
Converting HL7v2.6 to FHIR
– One idea on how to perform it –

Mattes Rhein 1, Dr. Stefan Schlichting 2, PD Dr. Josef Ingenerf 3

1 Medizinische Informatik, Universität zu Lübeck, rhein@student.uni-luebeck.de
2 Drägerwerk AG, stefan.schlichting@draeger.de
3 Institute für Medizinische Informatik, Universität zu Lübeck, ingenerf@imi.uni-luebeck.de

Abstract
Because of the wide variety of medical messaging standards it is sometimes needed to convert one message with a
particular standard to another standard. In this paper we describe an idea to write PCD-01(Patient Care Device) Messages
on a FHIR Server. FHIR (Fast Healthcare Interoperability Resources) is a draft standard created by the HL7 (Health
Level Seven International). To write the information of the PCD-01 message we need to convert the information to FHIR
conform resources. We describe the way to convert a PCD-01 message segment to the FHIR resource on the hand of the
Patient Identification (PID) segment which represents the patient FHIR resource.

1 Introduction

A central problem in medical communication standards is
the diversity of standards, which is caused by variety of
healthcare processes. Over the years the cost and complex-
ity of implementing were increasing through the adding of
more fields and optionality to the specification.
Fast Healthcare Interoperability Resources, or short FHIR,
tries to solve this problems by defining a framework for
extending and adapting the existing resources. FHIR tries
to combine the best features from HL7’s v2, HL7 v3 and
CDA, Clinical and Administrative Domains. With use of
modern web standards and a thight focus on implementabil-
ity. To model healthcare data it uses basic building blocks,
called resources. With this approach it is easier for health-
care providers to use and share the clinical data. Each re-
source can carry a human-readable text representation. For
complex clinical information, where many systems using a
simple text or document based approach, HTML is used as
a fallback display option for the clinical safety [1].
The Personal Care Device, short PCD, domain is defined
through the Integrating the Healthcare Enterprise initiative,
short IHE. PCD deals with use cases in which at least on
participant is a controlled patient-centric point-of-care med-
ical device that wants to communicate with, at least, one
other participant like a medical device or an information
system[2].
In this paper we want to describe a way to convert incoming
PCD-01 ORU R01 messages to FHIR conform resources to
be written on a FHIR server.

2 Material and Methods
FHIR is a draft standard created by the Health Level Seven
International, short HL7, health care organization. The
used resources of FHIR can be combined to working sys-
tems that solve real world clinical and administrative prob-
lems. FHIR is useable in wide variety of context, like mo-
bile phone apps, cloud communication or server communi-
cation in large institutional healthcare providers and many
more[1]. In comparison over other HL7 standards, like HL7
v2 or HL7 v3, it offers many improvements. For Example:

Strong focus on implementation

Multiple implementation libaries

Support for RESTful architectures

Strong foundation in Web-Standards like XML, JSON,
HTTP

Human-readable wire format

Administrative concepts like patient, organization and
device, as well as clinical concepts like medications and
diagnostics are covered by FHIR with its resources.
PCD coordinates with other IHE clinical specialty based
domains like medical imaging, to ensure consistency
of medical device integration solutions across all IHE
technical frameworks[3]. It aims to raise the bar from the
expensive integration projects to an easy out of the box
interoperability solution.[4].
The HIMSS, the Healthcare Information and Management
Systems Society, defines interoperability as:
Interoperability means the ability of health information
systems to work together within and across organizational

Figure 1: Example Resource of FHIR [1]

boundaries in order to advance the effective delivery of
healthcare for individuals and communities. [4].
The problem with this definition is that it is focus on health
information exchange and not on medical devices. The
AAMI, the Advancing Safety in Healthcare Technology,
gives a definition more focused on medical devices:
Medical device interoperability is the ability of medical
devices, clinical systems, or their components to communi-
cate in order to safely fulfill an intended purpose.
In some point an interoperability is achieved, but in an
expensive way. For example an expensive middleware is
needed for integration and you have continuous support
issues as device or software systems are updated and
interfaces are lost, while the complexity of maintaining
each part of the communication chain is increasing[4].

In this paper we are working with PCD-01 transac-
tions of the IHE Patient Care Device Technical Framework.
PCD-01 is used to transmit patient care device data between
systems. The transaction is used by two Use-Case-Roles
first the Device Observation Reporter and second the
Device Observation Consumer. The name of these two
roles are linked to an abstract function and not to physical
devices. The Device Observation Reporter could be
implemented in a freestanding system or in the Patient Care
Device by itself. [5]
To convert the PCD-01 messages to FHIR resources, a map-
ping of the content of the message is needed. The content
of a PCD-01 message is shown in figure 3.The content of
the PCD-01 message is written in HL7v2.6 syntax which
is defined in HL7 v2.6 Chapter 7 Observation Reporting, it
also contains the coding requirements related to observation
reporting used for PCD data communication.

