Life Cycle And Object State Transitions in RPS

V2, 4 April 2011
1. Background Information Object States

Under the rules set out in the HL7 RIM, classes have status codes, which means that an object (i.e. an instance of a class) may have a defined state.
In computer science there is an accepted formalism for describing the life-cycle of objects, called a state-event matrix or a state machine.

At any time an object with a defined state machine has a specified state drawn from a fixed repertoire of states defined for its class. The state of the object is changed by events that act on the object; each event is drawn from a fixed repertoire of events defined for its class and has an associated rule specifying the new state of the object given the state of the object at the time of the event. These are called ‘state transitions’ or ‘transitions’.
A transition may sometimes leave the object in the same state as it was, but there must be a rule defined for the event and the current state; if not, the occurrence of that event should be treated as an error and not change the object in any way.

HL7 defines states, state transitions and the state machine for each core class as part of the RIM. These state machines can be specialized (restricted) in the models for subclasses, but no new states or transitions can be created.
For the core class act the RIM specifies the following:
States Of Acts

aborted (sub-state of normal):

The Act has been terminated prior to the originally intended completion.

active (sub-state of normal):

The Act can be performed or is being performed.

cancelled (sub-state of normal):

The Act has been abandoned before activation.

completed (sub-state of normal):

An Act that has terminated normally after all of its constituents have been performed.

held (sub-state of normal):

An Act that is still in the preparatory stages has been put aside. No action can occur until the Act is released.

new (sub-state of normal):

An Act that is in the preparatory stages and may not yet have been acted upon.

normal:

Encompasses the expected states of a service object, but excludes "nullified" and "obsolete" which represent unusual terminal states for the life-cycle.

nullified:

This Act instance was created in error and has been 'removed' and is treated as though it never existed. A record is retained for audit purposes only.

obsolete:

This Act instance has been replaced by a new instance.

suspended (sub-state of normal):

Active service object is temporarily suspended.

State Transitions For Acts

•abort (from active to aborted)

•revise (from active to active)

•complete (from active to completed)

•suspend (from active to suspended)

•reactivate (from completed to active)

•revise (from completed to completed)

•cancel (from held to cancelled)

•revise (from held to held)

•release (from held to new)

•activate (from new to active)

•cancel (from new to cancelled)

•complete (from new to completed)

•hold (from new to held)

•revise (from new to new)

•nullify (from normal to nullified)

•obsolete (from normal to obsolete)

•activate (from null to active)

•complete (from null to completed)

•create (from null to new)

•jump (from null to normal)

•abort (from suspended to aborted)

•resume (from suspended to active)

•complete (from suspended to completed)

•revise (from suspended to suspended)

State Machine for Act

[image: image1.png]normal
abort

revse aborted

Suspended
held cancel cancelled r = complete.
reise
reise raige
bort
old g
relpase uspend
cincal acive ‘complete(completed
new activate J
Teactvate
complete
create actiate —
ump

obsolete

The HL7 document class is a subclass of act defined in the HL7 Medical Records domain, and fully specified in the Clinical Document Architecture standard.
The Medical Records R1 domain information model says:
1.1.3 Document Identification, Revisions, and Addenda
A clinical document can be replaced by a new document and/or appended with an addendum.

A replacement document is a new version of the parent document. The parent document is considered superseded, but a system may retain it for historical or auditing purposes. The parent document being replaced is referenced via act relationship relatedDocument, where relatedDocument.typeCode is set to equal "RPLC" (for "replaces"). An example is a report found to contain an error that is subsequently replaced by the corrected report.

An addendum is a separate document that references the parent document, and may extend or alter the observations in the prior document. The parent document remains a current component of the patient record, and the addendum and its parent are both read by report recipients. The parent report (represented by the ParentDocument class) being appended is referenced via act relationship relatedDocument, where relatedDocument.typeCode is set to equal "APND" (for "appends").

Every clinical document must have a unique ClinicalDocument.id, and thus the replacement or addendum documents each have ClinicalDocument.id that is different from that of the parent document. Clinical documents may also contain a ClinicalDocument.setId and a ClinicalDocument.versionNumber, which together support a document identification and versioning scheme used in some document management systems. In this scheme, all documents in a chain of replacements have the same ClinicalDocument.setId and are distinguished by an incrementing ClinicalDocument.versionNumber. The initial version of a document gets a new unique value for ClinicalDocument.id, a new value for ClinicalDocument.setId, and has the value of ClinicalDocument.versionNumber set to equal "1". A replacement document gets a new globally unique ClinicalDocument.id value, and uses the same value for ClinicalDocument.setId as the parent report being replaced, and increments the value of ClinicalDocument.versionNumber by 1. (Note that version number must be incremented by one when a report is replaced, but can also be incremented more often to meet local requirements.)

