HL7 Behavioral Framework
HL7 ArB

TABLE OF CONTENTS

31
Introduction

31.1
Criteria for a Robust Behavioral Framework

42
HL7 Solutions

62.1
Implementable Solutions

82.2
The Components of Implementable Solutions in a Distributed Environment

92.3
Contracts - Participating in Collaborations

123
HL7 Specification Framework for Crafting Implementable Solutions

123.1
Overview of Specifications in the Behavioral Framework

123.1.1
HL7 Interoperability Service Role Specifications (ISRS)

133.1.2
HL7 Interoperable Behavioral Specifications - Collaboration Specifications

143.1.3
Contracts and Participations

153.2
Structuring Specifications

153.2.1
Analysis Specifications

163.2.2
HL7 Conceptual Design Specifications

193.2.3
HL7 Implementable Design Specifications

203.2.4
HL7 ISRS Contents

203.2.5
HL7 Collaboration Specification Contents

214
HL7’s Behavioral Framework and Conformance

225
The Behavioral Framework and HL7’s Unified Field Theory

246
Appendix A – Informative HL7 Service Classification Scheme

246.1
Overview

256.2
The Classification System

1 Introduction

The Behavioral Framework (BF) represents the evolution of the work incorporating and expanding what has historically been known as the HL7 Dynamic Model (DM). Key working notions in the DM included Trigger Events, Application Roles, and Receiver Responsibilities. The SAEAF has both formalized these concepts and made them more explicit by moving them to a specification structure rather than having them embedded in the message payload/static content per se. In fact, the formal separation of static and behavioral concerns with respect to a given interaction is one of the core distinguishing features of service specifications.

Note that a given instance of a specification based on the BF binds an instance of a static content model to a particular collaboration. In particular, the BF unambiguously specifies the following aspects of the “dynamic semantics” of an interaction:
· when the data flows,

· type types of parties (roles (capability, capacity, competency) between which the data is flowing,

· interdependencies between separate data flows,

· other aspects of control flow that ensure that data is flowing properly over the course of the interaction and in such a way as to support the business function after which the service specification is derived.
1.1 Criteria for a Robust Behavioral Framework

The ArB agreed on the following set of success criteria for defining a suitably robust Behavior Framework:

· Must have a loose coupling between a rigorous expression of behavior and the systems that realize those interactions

· Must not specify system behavior, only shared behavior

· Should represent a Contract of behavior(s) between systems

· Should support the expression of specific aspects of behavior which are the consequences of an exchange (Receiver Responsibilities)

· Should provide a loose coupling between information expressions and the information types
· Should expose complexity rather than hiding it
· Must provide HL7 with a means of expressing "dynamics" both as part of other standards and as ballotable artifacts themselves

· Must provide a clear path to implementing standardized artifacts

· Should provide those involved with local specification of healthcare systems the means of expressing dynamics in such a way as the local specification can be harmonized with standards

· Must be expressed in such a way that it can be profiled/constrained in such a way that the expression of the parent dynamic model can be proven to be a true superset of the expression of the profiled/constrained dynamic model.
· Should have a supporting set of tooling

· Should be open source, based on open standards
2 HL7 Solutions
In the HL7 Solution Context, the notion of a service takes on a fairly specific meaning. In particular, the HL7 ArB responded to the question of “Who would use HL7 services?” by specifying “An organization desiring to share information or otherwise collaborate with another organization irrespective of physical or organizational boundaries.” In the language of the Problem Statement for an EAS for HL7, the answer to the preceding question could be stated as “Two or more HL7-enabled Collaborating Partners involved in a Contract-specified Collaboration with the desired outcome of CSI.” It should be noted that clouds exist regardless of the Interoperability Paradigm, i.e. messages, documents, or services. They are, however, a particularly effective visual metaphor when discussion CSI in a services-aware EAS.
For the purposes of the SAEAF discussion, the ArB termed these collaborating organizations (Collaborating Partners) as “clouds,” in large part in deference to the fact that this term has historically been the character profile of the HL7 user community. It is important to note that there is no supposition as to the scale of these collaborating organizations (clouds) , i.e. they can scale from two systems within the same department to two enterprises to two nations, etc.

[image: image1]
Figure 1: Clouds representing HL7-enabled Collaborating Partners can consume and/or provide services, which, if properly specified, can be utilized in organized CSI Collaborations.
The central organizing principle of these collaborating clouds is the notion of behavioral mediation through contract. This idea is based on the historical work of Bertrand Meyer and his philosophy of “Design by Contract.” More recently, the idea was formalized through Martin Fowler’s Accountability Pattern, in which – for a single transaction at a specified interface -- one cloud would assume the role of a Commissioning Party while the other assumed the role of Responsible Party (http://martinfowler.com/apsupp/apchap2.pdf).
The term “contract” is often used both to describe the specification of the behavior of one party in a collaboration (e.g., as in a Service) or for the sum behavior of the interaction as a whole, i.e., the collaboration. The term “contract” within the SAEAF explicitly means the contract scoped to the overarching sets of interactions that refers to a type of collaboration and binds together the various participants. Note that the contract may not be an actual artifact of a development effort, though the semantics of accountability are valid nonetheless. Regardless, the definition of “contract” in the SAEAF does not preclude its colloquial usage in some Information Technology paradigms to infer an interface; rather, it extends and specifies the scope of the concept to come into alignment with more everyday uses of the word.
 In the SAEAF, the Service specification portion of the contract is formally identified as the Interoperability Service Role Specification (ISRS) or to the Interoperability Collaboration Specification (ICS), both central components of the SAEAF discussed in detail in Section 4. The ISRS (see Section 3.3.4) and ICS (Section 3.3.5) bind sets of business capabilities and behaviors to standardized business roles.
The Service Role and Collaborative Specifications describe the integration semantics required to support a testable, enforceable contract that can be bound to run time constructs (such as channels and interchange points – see below for definitions of these things). Since the Service Role Specifications are in fact describing the business roles that a service may play in an architecture, and since these roles are one part of an enforceable contract (either a Commissioning Party or a Responsible Party, per Martin Fowler’s Accountability Pattern, and in support of the SAEAF’s assertion that services serve to integrate two collaborators regardless of technology), services must exist in a collaborative context. That, in turn, is provided through a Collaborative Specification, which may specify dependencies on certain Service Roles in order to fulfill a given business purpose. Determining behavior then is equal parts establishing the appropriate behaviors that the service may take on, and separately establishing what the characteristics are of the collaborations in which it may participate, recognizing that these collaborations are established independently of these services, even though they will likely inform each other.

