systems that ensures 



the information the destination system holds is well known to the source system. In 

such contexts, it is possible to only send the changes that have occurred on the source 

system or should occur on the destination system. These changes may be additions, 

deletions, and revisions to existing data. This practice is known as "update" mode.  

Another use for update mode is where the source application includes all the same 

data items in the message specification as it would for snapshot node, but marks each 

value for each data item in the message specification that indicates whether it is 

added, replaces another item, or has not changed.  

Where update mode can be used, it offers several advantages. Potential Advantages 

(depending how it is used): 

• reduced instance size  

• The receiver does not need to compare data to determine what changes the 

sender has made  

• Where the receiver gathers data from multiple sources, it does not need to 

store ‘images’ of data received from a particular sender to ensure that it can 

adequately compare to the previously sent data when determining changes  

• reduced processing time  

• simpler implementation decision making  

• Conveys important information for how the sending system has processed the 

information  

• Query responses are able to document accountability information in terms of 

what changes were performed (see accountability below).  

Potential Disadvantages: 

• update mode offers the opportunity for two systems to get information out of 

sync, so modellers and implementors should always be careful.  

• Typically requires for effort for the source system 

The normal mode for V3 instances is snapshot; update mode is only allowed when the 

[[constraining model]] design specifically allows update mode.  

Update Control interpretation depends on the context of the message type: 

1. When used in a message driven by a state-transition notification or a state-

transition fulfillment request trigger event (where the focal class is an object 

owned by the sending system), the update control represents the change that 

occurred on the sending system as a result of the state change associated with 

the trigger event. The recipient is not bound to make the same changes as 

those done on the sending system.  

2. When used in a message driven by a state-transition request trigger event 

(where the focal class is an object owned by the receiving system), the update 

control represents the change that is desired by the sending system as a result 

of that trigger event. If the recipient accepts the request, they must make the 

requested changes.  

3. When used in a query response message, the update control represents the 

most recent change that has occurred to the sender’s object within back to a 



specified time. The committee may allow the time from which changes are 

reported to be specified by a query parameter or fixed by the query definition. 

If not otherwise specified, the start time is the first time the system became 

aware of the object.  

6.2. Update Mode 

HL7 provides a single property called updateMode to support the concepts defined in 

Update Control, Referencing Objects, and Identifying Objects.  

Note: a more appropriate name might be useCode, but the property name is 

updateMode for backwards compatibility reasons.  

Note: The updateMode property actually applies to associations and attributes, not to 

classes and datatypes, though it is formally defined on the types.  

The value of the updateMode property identifies how the attribute or association 

contributes to the processing of the instance. HL7 models strictly control the use of 

the updateMode attribute; it may only be populated with a value that the 

[[constraining model (internal reference)]] allows. If there is no value, then the 

constraining model should be consulted for guidance on how the instance should be 

processed.  

The updateMode property can have one of the following values: 

Table 4: Table of Update Mode Values  

Code  Name  Description 

A  Add  

The item was (or is to be) added, having not been 

present immediately before. (If it is already present, this 

may be treated as an error condition.) 

D  Delete  

The item was (or is to be) removed (sometimes referred 

to as deleted). If the item is part of a collection, delete 

any matching items. 

R  Replace  

The item existed previously and has (or is to be) revised. 

(If an item does not already exist, this may be treated as 

an error condition.) 

AR  
Add or 

Replace  

The item was (or is to be) either added or replaced. --

[Delete: (This option is included to support one specific 

case, discussed below. Its general use is discouraged, 

the preferred metdodology is to use the combination of 

the individual Add and Replace values.)]--  

N  
No 

Change  

There was (or is to be) no change to the item. This is 

primarily used when this element has not changed, but 

other attributes in the instance have changed.  



Table 4: Table of Update Mode Values  

Code  Name  Description 

U  Unknown  

It is not specified whether or what kind of change has 

occurred to The item, or whether The item is present as a 

reference or identifying property. (replaces: It’s not 

specified whether the item was (or is to be) added, 

revised, or not changed.) 

REF reference 

This item provides enough information to allow a 

processing system to locate the full applicable record by 

identifying the object. 

K Key 
This item is part of the identifying information for this 

object. 

Notes:  

1. Portions requiring harmonisation proposals in italics 

2. R and AR may not be applied to multiple attribute values within a DSET, 

BAG or LIST. If a single attribute value is marked with a R is used to update a 

collection, the single value replaces all the items in the collection  

3. REF may only be applied to associations, not attributes. 

4. U is semantically equivalent to a nullFlavor of NI. However due to some 

methodological issues in V3, a specific code is required to in some 

circumstances.  

5. If an item is deleted from a collection, all matching items should be deleted 

from the collection 

 

 

7. Model Designer Guidance (was 10) 

This section is intended for people designing static models, typically HL7 domain 

committees. 

When designing a model, a committee may allow UpdateMode to be used on 

attributes and associations identified by the committee. To enable UpdateMode, the 

committee must select the set of permitted updateMode values.  