As programming language we used Java 1.8 with the FHIR

Figure 2: Use-Case-Roles in PCD-01 [5]

Figure 3: Content of PCD-01 [5]

API, called HAPI-FHIR. As development environment we
used Eclipse Mars. The server which was used for testing
is a Spark Server from Furore and runs on a Microsoft
Windows Server 2012 R2 system which is running in a
virtual machine. It is written in C# and is build for FHIR
DSTU 2 [6].

To map the data of the message to FHIR resources
we used the standard mapping which is given by the HL7.
The resources on the FHIR server are saved under URL
addresses which also represent the logical identifier of the
resource. For example the resource for a test patient could
be found under "baseserver\fhir\patient\id". This id is set

PCD Segment FHIR Resource

MSH messageheader
PID patient
PV1 encounter
OBR Observation, device, devicecomponent,

devicemetric
(depending on the segmentpart)

OBX Observation, device, devicecomponent,
devicemetric
(depending on the segmentpart)

Table 1: Short mapping overview of PCD-01 elements on
FHIR Resources

by the server and is unique on the server system.
On the example of the PID segment of the PCD data we
are showing how we established the converter. The PID
segment stands for patient identification and contains all
necessary information about the patient, like name, address,
gender, birth-date, patient id and many others, see IHE
PCD Technical Framework Volume 2 for the complete list
of content [5].
In this paper we will exemplary concentrate on the mapping
for the patient. The patient id will show how we got the
information out of the message and afterwards we will
show how we build the patient resource which will be
written on the server. The patient id is converted from the

PCD-01 PID
Segment content datatype

Patient ID CX(Extended Composite ID
with Check Digit)

Patient Name XPN(Extended Person Name)
Date/Time of Birth DTM(Date and Time)
Administrative Sex
(Gender) IS(Coded values

for user-defined tables)
Patient Address XAD(Extended Address)

Table 2: Datatypes of the diffrent contents

CX[] datatype to the identifier type of the FHIR resource.
This identifier represents the business identifier which can
be set by the software system.

The method "getFirstPatientID()" shows how to get the Pa-
tient ID out of the received message. The ID is contained in
the first part of the PID segment. It is stored in an "Extended
Composite ID" which itself is parted in ten parts.

• ID Number

• Identifier Check Digit

• Check Digit Scheme

• Assigning Authority

• Identifier Type Code

• Assigning Facility

• Effective Date

• Expiration Date

• Assigning Jurisdiction

• Assigning Agency or Department

The ID which we want to use is stored in the first part of
the CX[] datatype, the ID Number. The ID Number itself
is stored in a String Data element, therefore the best way to
use it further is to store it in a String.
p u b l i c S t r i n g g e t F i r s t P a t i e n t I d (ORU_R01 theMessage) {

S t r i n g p a t i e n t I d S t r i n g = n u l l ;
i f (theMessage != n u l l)
{

ORU_R01_PATIENT_RESULT patient_RESULT = theMessage
. getPATIENT_RESULT () ;

CX[] p a t i e n t I D s = patient_RESULT
. getPATIENT () . ge tPID ()
. g e t P a t i e n t I d e n t i f i e r L i s t () ;

i f (p a t i e n t I D s != n u l l && p a t i e n t I D s . l e n g t h >0)
{

p a t i e n t I d S t r i n g = p a t i e n t I D s [0] . getCx1_IDNumber ()
. g e t V a l u e () ;

}
}

re turn p a t i e n t I d S t r i n g ;
}

After storing the ID in the String "patientIdString" we need
to get the "ID System" for the Identifier. The ID System
describes the namespace for the identifier. The ID System
itself is build with the "Assigning Authority" and the "ID
Type", here is the Example for getting the "Assigning Au-
thority".
p u b l i c S t r i n g g e t A s s i g n i n g A u t h (ORU_R01 theMessage) {

S t r i n g Ass ignAuth = " " ;
i f (theMessage != n u l l) {

ORU_R01_PATIENT_RESULT patient_RESULT = theMessage
. getPATIENT_RESULT () ;