For this reason, the Behavioral Framework makes three sets of distinctions.

1) First, that Service Specifications may establish a role and behaviors and contexts appropriate for that role.
2) Second that Service Specifications may be bound to Collaborative interactions
3) Third, that Collaborations will specify logical groupings of these Interactions that are created independently of Service Specifications per se.
2.1 Implementable Solutions
As discussed in more detail in Section 3.3, HL7 Specifications have several facets including a set of design-time components that provide the ability to derive a set of run-time components, and traceability from Requirements through Analysis to Design and Implementation. A standard that yields an HL7 Service Role Specification or a Collaboration Specification – whether in part or in full -- thus provides the foundation for an actual Implementation, i.e. realizations of an overall Contract which describes a CSI-capable Collaboration.
In particular, the ArB defined an HL7 Implementable Standard/Specification as one or more artifacts that:

· provide a measurable degree of CSI;
· provide a specified framework for quantitatively assessing a given implementation of the Standard/Specification in terms of the published specification via a layered Conformance/Compliance Model (including specific operational processes);
· are adaptable to different organizations’ Governance Models; and
· are capable of yielding different technical realizations that respond to different scalability, navigability, discoverability, availability, extensibility, etc. requirements.
These requirements, as detailed in the SAEAF document, lead to stacks of specifications that embody different abstractions. Layers of constraints are applied to more abstract specifications to create implementable specifications. These different levels of abstraction follow, generally, the patterns established by the OMG’s Model Driven Architecture, and allow for conformance to be asserted at any point along these stacks. Additionally, combinations of specifications may be assembled to provide solutions in particular business contexts.

[image: image2.jpg]olass HL7_BehavioralFramework_Specification_Stack

HLTSpecifation
e s
oS, =y Anaysis pecifiation
Cottaboratonslueprintspesicaton

~ Rols 2nd Benavioral Graug Assosistion
‘ ~ Rols and Busins Context Associations

A

iSRS,
ConseptuaiDesignspesification

Service_Role_Specification

e r—,
fosic
A es

| Collaboration specification i

i8S
Cottaborationbesignspecification|

T — E

iSRS,
ImplementableDesignspesification

i8S
ImplementableCollaborationSpecifiation

Figure 2: Implementable standards are built on the HL7 Specification Stacks
The characteristics of an HL7 Specification can thus be summarized as qualifying as Implementable from the perspective of three concurrent reasons:

· There is a technical solution that conforms to the specification models.

· The technical solution addresses cloud-specific aspects of the implementation context into which it is embedded.

· The technical solution provides measurable compliance to any additional (often implicit) criteria that are stated in the standard.

With respect to the third bullet, the ArB believes that making each of these formerly implicit assumptions explicit in SAEAF-based specifications, HL7 customers are ultimately better able to realize the value of healthcare standards in general, i.e. in addition to HL7 standards per se. Put another way, the notion of an Implementable Specification as the ArB has defined the term includes notions of durability and usability of implementations over time and context changes.
As noted above, HL7 has historically focused on the specification of the static semantics involved in a given transaction between two HL7 Collaborating Partners, most notably through the development of the Reference Information Model and its associated components. The discussion on Services clearly elucidates the need for an equally robust framework for describing the behavior involved in a given CSI Collaboration. This is the purpose of the Behavior Framework as described in the next Section.
2.2 The Components of Implementable Solutions in a Distributed Environment
Ultimately, as noted above, crafting standards that support implementable solutions requires providing some flexibility in the standardization process so that the correct integration semantic can be consumed appropriately. Namely, there is the need to acknowledge four distinct components in integration efforts, each of which may realize sets of integration semantics that support the overall business process.

1. Applications – Applications in the context of the Behavioral Framework are the user-facing tools that are employed to enact business process or to view and analyze information. HL7 has very little to say about these things, other than an Application may realize a Service Role and / or a Collaboration. For this reason, this discussion may limit itself to discussing the items below.
2. Service Roles – Service Roles are discussed in detail below. A Service is an abstract specification that explicitly defines both the static (“payload”) and dynamic (“functional and behavioral”) semantics necessary to support a testable, enforceable contract between two enterprise-level components
3. Collaborations – Collaborations are sets of specified behavior that serve some particular business need. They embody some of their own semantics, but in the context of the Behavioral Framework, are explicitly intended to depend on and support the integration semantics embodied in Service Role Specifications
4. Contracts - Contracts talk about all of the different Collaboration Participations (see below) that must happen for the business process to be fulfilled. These participations are either that of a Commissioning Party or that of a Responsible Party participating in interactions in testable and verifiable ways. These interactions realize some business relationship between roles, some of which may be played by services.

[image: image3.jpg]class HL7_BehavioralFramework_Contract

HL7Spesifioation]

i8S,
SpesifiationHierarohy:
Collaborationpecification

P

[Specificationtierarohy:
Application

HL7Specfieation

iSRS,
SpecifiationHierarchy:
Service_Role_Specification

roleReterance
focalClass

Figure 3: Contracts bind together the different participants to fulfill particular business needs. They incorporate the integration semantics that brings disparate systems together. Note that Applications may realize Service Role Specifications, Collaboration Specifications, or both, depending on the deployment context and an organization’s policies.
2.3 Contracts - Participating in Collaborations
HL7 crafts specifications so that they may ultimately be utilized by HL7 stakeholders as a means to actually perform business processes (though this should certainly not be read as the entirety of the value statement of HL7, which should also include notions of governance, conformance, compliance, and efficiencies). In the context of realization, the Behavioral Framework notes that Collaboration and Service Role Specifications – discussed in detail below - have a layered relationship with one another.

In essence, interoperability between systems participating in healthcare processes may be defined as a series of interactions between components that play either a Responsible Party or a Commissioning Party for some capability. These interactions realize relationships between business roles (for example, order placer and order manager). The interactions contain a number of exchanges that are bounded by the component’s participation as either the Responsible or Commissioning Party – that is, once a particular component ceases to be either a Responsible or a Commissioning Party, the interaction is over, and the collaboration moves on to fulfilling a different set of role relationships, or it ends.

[image: image4.jpg]olass HL7_BehavioralFramework_CollaborationParticipation

== CottsborationParticipation|
RoleType.