In addition to identifying the allowed set of values, the committee may also choose to 

identify a ‘default’ updateMode for the attribute or association. This is the 

updateMode that will be assumed by the receiver if none is specified in the instance.  

updateMode of “Replace” is not permitted on Entity.id, Role.id, Participation.id and 

Act.id attribute. If an identifier was captured erroneously, the incorrect submission 

should be nullified and the record resubmitted with the correct identifier. If a new 



identifier has been issued, replacing the old identifier, this should be handled as a 

supersedes or replaces relationship between the class with the old identifier and the 

class with the new identifier.  

If no UpdateMode set is enabled for an attribute or association, it is the same as if the 

UpdateMode were set to ‘Unknown’. The effective behavior is that of ‘Snapshot’. I.e. 

the current element value is specified with no indication of whether it was changed or 

not.  

The allowed UpdateMode set available for RIM attributes is empty by default. This 

means that committees must specifically enable UpdateMode by declaring an allowed 

set of Update Modes within their design for each attribute or association in their DIM 

where they want them to be used. Once an UpdateMode set has been defined in the 

DIM, any derived models (CIM, serialized static models or serialized message 

models). I.e. Update Modes may be removed from the allowed set, but never added.  

If a committee defines update modes for a particular attribute or association, 

implementers must support the allowed update mode set to be conformant. (Failure to 

support the complete set defined by the committee may result in interoperability 

problems.) Implementers should be able to document what update modes they support 

in their conformance profile, but failure to support those identified by the committee 

that defined the artifact is considered non-conformant.  

The committee does not need to define a default update mode, and may define a 

default at any derived model. Once a default is defined, it may not be removed or 

changed in any subsequently derived models. I.e. if a default is defined in an R-MIM, 

it may not be changed or removed in serialized static models or Message Types 

derived from that R-MIM. Because of this restriction, committees are discouraged 

from defining a default UpdateMode at the DIM level.  

Update modes should not be specified in templates, as they are intended to be used 

across multiple different static models that make their own rules about use of 

updateMode.  

Notes:  

1. UpdateMode is not a concept that should appear in all, or even in most models 

developed by committees. It should be treated as an ‘advanced modeling 

concept’, and only employed in models where the facilitator is certain that the 

concept is needed to adequately reflect the needs identified by their 

committee. Furthermore it should only be enabled on those attributes or 

associations where there is an identified need. When a facilitator has identified 

a perceived requirement for UpdateMode in their model, they are encouraged 

to bring the requirement to the Modeling and Methodology Technical 

Committee for review.  

2. UpdateMode will primarily be used for trigger events where the state 

transition is “revise” and for query responses; however, it may be appropriate 

in other circumstances. Committees are encouraged to discuss additional 

patterns for usage so that they may be reflected in this document.  

3. UpdateMode should not be enabled in Transmission or ControlAct wrappers. 



4. There is no way to Remove a single element from a BAG where there are 

multiple matching elements because there is no means to indicate which 

occurrence within the bag is to be removed.  

5. Id attributes should never be sent with an UpdateMode of Replace. If such a 

use-case arises, it will addressed as a future methodology change.  

6. Classes that do not carry an id attribute cannot be identified at all. 

 

Appendix A: Code system types 

A vocabulary in the HL7 sense is a terminology, as defined below.  

A terminology is a set of concepts designated by terms belonging to a special domain 

of knowledge, or subject field . A terminology is not an arbitrary collection of terms, 

but a collection of designations attributed to concepts making up the knowledge 

structure of a subject field. The concepts of a well-structured terminology should 

constitute a coherent concept system based on the relations established between 

concepts. The meaning of each concept within a system can be determined by the 

intension, i.e. the unique set of characteristics constituting the concept, or its 

extension, i.e. the enumeration of the subordinate concepts of a concept. 

Most terminologies can be classified as either reference terminologies or interface 

terminologies, though there are other types, e.g. indexing terminologies (like UMLS). 

A reference terminology is a terminology in which every concept designation has a 

formal, machine-usable definition supporting data aggregation and retrieval. Interface 

terminologies are used to mediate between a user’s colloquial conceptualizations of 

concept descriptions and an underlying reference terminology.  

A terminology can be seen as a kind of ontology. An ontology has all the 

characteristics of a terminology, but it also uses a methodology for the description of 

the relationships between concepts (e.g., Description Logic) which allows humans 

and (depending on the methodology) machines to reason about the properties of that 

subject domain and to deduce knowledge from the way the concepts relate to each 

other. Ontologies allow different types of concept relationships to capture their 

richness. Hierarchical terminologies can be seen as rudimentary ontologies as they 

describe the relationships of concepts to each-other but have only one type of 

relationship. 

A taxonomy (synonym: classification) is a somewhat less formal system.  Taxonomies 

often have less granular concepts than terminologies and may lack concept codes. To 

be used as vocabularies in HL7, taxonomies need to have concept codes and must 

contain concepts at an adequate level of granularity. Like hierarchical terminologies, 

however, taxonomies often specify hierarchical parent-child relationships 

 

 