CX[] p a t i e n t A s s i g n A u t h = patient_RESULT . getPATIENT ()
. ge tPID () . g e t P a t i e n t I d e n t i f i e r L i s t () ;

i f (p a t i e n t A s s i g n A u t h != n u l l
&& p a t i e n t A s s i g n A u t h . l e n g t h >0)

{
Ass ignAuth = p a t i e n t A s s i g n A u t h [0]
. g e t A s s i g n i n g A u t h o r i t y () . getHd1_NamespaceID ()
. getValueOrEmpty () ;

}
}

re turn AssignAuth ;
}

After getting every information of the patient out of the
message we are building the patient resource for the fhir
server.
p u b l i c P a t i e n t s e t u p _ p a t i e n t () throws E x c e p t i o n {

F i l e I m p o r t T e s t message = new F i l e I m p o r t T e s t () ;
ORU_R01 oru_message = message . t e s t R e a d F r o m F i l e () ;
System . o u t . p r i n t l n (" S e t t i n g up P a t i e n t ") ;
S t r i n g p a t i e n t _ g i v e n _ n a m e = new ORUHandler ()

. g e t P a t i e n t G i v e n N a m e (oru_message) ;
S t r i n g p a t i e n t _ l a s t _ n a m e = new ORUHandler ()

. g e t P a t i e n t L a s t N a m e (oru_message) ;
Date p a t i e n t _ b i r t h d a t e = new ORUHandler ()

. g e t P a t i e n t B i r t h d a t e (oru_message) . ge tVa lueAsDate () ;
S t r i n g p a t i e n t _ i d = new ORUHandler ()

. g e t F i r s t P a t i e n t I d (oru_message) ;
S t r i n g p a t i e n t _ a d d r e s s _ s t r e e t = new ORUHandler ()

. g e t P a t i e n t S t r e e t (o ru_message) ;
S t r i n g p a t i e n t _ a d d r e s s _ c i t y = new ORUHandler ()

. g e t P a t i e n t C i t y (oru_message) ;
S t r i n g p a t i e n t _ a d d r e s s _ s t a t e = new ORUHandler ()

. g e t P a t i e n t S t a t e (o ru_message) ;
S t r i n g p a t i e n t _ a d d r e s s _ z i p c o d e = new ORUHandler ()

. g e t P a t i e n t Z i p C o d e (oru_message) ;
S t r i n g p a t i e n t _ a d d r e s s _ c o u n t r y = new ORUHandler ()

. g e t P a t i e n t C o u n t r y (oru_message) ;
S t r i n g p a t i e n t _ g e n d e r = new ORUHandler ()

. g e t P a t i e n t G e n d e r (oru_message) ;
S t r i n g p a t i e n t _ s y s t e m = new ORUHandler ()

. g e t A s s i g n i n g A u t h (oru_message) ;
S t r i n g p a t i e n t _ i d _ t y p e = new ORUHandler ()

. g e t P a t i e n t I d T y p e (oru_message) ;

P a t i e n t p a t i e n t = new P a t i e n t () ;
I d e n t i f i e r D t p a t I d =new I d e n t i f i e r D t (c r e a t e P a t i e n t S y s t e m U R I

(p a t i e n t _ s y s t e m , p a t i e n t _ i d _ t y p e) , p a t i e n t _ i d) ;

p a t i e n t . a d d I d e n t i f i e r (p a t I d) ;

p a t i e n t . addAddress () . s e t C i t y (p a t i e n t _ a d d r e s s _ c i t y)
. s e t C o u n t r y (p a t i e n t _ a d d r e s s _ c o u n t r y)
. s e t S t a t e (p a t i e n t _ a d d r e s s _ s t a t e)
. s e t P o s t a l C o d e (p a t i e n t _ a d d r e s s _ z i p c o d e)
. addLine (p a t i e n t _ a d d r e s s _ s t r e e t) ;

p a t i e n t . addName () . addFami ly (p a t i e n t _ l a s t _ n a m e)
. addGiven (p a t i e n t _ g i v e n _ n a m e) ;

p a t i e n t . s e t B i r t h D a t e W i t h D a y P r e c i s i o n (p a t i e n t _ b i r t h d a t e) ;

BoundCodeDt < Admin i s t r a t iveGenderEnum > gende rE lemen t
= p a t i e n t . ge tGende rE lemen t () ;

gende rE lemen t . setValueAsEnum
(getGenderEnumValueFromStr ing (p a t i e n t _ g e n d e r)) ;

re turn p a t i e n t ;
}

After setting every needed information of the resource we
are checking if a resource with the same id is already been
written on the server, if so the resource is going to be up-
dated with the new values, if not the patient resource is writ-
ten on the server. The update work like the create shown
below, the difference is that the update is getting the logi-
cal id for the resource which has the patient id as business
identifier to work with.