= e
~ fosslClas 0. 1 [P i !
0.1
RoleRelationshipType. ResponsibieParty Commissioningparty
0.1
1 T
FL7Speciteation
e
.- . Collaborationpecification
otniyee] EEE— otizborationtypd
InteractonType
- < iganiiier
- Gatetscning,
- “milestons | 1.- = 3 =
calborationbesignspesicaton ? R
eiyTed)

ExchangeType etiiyvee)
~ payloasType Moo
+ faultType: excsptionCondition
= aiecion *|

Figure 4: Participation is bound by a contract that describes one or more collaboration types. Participation is realized as exchanges bounded by one party having a set of responsibilities in the context of a collaboration and the other party commissioning that capability. In certain cases, Services may serve to commission collaborative behaviors. The CollaborationType may specify, via InteractionTypes, certain milestones that must be achieved.
The actual business capability that is being commissioned may be described through the Service Role Specification. This Role Specification exposes some sets of behavior that fulfill a particular business need. In the case where this externalized behavior is in itself a collaboration, the actual realization of that service may in fact become a Commissioning Party that manages a “virtualized” collaboration. For example, a Service Role Specification may expose a function like “Create Patient Record.” It may also expose a composite function like “Admit Patient” that may require a number of interactions which either all are fulfilled (success) or where if one fails, they all fail (failure).
Note that the Collaboration Contract refers explicitly to a Collaboration Type. In other words, the Behavioral Framework creates a means for behavior to actually be described, characterized, and even categorized, allowing it to be referenced explicitly. In certain cases, this may be meaningful in describing how a service becomes a commissioning party for other composite behaviors in what the SAEAF nominally calls Process Services. In other cases, a contract binding a series of Commissioning and Responsible Parties together in a Collaboration Type that supports a pre-defined business purpose can serve as a de facto implementation guide.
Note that Process Services, and other stereotypes of services, are discussed in the appendix to this document. Note that these classifications, while not arbitrary, are informative and are intended to help HL7 work groups categorize their work in crafting Service Role Specifications by crating profiles that may be invoked to meet particular classifications of services and capabilities.
3 HL7 Specification Framework for Crafting Implementable Solutions

3.1 Modeling Behavioral Complexity and Implementation

A key factor in modeling and crafting implementable solutions is exposing the complexity of relevant behaviors while still preserving the semantics of roles and relationships. Thus, a key success criteria of the Behavioral Framework is providing structures that allow modeling to a sufficient level of detail and not necessarily further so as to surface the underlying complexity of shared behaviors while still preserving the virtualization boundaries of systems. In other words, the Behavioral Framework should support parsimony in the models that it supports.

This issue deserves special note, because masking underlying complexity is a key barrier to acceptance and implementation for standards focused on a business vertical like healthcare and the life sciences. Rather, a successful framework should provide a measured, layered way of dealing with the complexity inherent in the business itself without trying to in the healthcare vertical, the HL7 community should acknowledge that some, or even most, of the behaviors that are considered vital in healthcare are necessarily complex. A successful Behavioral Framework should provide both a measured, layered approach to dealing with that complexity and also facilities for exposing it appropriately. Implementers should be able to grasp and realize essential details in the specification while still being able to adhere to local best practices and software design paradigms. In this sense, software technologies that have benefited other industry verticals so well have served as a barrier to entry for healthcare standards because they presuppose, often implicitly, certain business rules or policies.

The Behavioral Framework is thus a central feature of the HL7 SAEAF, because it yields interoperability specifications focusing on the shared states, information, and behaviors that are almost of necessity the essence of healthcare standards adoption in an industry characterized by heterogeneous architectures, models, and systems.

3.1.1 Behavior and Roles

UML Activity Diagrams and BPMN tend to make the semantics of the interactions (including behavior, information , and granularity) unclear, and in many cases, conflated with the roles that are apparent in the models. The Behavioral Framework makes a clear distinctions in this regard: actual interactions are realizations of relationships between roles, and the role becomes an attribute of the interaction as it participates in the collaboration. This abstraction allows for a loose coupling between systems taking on roles in a deployment context, and separates the notions of actual communications fulfilling a business purpose from the roles whose behavior is invoked by those communications.

Thus systems may take on the characteristics of roles (behavior, focal classes) quite apart from the invocation of those roles in the context of a business purpose. And multiple business purposes may reuse a system via the roles that it has assumed. The notion of roles participating in collaborations is a familiar one to the HL7 community, but represents a separation of concerns with respect to much of the work in industry. This concept of participation is explicitly invoked in the Behavioral Framework through the use of the class Collaboration Participation, and its specializations, Commissioning Party and Responsible Party.

Practically, roles are assigned to systems at design time through software engineering processes. Similarly, it is expected that categories of behaviors, especially interactions, may be typed using the Behavioral Framework. Roles then have behaviors that support certain collaborations, and collaborations require certain role’s behaviors to fulfill their purpose. These things may be bound explicitly or implicitly, at run time or design time, through the use of contracts.

3.1.2 Tight Coupling between Message Exchanges and Business Purpose

Message exchanges are largely a function of platform and deployment context, and depending on a number of factors, may be granulated differently. However, the actual business purpose of the message exchange should be preserved, regardless of implementation. The HL7 Behavioral Framework specifies different layers of abstraction to manage capturing this business purpose and then to bind it to an implementation. For example, a patient may be admitted using a single document (CDA) submission that purports to give all of the relevant information, or it may be handled using a number of finely granulated function calls verifying the status of the patient, the location of the patient, the demographics, and so on. At end, implementers must be free to choose different message exchange patterns and still be conformant with a specification.
3.2 Overview of Specifications in the Behavioral Framework
As noted above, a service oriented approach to crafting specifications highlights the relationship between a collaboration and the individual service roles. That is, for a given business purpose, it may be that a single collaborative effort would call on multiple roles to accomplish the collaboration’s purpose. Each role would be specified according to its integration semantics, but also each collaboration could be described in terms of the dependencies that exist on various roles (as defined in one or more ISRS). This necessitates being able to talk about specifying collaborations, roles, and their bindings in a service-oriented context.

Note that these models depict the various components of the different specifications, not necessarily as they may be realized in ballotable artifacts, but as they relate to each other. However, the components of each specification are placed at the end of each section below.
3.2.1 HL7 Interoperability Service Role Specifications (ISRS)
Services are defined by the SAEAF as “a means of organizing a set of resources according to business-oriented priorities. A service thus provide a primary means of integration between two organization’s business processes and/or data in a controlled, managed, and well-defined (i.e. contract-based) manner. A Service is an abstract specification that explicitly defines both the static (“payload”) and dynamic (“functional and behavioral”) semantics necessary to unambiguously specify a testable, enforceable contract between two enterprise-level components.”

Note that the term “service” as it is used in this document (as well as in the SAEAF) should not be confused with the technical implementation of one or more “web-services. ” In fact, web services should be viewed as a technology used to realize a given abstract service specification.

Service Role Specifications include the following essential components:

· Behavioral Specifications
· Interface Specifications, and their associated Behavior Groups
· Collaboration Participations, as either a Responsible Party (to other members of a Collaboration) or as the Commissioning Party (defining its own Collaboration).

Note that while the Collaboration and Interface specifications are normative (and fixed at least for a version), the collaboration participations are only indicative from the perspective of the Service, that is, it is intended that a Service may be reused in many different kinds of collaborations where appropriate (as measured by the integration semantics detailed in the ISRS).
A capability – exposed as a service - may be described in terms of the semantics required to integrate that capability into some larger behavioral pattern. For example, an Order Management Capability may be exposed via an implemented service realizing an interface specification. Thus, this service would expose certain behaviors which would in turn utilize concepts, information, and data derived from an information model, and which would have their own sets of pre-conditions, post-conditions, inputs, and so on. This capability could take on a particular role within a given business context, under which auspices it would participate in certain interactions that were driven by certain triggers.
Service Roles may be stereotyped using a service classification scheme (see appendix), including notions of Process Services, Capability Services, and Core Services. In HL7, this classification scheme is essential, but is also informative, and is provided simply to allow for some coherent relationships to be described concerning the integration semantics of services within a larger conceptual design of distributed capabilities. This scheme could in turn be mapped onto more complete classification schemes of various organizations, if necessary.
3.2.2 HL7 Interoperable Behavioral Specifications - Collaboration Specifications

Collaborations are sets of specified behavior that serve some particular business need. They embody some of the semantics of a given business process, but in the context of the Behavioral Framework, are explicitly intended to depend on and support the integration semantics embodied in Service Role Specifications. In other words, these sets of collaborative behaviors rely on specified services to perform certain functions (which may in turn be collaborations in which the services perform the role of the Commissioning Party) or to expose certain information. These collaborations rely at their most granular level on exchanges to pass information back and forth to exposed services in groups of interactions that are scoped by a given set of collaborators playing either the role of Commissioning Party or Responsible Party. These interactions may be collected into other logical collections of behavior called work units that accomplish an intermediate milestone on the way to accomplishing the business purpose.

Collaboration specifications have a similar stratification as Service Role Specifications, that is, they may be divided into Analysis, Conceptual Design, and Implementable Design levels. As with Service Role Specifications, this stack serves to provide layered constraints on a basic, agreed-upon definition of collaboration that supports a given business process so that conformance may be asserted at various levels. While the ISRS provides a definition of the interface and behavior of one participant in a collaboration (often the responsible party), the Collaboration Specification defines the remainder of the overall behaviors by specifying how individual behaviors (operations) are used, including sequencing and structuring of interactions. Collaboration specifications then serve as testable, verifiable statements of requirements for services to participate in collective behaviors that support a given business process.
3.2.3 Contracts and Participations
Contracts talk about a business goal and all of the different Collaboration Participations that must happen for it to be fulfilled. These participations are either that of a Commissioning Party or that of a Responsible Party participating in interactions. These interactions realize some business relationship between roles, some of which may be played by services.
[image: image5.jpg]class HL7_BehavioralFramework_Relization

ExternalBehaviorslSpecifiation

inParamater
uParamater
preConiton

postCondition
exosptionConition

ServiceLevelAgreement

‘qualityOfsenics: Constaintfosg]|

Behaviraroup |

- identier
astetischine

InterchangePoint

-] iamnier

 canaior

|+ banavior(1.-]

B2
Funstonsl
Frofle

RoleType.

+ focalClas[0.]

sniier
fossiClas:

! N “ratityee)

: auses ExchangeType i

; eriee) g s

; otiaboratontype] 2 L £ feulTyee. sxcsptioncandition channefmype.
: Vorunitype <riestons | InteractionType < dreaton

' R boteia ~ peyissTyee
: Bl [e 1+ [Caatimee | time

: M | e s

; * Gmiction - o

| 1.4

; Cotsborstion Voruit interacton Exchange Channel
: e e |- Far— o = et octean |1+ payioss
: foeree) e 1 (aarag) + peyload

; L

i : 1 1

' <Commisioning Skperie

! Faty ' [ey

| ColtaborationParticipation|

: - e

; ' 7|2 e

; 1 o A

: arslizen

; 0. ' <rrovicer| 1

: ['

i

Figure 5: Contracts, or sets of participations by various actors in pursuit of a business goal, are realized through actual collaborations. They refer specifically to a Collaboration Type, and may contain some number of quality-of-service statements that constrain the realization of Interchange Points that pass information between components. Note that this model traverses two different layers of abstraction, both logical and implementable. These items are discussed in detail below.
Put another way, Specified Collaborations bind themselves to Specified Service Roles by way of a contract, or series of contracts. This binding, and these contracts, may or may not need to be made explicit in a particular deployment context, but the participation is valid nevertheless as parts of this contract become explicit in the design and implementation of a given collaboration.
Note that, logically, participation is evaluated and quantified via the idea of interactions, making them the common element in Service Role Specification and Collaboration Specification. In fact, those interactions may be realized at run time by a number of different message exchange patterns. Specifically, it is not necessary to define the message exchange pattern to define the desired collaboration. This has important implications in separating out the implementation from the specified standard (or standards) and in claiming conformance to that standard.
3.3 Structuring Specifications

The following diagrams discuss the elements involved in specifying Collaborations and Service Roles. After the diagrams, the contents of each of the ISRS and Collaboration Specification are described.
3.3.1 Analysis Specifications

[image: image6.jpg]class HL7_BehavioralFramework_Analysis

‘Senice_Role_Specfcation | 13°"°= Rele

iSRS, - v
Analysis Specification

Gollsborstionspesifioatin]

Bss

ColtaborationBlueprintspecification

[p———

~Sanics Role
“Functions! Profl 1.+ /Business
2 1 Profit |1 [

T Resporsioie

s Party
- isentifier - isentifer Benavior
- sstetiacnine - fomsiCias

11 Commissioning 0.
Pary Benavior

condiion
DomainAnatyissttodel it
Scsption conditon
input
St
sotechange 10.1]

Figure 6: The HL7 Analysis Specification
1. The Analysis Specification is a part of the Interoperability Service Role Specification. It is the primary artifact for specifying things for Blueprint conformance. These things include a behavioral model, business roles for the service to perform, and the behavioral groupings that are called functional profiles. The primary function of the Analysis Specification is, first, to provide analysis that supports which roles the service in question might take on in a given business context, and second, which groups of behaviors support those roles in those contexts.