p u b l i c MethodOutcome c r e a t e P a t i e n t () throws E x c e p t i o n {

/ / Cr ea t e a DSTU2 c o n t e x t , which w i l l use DSTU2 s e m a n t i c s
F h i r C o n t e x t c t x = F h i r C o n t e x t . f o r D s t u 2 () ;

/ / T h i s c l i e n t s u p p o r t s DSTU2
S t r i n g S e r v e r B a s e = " h t t p : / / l o c a l h o s t : 4 9 7 3 4 / f h i r " ;
c l i e n t = c t x . n e w R e s t f u l G e n e r i c C l i e n t (S e r v e r B a s e) ;

P a t i e n t p a t i e n t = new C r e a t e P a t i e n t F r o m M e s s a g e ()
. s e t u p _ p a t i e n t () ;

MethodOutcome outcome = n u l l ;

L i s t < I d e n t i f i e r D t > match ingID = p a t i e n t . g e t I d e n t i f i e r () ;
L i s t < B a s e I d e n t i f i e r D t > m a t c h i n g I d s L i s t =

new A r r a y L i s t < B a s e I d e n t i f i e r D t >(match ingID . s i z e ()) ;
m a t c h i n g I d s L i s t . a dd Al l (match ingID) ;

T e s t E x i s t e n c e e x i s t a n c e = new T e s t E x i s t e n c e () ;
boolean e x i s t a n c e b o o l = e x i s t a n c e . t e s t E x i s t e n s (m a t c h i n g I d s L i s t) ;

i f (e x i s t a n c e b o o l == t rue) {
t r y {

MethodOutcome u p d a t e P a t i e n t = new U p d a t e P a t i e n t ()
. u p d a t e P a t i e n t (p a t i e n t) ;

re turn u p d a t e P a t i e n t ;
} catch (I n v a l i d R e q u e s t E x c e p t i o n i n v a l i d R e q u e s t) {

System . e r r . p r i n t l n
(" 400 Bad Reques t f o r Update ") ;

re turn outcome ;
}

} e l s e i f (e x i s t a n c e b o o l == f a l s e) {
System . o u t . p r i n t l n

(" E n t r y n o t on S e r v e r c r e a t i n g e n t r y "+ p a t i e n t) ;

outcome = c l i e n t . c r e a t e ()
. r e s o u r c e (p a t i e n t)
. e x e c u t e () ;

re turn outcome ;
}
re turn outcome ;

}

The code fragment above shows how a resource is created
on the a server which is running on the localhost. If there
are problems with the id, which is needed for the update
request, the server will give back the HTTP "400 Bad Re-
quest" status code. The creation of other resource is in prin-
ciple the nearly the same. The differences for the other
resources are the content in these resources. For example
can a device be build with device components and device
metrics, which represents measurements or changes in the
status of component. The components describe parts of a
medical device, like sensors or pumps. Metrics and compo-
nents are resources in FHIR which contain specific data and
references to other metrics, components and devices.

3 Conclusion
Thanks to the implementation guides and documentation
of FHIR, PCD and HL7v2.6 the mapping of the informa-
tion given in the PCD messages to the FHIR resources, are
not that complicated. The bigger problem is that FHIR is
still in an early development phase therefore not everything
went as we expected it to work. At some points we needed
to build a work-around for problems which could not be
solved the way we thought it would. During the develop-
ment we found a bug in the specifications of FHIR. Hope-
fully this bug will be fixed in the next version of FHIR.

Acknowledgement
The work has been carried out at Drägerwerk AG,
Moislinger Allee 53, 23558 Lübeck. Under the supervision
of Dr. Stefan Schlichting.

4 References
[1] HL7, “Introducing fhir.”

http://hl7.org/fhir/summary.html, Janurary 2015.

[2] IHE, IHE Patient Care Device(PCD) Technical Frame-
work Volume 1 IHE PCD TF-1 Profiles, 2014.

[3] IHE, “Ihe webinar on patient care device,” 2011.

[4] P. Paul Schluter, “Understanding interoperability with
the ihe profiles,” 2012.

[5] IHE, IHE Patient Care Device(PCD) Technical Frame-
work Volume 2 IHE PCD TF-2 Transactions, 2014.

[6] Furore, “Spark fhir server.” http://spark.furore.com/,
Janurary 2016.

	Introduction
	Material and Methods
	Conclusion
	References