2. Behavior Groups are identified categories that collect various business oriented behaviors. They may expose a state machine to manage a focal class if the Role requires it.
3. Behaviors are the means by which a service expresses its functional capabilities. These functional capabilities exchange information to serve some business need.

4. The Domain Analysis Model is the static information model that describes the sorts of information that may be exchanged behaviorally by the service.

5. Roles are the business roles that the service may take on in one or more business contexts. Roles are often associated with a focal class, which is a business object that may need to be manipulated by the service instance.
6. Role Relationships express the sorts of expected relationships between roles that leverage each role’s responsibilities in the context of a particular collaboration.

7. Collaboration Blueprints are high level descriptions of behavior. The Collaboration Blueprint equates with an instance of the Analysis portion of the Behavioral Model. It refers to one or more Interoperability Service Role Specifications to describe various capabilities needed to complete a given business need. It may be described using prose, activity diagrams, use cases, and use case specifications.

3.3.2 HL7 Conceptual Design Specifications
[image: image7.jpg]class HL7_BehavioralFramework_Logical

Gollsborstionspesifioatin]
s

< payloadTye

| ColtzborationType
Viorkunitiype -l
i < iseniiier 0 '
- sstebiacnin
- sesaiption
smilestons
Channeimype. ActiviyTye] R etniyee)
ExchangeType IteractionType

~ payiosaType
- faulTyps: sxesstionConaition
- ciecion

“Ressonsisle

Pary

oy

< Commissioning

ColtsborationDesignspecification

v

[E— PR
I 1
Operation
< inParamater
 cuFaameter
< preConaiion
+ postCondition
+ excsplionCondition
BehaviorGroup
< iseniifier
<Functions!
<+ ststeMachine | et

= canavie(1.1]

CottsborationParticipation|

RoleRelationshipType.

par—
- ciection

P

Fole
RoleType
+ tocalCless [0.7]

Figure 7: The HL7 Conceptual Design Specifications
1. The Conceptual Design Specification is aware of two components: The roles that the service may take on (which includes the specifications of behavior that align with a given Interoperability Paradigm) and the Collaborations in which these roles may theoretically participate. The Conceptual Design Specification is part of the complete Interoperability Service Role Specification.

2. The Role Type specifies particular expressions of roles, especially including the specification of behavior. The Role Type may expose a focal class relevant to that particular role (for example, an order). This class would be manipulated via the exposed functionality of the External Behavioral Specification.
3. The Role Relationship Type specifies a particular kind of Role Relationship that is realized by a particular Interaction Type.

4. The abstract Behavior Group class collects groups of behavior that must be specialized by Interoperability Paradigm. For example, this specialization may be to interfaces (for services or objects) or to queues (for messaging systems) in the platform binding.

5. The exposed behavior is made explicit (for example, bound to the information model) in the External Behavioral Specification. This behavior may be bound to one or more state machines valid for a focal class managed through the behaviors for the Role Type. It collects Exchange Types and Channel Types and assembles them to meet a particular business need via Operations.

6. Operations are derived from Behaviors defined in Analysis Specifications, and represent a set of constraints on them based on logical considerations of granularity, interoperability paradigm, and so forth. They are bound to Channel Types and Exchange Types in External Behavior Specifications. They include notions of In and Out Parameters (that are bound to the Information Model), as well as optional pre- and post- conditions and exception conditions.

7. Channel Types represent the awareness that behaviors have, at the logical level, of the need to support particular types of channels. This awareness is optional.
8. Exchange Types capture the finest grained components of behavior exchanging information that go back and forth between a Commissioning Party and a Responsible Party. Exchange Types may have a relationship to other Exchange Types (because they are specializations of the Activity Type). Exchange Types may express an exception condition between information sharing partners that flowed from an exception condition tied to a operation.
9. The Constrained Information Model is a constrained version of the DAM in the Analysis Specification (Figure 6). Its development may occur independently of the Behavioral Model, but they must inform each other as the CIM is used by the specialized Behavioral Specifications to fulfill business needs.

10. Collaboration Participation is the inclusion of a particular role in a particular collaboration. The realization of this inclusion is a service playing a Role Type behaving as a Responsible Party or Commissioning Party for the duration of a single interaction. (Note that a Service may play several Role Types during the course of a given Collaboration Type, but the logical representation of behavior does not have any concrete representation of a larger collaboration …. Its relationships to these larger collaborations is granulated by the interactions that a service playing a role may participate in.)
11. Interaction Type is the concrete, granular representation of a service’s participation in a given business context. Interaction Types may have relationships to other Interaction Types (because they are specializations of the Activity Type), and they are composed into Work Units Types and Collaboration Types. Note that the completed Interaction Type may provide a milestone for the Collaboration Type, indicating achievement of some goal.
12. Collaboration Design Specification contains the design elements that describe a collaboration (logically grouped sets of interactions).
3.3.3 HL7 Implementable Design Specifications
[image: image8.jpg]class HL7_BehavioralFramework_Platform_Binding

pr—— CollsborstionSpecication] CollsborstionTyee]
o aiBss Collaboration
ImplementableCollzborationSpesification [T =
| 1 satus
Lt CallabertionType.
T ~ igentifier
: - sateliacnine
; + Gesaietion
J ExcrangeTyee]
ke [Exchange
| P —— bl
+_eayload Spass,
\mplementablelnformsGonthodel ExchangeType “ntersctionTyee] Wortnitree
= payioadTyee interaction Workunit
+ feuts ~ faultType! sxceptionCanition . orderes,
- direstion pRre— T e S g
Activitype < aue e
1 '
[1 +Consumer

InterchangePoint

Eam—
~ canaiar

+ oparation 1.1

CandidateComponent

ps
} e
e

~Functions
Frofile

Figure 8: The HL7 Implementable Design Specifications
1. The Implementable Contract Specification discusses in detail the nature of the Candidate Component. It provides traceability between the platform bindings and the Role Type expressed in the Conceptual Design Specification.

2. A given Software Unit may contain multiple components (Candidate Components) that assert conformance against a given specification by realizing a Role Type and implementing an Interface that is itself an instance of a Behavioral Group that adheres to the External Behavior Specification.

3. A Candidate Component implements a Behavior Group. In Figure 9, this implementation is accomplished by implementing an interface, which implies that this is bound to the “services paradigm.” Bound to a message queue would imply a coarser, message-oriented model. This Behavioral Group relies on an External Behavior Specification.
4. Regardless of interoperability paradigm, the implementation ultimately is realized as Interchange Points where conformance to a specification may be tested and measured. The Interchange Point realizes one behavior specified in a given External Behavior Specification, scoped to a given Exchange.

5. For the Platform Bindings, a given Interchange Point participates in a single type of Exchange scoped within a given interaction, which in turn is scoped within a particular business context, i.e., a Collaboration.

6. An Interchange Point implements a Behavioral Specification. For example, in the case of a service, the Interchange Point is characterized by a set of functional capabilities exposed through an Interface that align with the business context in which the Candidate Component, playing a Role Type, is expected to perform. Note that Operations present in the logical model are now bound to Interfaces.
7. A given Exchange has a Channel that serves as a transportation pathway for message payloads. These Channels are referenced explicitly in the Platform Binding of a Behavioral Specification. Exchanges may express a fault for the collaborative behavior.
8. The Implementable Information Model represents the constrained (and / or localized) version of the CIM that includes implementation specific constraints on the Information Model from the Logical Level. Depending on the level of specificity required, these may be similar to the Constrained Information Model or may contain substantive changes. It may contain explicit expression of faults that should be derived from the Information Model and from the business context.
9. The Implementable Collaboration Specification defines the implementation view of a collaboration (sets of interactions and work units that form conversations).
3.3.4 HL7 ISRS Contents

The ISRS Contents are described in detail in the SAEAF document.
3.3.5 HL7 Collaboration Specification Contents

TODO – Need to include the notion of a specification stack, and note that these are primarily computational constructs.

The Collaboration Specification describes the rules for two or more parties engaging in an automated business conversation. The overall structure is represented in the sections above on each stage of the process, but in summary consists of the following:

· Collaboration Blueprint – A high level assembly of Application Roles, trigger events, interactions, and message types that describes a series of conversations between business components that fulfill some business process. This level most closely resembles the current HL7 “Dynamic Model.”

· Collaboration Concept Design Specification – the logical collection of types that may be assembled to support automated conversations between distributed system components. These types are enumerated in the table below.

· Collaboration Implementable Design – The binding of one or more channels to a Collaboration Concept Design. These channels are realized using various flavors of technology that supports various quality and functional requirements (for example, performance and security).

	Element
	Synonyms or Existing Equivalents
	Comment

	Collaboration
	Choreography.

Not currently specified.
	The concept of a “business conversation has been discussed in several workgroups, but not formally supported. May involve two or more parties.

	Work Unit
	“Business Activity”

“Business Transaction”
	This represents the idea of a cohesive business activity involving two or more parties. This will often be the level that a “transaction” is defined at the business level. All of the interactions in it should succeed or fail together. (In some cases, the whole collaboration could be defined as a transaction.

	Interaction
	
	This represents a low level activity specifically between two parties. Typical example would be a request-reply message exchange or a simple sequence of message exchanges.

	Exchange
	Interaction
	Current messaging defines an interaction as a one-way information exchange, whereas more typical use of the term (as in CDL) is as a sequence of exchanges between the same parties.

	Channel
	
	A specific transportation pathway, as discussed earlier. Typically, allowable channel types will be defined for each exchange.

Table 1: Enumeration of elements in the logical and platform-bound collaboration specifications
4 HL7’s Behavioral Framework and Conformance

The Service Role Specifications as well as referencing Collaboration Specifications directly support the Conformance and Compliance framework that is detailed in the SAEAF. That is, measurable, testable conformance assertions are exhibited by each specification level, with each specification level’s assertions providing constraints on the ultimate implementation. This pattern of constraint provides traceability between concept, design, and implementation. Additionally, the two types of specifications scope and support each other. As noted above, Collaboration specifications serve as testable, verifiable statements of requirements for services to participate in collective behaviors that support a given business process, while Service Role Specifications serve to detail the integration semantics for a given capability aligned within a line of business.
The traceability and testability of Service Role Specifications has to exist independently of any particular collaboration or contract. That is, as noted before, a single Service Role Specification has some awareness of the collaborations that it may participate in by dint of its ability to be a Responsible Party to achieve some business aim, but that awareness only extends to Interaction Types, rather than to Collaboration Implementations. Additionally, as noted above, in certain cases, the Service Role may serve as a Commissioning Party for a specified set of Collaborative Behaviors through a pre-defined Collaboration Contract.
Contracts, then, serve to bind sets of Commissioning Parties and Responsible Parties so that run-time behaviors (both collaborative behaviors and externally viewable behaviors via behavioral specifications) accord with certain requirements and constraints. They may be pre-defined, for example, as when a Service Role serves as a Commissioning Party. However, they may also be implicit in the invocation of a service role – that is, the run-time discovery and invocation of a capability may or may not be dictated by a pre-defined contract, depending on the deployment context of a particular organization.

As such, contracts, whether implicit or explicit, serve to provide a binding between design time requirements and constraints (including integration semantics, legal, quality-of-service, jurisdictional, policy components) and run-time realizations, including exchanges of information through interchange points that are grouped together into interactions, and ultimately into collaborations that fulfill some business purpose. Service Role Run-time Realizations, that is, Interchange Points, meet the specification requirements embodied in the ISRS, verifying the stack of conformance assertions that make up that artifact.
5 The Behavioral Framework and HL7’s Unified Field Theory

The Behavioral Framework provides some hints regarding the ultimate unification of some of the various Interoperability Paradigms in HL7, jokingly known as the Unified Field Theory. Specifically, the Behavioral Framework provides the last component needed to see these three “paradigms” – Documents, Messages, and Services - through a common lens, that is, the specification framework.
Services as an Interoperability Paradigm arose from the notion of a structured behavioral interface being exposed that provided fine grained control of some capability, often a focal class such as an order or a transactional process. These capabilities would, in turn, be invoked through smaller, function-oriented message structures that retain the semantic rigor of HL7 models without realizing the entirety of the semantic in the message structure. Services –as a paradigm - have been covered both in this document and in the SAEAF.

Documents may be seen as a special case of services, in that they define a business-oriented container that becomes the focal class that may be exposed through a service interface (for administration, querying, and manipulation), or transmitted via a message. At any rate, the Documents “paradigm” provides an effective mapping from real-world scenarios to information constructs, especially via a stack of increasingly constrained specifications, allowing a simplified behavioral interface that aligns well with real world behaviors.
The Messaging Paradigm – that is, the transmission of semantically rigorous, contextually self-contained information structures according to pre-determined trigger conditions along well known interaction paths – may best be viewed as a specialization of Collaboration Specifications described within this document. Messaging as a paradigm involves coarsely granulated messages that align well with pre-configured business triggers. The message contents, while self-contained, still is aligned with the sequence of the conversation of which it is a part. The idea of typed collaborations that emerge through a specification process fits the messaging paradigm well.
The choice of one of these three paradigms does have implications as to how classes from the Behavioral Framework are invoked at the Conceptual Design and Implementable Design levels. Before exploring these explicitly, it should be emphasized that the Analysis Specification and the corresponding Collaboration Blueprint Specification are agnostic with regards to these paradigms. A given Analysis-level Specification may be complied with, thus asserting Blueprint Conformance, regardless of ultimate implementation. By extension, then, the various paradigms may be characterized as sets of constraints on the Conceptual and Implementable Design Models.
6 Appendix A – Informative HL7 Service Classification Scheme

The purpose of a service classification scheme is to provide a framework that simplifies the effort of integration. Since services cannot rely on the same principles of design that imbue object-oriented programming, such a scheme is useful in coordinating the components of architecture.

A service classification context should not be a monolithic construct that muddies the waters of service development. It should be consistent with a set of principles that provide architectural and design guidance on the usage and crafting of services. It should provide an easily understood and consistent set of guidelines that provide clarity and reusability.
For that reason, this classification system is intentionally both small and has certain fuzzy edges, i.e., the boundaries of the service layers are not rigid with regard to an emerging service. At the same time it needs to provide some specific grounding to help address the complex issues of integrating within a Service Oriented Architecture that is framing an enterprise architecture focused on providing computable semantic interoperability. Ultimately, the Service Classification System describes certain patterns in that it defines certain limits based on experience, best practice, and the architecture that constrain and extend the otherwise green-field of software engineering.

6.1 Overview

The Service Classification System for an organization is a scheme for services that establishes defined patterns of conduct, reusable business rules, layers of commonality, and architectural and design patterns for building solutions. It is a hierarchical set of classifications that represent common patterns of implementation and usage, providing sets of rules that cover such issues as peer communication, referencing, granularity, and how to separate concerns. These classifications provide the basis for solving common problems apparent in the architecture, if not the implementations. In particular, the proposed Service Classifications define four types of services, related to each other through business rules.
6.2 The Classification System
1. Process Services are virtualized business processes that represent reusable patterns of behavior. Very often, these represent realized sets of business rules that an organization has agreed upon. They are generally not concerned with the states of domain entities other than insofar as they affect the state of the process as a whole. They tend to be coarsely granulated, limiting the number of external calls made to both enhance performance and to allow for the business process in question to be appropriately scoped. By definition, they are usually “stateful” services (though that may be implemented in a number of ways).
2. Capability Services represent a unified, contiguous set of functions that expose a set of cohesive business functionality explicitly and unambiguously. In general, they are concerned with business focal classes (domain classes) and their state transitions. The core business logic around these focal classes is virtualized behind a Capability Service’s interface.
3. Core Services are generally based on exposing sets of information. The functional profiles of the service are generally not focused on the state of the underlying information or in the trigger events that modify the state of that information. They tend to be focused vertically along the line of business - typically along the lines of an information profile (for example, a RIM-based patient class, a CDA-based CCD).

4. Utility Services are utilitarian in nature, providing supporting services that are still along the lines of business (as opposed to technology focused), but are not necessarily focused on particular information profiles or business classes or processes. Examples include areas such as Eligibility, Referral, Terminology, Template Management, and Anonymization.

5. Additionally, the system defines the Solution space, made up of Applications and Control Logic.
6.2.1 Process Services

Certain collaborations lend themselves to being “hard-wired”, that is, to be specified and realized in a run-time construct that may be used again and again. The Behavioral Framework describes these behaviors using a particular type of Service Role Specification called a Process Service.

[image: image9.jpg]class HL7_BehavioralFramework_Process Service

HLTSpesifiation

~ dasaiption

i8S
Collaborationspecification

[Cotisborstionrarticipation]
ResponsibieParty

SRS,
Service_Role_Specification

EEE—— a5

Wnere the sxtemally
visile enaviers nd
sttes of senice are
synonymous with s
Callsboration
Specifcation, that may
b2 called & Frocess
Sevics

A

Usually, Collsboration Pariicipations
reaiize some portion of a Collaeratio]
Speification thougn is defntion in o
Senice Role Speification where the
Collsboration Partcipation is resticted
o that of Responsible Party. However,
s Commissioning Party may slso b=
tne Collaboration Paricipation where.
tne intermal behavior of s senice
(b=hing = virualizstion boundany) is &
set of specified beavior, het 5,3
Collsborstion Speficstion.

[Cottzborstionrarticipation]
CommissioningParty

R -
~ fosalClaz

e

ExternalBehaviorslSpecification

ProsessServiceRealizationSpecification|

Core_service

© Process_service. ©

= Domain_cias

[
- Gsandency. CollsserationFarticipstion [1.] {orisrsd]
+_oollsborstion: CollsborationSpeifistion

EE—
 fosslclas

Capabilit_service

cextendes cexanes
metscases
© ServiceClasaiftionscheme
pre—

Figure 9: Service Role Specifications are usually Responsible Parties in Collaborations, but in certain cases may take on the role of Commissioning Party as well.
A Process Service’s external behavioral specification exposes some type of behavior as laid out in a collaboration specification, acting as a Commissioning Party for certain behaviors. When these Collaborations revolve around some shared state for the business process (which may be thought of as a transaction state), that state may be exposed through the interface. Additionally, Process Services may refer to a series of dependencies on other Collaboration Participations, that is, other services playing the roles of Commissioning and Responsible Parties. This would presumably be done by referring to Collaboration Specifications rather than specific implementations. For example, it may be important to describe a dependency on a particular profile of an Eligibility Service, though it would likely not be appropriate to discuss the technical details of its implementation.
6.2.2 Capability Services

Of particular significance in well-specified domains such as healthcare are focal classes that represent some domain concept. These focal classes generally are characterized in part by some series of information models that are tied to a state machine. Capability Services expose states of instances of these focal classes through run-time constructs that realize their external behavioral specifications.
[image: image10.jpg]class HL7_BehavioralFramework_CapabilityService

HLTSpesifiation

~ dasaiption

i8S
Collaborationspecification

[Cotisborstionrarticipation]
ResponsibieParty

EEE——

SRS,
Service_Role_Specification

CapabiliyserviseReatizationspecification

= iitySeniceDependancy.

Capabiliy_Service ¢y

Process_service. o

e

[
< fosslclas + dspandency: CollaborationParicpation [1.°]fordered]
+_oollsborstion: CollsborationSpeifistion

aextznden

Core_servioe ©

metaciass
ServiceClassifiationScheme.

= Domain_cla=

pm—

R -
 fosalClaz

ExternalBehaviorslSpecification

Figure 10: Service Role Specifications are Responsible Parties in Collaborations when they expose focal classes of domain significance. They may also have a number of utility dependencies that are worth describing in the realization specification.
Capability Service realizations may also refer to a number of dependencies, such as a persistence model. However, these are not apparent to the service specification stack as they are explicitly part of the implementation. Thus, a Capability Service’s role as a Responsible Party in a given Collaboration is bound to a focal class and its state machine, but how that state machine traverses its states is a matter of implementation, not standardization.
6.2.3 Core Services

Core Services are borrowed from the
7 Appendix B - Mapping to SoaML
This section is a brief summary comparison of the concepts presented in the HL7 Behavioral Framework and SoaML. It should be construed as a work in progress to facilitate an eventual formal mapping.

Overall, there is some overlap, but the purposes are different. Whether by intent or otherwise, SoaML focuses on representing a Service as it is physically implemented in software, with little explicit differentiation across the different stages of specification and development, whereas the HL7 Behavioral Framework is heavily focused on the Specification of Services and Collaborations at three well defined layers (Analysis, Conceptual Design and Implementation Design). It also explicitly represents the specification artifacts in the model, which SoaML does not.

HL7 BF also represents many concepts in an “abstract” form to cope with other paradigms (non Service), whereas this is out of SoaML scope. The table below compares and contrasts the concepts from the two models.

	SoaML
	SAEAF Behavioral Model
	Comments

	Service
	Service
	Mapping is approximate.

SoaML defines a Service as a “port on a participant” which is a very run time physical view and limited.

HL7-BF defines a Service as an abstract specification.

	Service Contract
	Collaboration Contract Collaboration Specification:

- Blueprint

- Design

- Implementable

ISRS
	SoaML defines the notion of a Service Contract in terms of binding a Service Consumer to a Service Provider. This is limited in that it does not seem to explicitly recognize the separation of the specification of the service itself vs the specification of uses of the service in collaborations. It also has no separation of the different stages of specification.

	Collaboration
	Collaboration Type
	Collaboration is used in the generic UML sense for SoaML. This equates close enough with the HL7 BF notion of Collaboration Type

	Collaboration Use
	Collaboration Participation

	SoaML: Candidate component fulfills role/contract.

HL7 BF defines a Collaboration Participation which is effectively the same.

	Service Interface
	
	SoaML:

· Includes both required and provided interface operations.

· Text seems to confuse realization and interface

The text in SoaML is unclear to me on the distinction between a required interface on a Service Provider vs a required interface on a Service Consumer. I cannot make much sense of this approach. I believe that for specification purposes, provided interfaces along with Collaboration specifications are sufficient and clearer.

	UML Interface
	Behavior Group

Interface

External Behavior Specification
	In SoaML, a UML Interface is a “provided” interface. This equates to the HL7 BF notion of Interface (or the more abstract Behavior Group)

	Participant
	Participant

Application / Software Unit

Role Type

Candidate Component
	The SoaML notion of Participant seems to cover both the abstract notion of role and the actual participant playing the role. HL7-BF has made these separate constructus explicit.

	
	Service Role Specification:

- Analysis Spec

- Design Spec

- Implementable Design Spec
	The actual Service Specification is not explicitly identified in SoaML.

	
	Behavior
	SoaML does not explicitly define the individual operation level.

	
	Service Realization Specification
	Not really covered in SoaML. Can represent component structures and behavior using activity diagrams etc, but not really described

	Service Point
	Responsible Party

Interchange Point
	SoaML: Provided Interface

Again HL7 BF differentitates the “role” notions from the actual points.

	Request Point
	Commissioning Party

Interchange Point
	SoaML: Required Interface

Again HL7 BF differentitates the “role” notions from the actual points.

	Port
	Interchange Point
	HL7 BF does not explicitly represent ports since this is at the implementation level.

	
	Work Unit Type
	HL7 BF does not explicitly represent ports since this is at the implementation level.

	
	Interaction Type
	HL7 BF does not explicitly represent ports since this is at the implementation level.

	
	Role Relationship Type
	No real structure of collaborations represented in SoaML. It is partially dealt with in the notion of the Collaboration and the Service Point and the Request Point.

	
	Exchange Type
	No real structure of collaborations represented in SoaML

	Service Channel
	Channel
	Equivalent

	Message Type
	CIM/LIM
	

	
	Domain Analysis Model
	No representation of information model in SoaML

	Attachment
	Not explicit
	Technology Viewpoint issue, not covered in HL7 BF except as “payload” and “payload type”

	Capability
	Service (Analysis layer)
	SoaML: business abstraction of a Service

	Milestone
	Not covered
	SoaML: identifies a place for instrumentation to measure fulfillment of behavioral goals in an ordinal fashion. HL7 BF identifies a milestone as a goal of an interaction within the scope of a logical work unit.

	
	
	

	
	
	

	
	
	

[image: image11.png]EnterpriseA

EnterpriseB @

[) Services