These relationships are summarized in the following illustration:
[image: image2.png]

 1.1.4 Document Statuses and Transitions
Documents only assume a subset of the states that other Acts can take on. A newly created document that has not yet been released is "new". Because it has not yet been released, it can be "cancelled". In this case, there are no requirements to save a copy of the document. When a document is released, its status becomes "active". An active" document that has been legally authenticated is "completed". Documents that are "active" or "completed" are rendered "obsolete" when they are replaced with a revision.

These document statuses are summarized in the following illustration:
[image: image3.png]revise complete revise
NEW activate ACTIVE complete COMPLETED
(not available) (available; (available;

not legally authenticated)

legally authenticated)

cancel
nulify

revise

CANCELLED

NULLIFIED

create

obsolete

nulify | obsolete

OBSOLETE OBSOLETE

NULLIFIED

. NULL

To maintain consistency with the statuses defined in HL7 V2.x, Chapter 9 "Medical Records / Information Management (Document Management)", the value of ClinicalDocument.statusCode constrains the allowable values for ClinicalDocument.completionCode, ClinicalDocument.confidentialityCode, ClinicalDocument.storageCode, and ClinicalDocument.availabilityTime, as shown in the following table:

	Status Code
	Completion Code
	Confidentiality Code
	Storage Code
	Availability Time
	Description

	New
	Any value
	Any value
	NULL
	NULL
	This is a new document. It has not been made available for viewing. It can have any confidentiality status. It's document storage status and availability time are undefined, since it has not yet been made active.

	Active
	Anything other than Legally Authenticated
	Any value
	Active; Active & Archived
	Availability Time = time the document was made available
	This document is active, and is available. It has not yet been legally authenticated. It can have any confidentiality status.

	Completed
	Legally Authenticated
	Any value
	Active; Active & Archived
	Availability Time = time the document was made available
	This document is active, and is available. It has been legally authenticated. It can have any confidentiality status.

	Canceled
	Any value
	Any value
	NULL
	NULL
	This document was abandoned before being released. It may or may not have been authenticated.

	Obsolete
	Any value
	Any value
	Archived; Purged
	Availability Time = time the document was made available
	This document was superseded by a replacement document and is now obsolete. It is no longer available.

	Nullified
	Nullified (proposed new value for V2.7)
	Any value
	Archived
	Availability Time = time the document was made available
	This document was created in error or was placed in the wrong chart. It is no longer available.

{end of quote from Medical Records R1}
Transitions to new states are communicated in HL7 messages either by a reference to the object (by its id value) or by the transmission of a new copy of the object (with the same id value). Where a transition is communicated by reference, the act relationship type that associates the reference with another act may imply the nature of the transition. For example, in a sequel to relationship between a document object and a referenced document object the “RPLC” code implies that the receiving system will change the state (status code) of the referenced object to “obsolete” rendering it unavailable for use.
(I take it that a reference object may also carry a new status code for the referenced object, but I have not seen this explicitly defined in the RIM or v3 guide.)
2. Life Cycle Questions For RPS

(a) RPS Document Objects
We seem to have been operating as though the state machine for medical records documents should apply to our classes of type document:
The definitions established for Medical Records and CDA apply to records for individual patients and thus have an essentially linear life cycle, with single document objects evolving through their defined states and occasionally being replaced by a new version. Once a document object under these rules has been replaced (made obsolete) it is considered unavailable except for historical or auditing purposes, therefore any attempt to reuse the document should be considered an error.
Reuse is important to RPS but not to Medical Records, where in fact it would be considered inappropriate.
The Medical Records domain model does not explicitly mention hierarchically structured or compound documents, and the CDA document model specifies recursively defined sections as components of individual documents, but does not discuss the possibility of recursively nested documents, as we have defined in the current RPS model.
RPS documents are obviously not the same as Medical Records or CDA documents, so we are not obliged to follow the same life cycle rules; however, if we are not adopting the MR domain rules in their entirety, we need to specify our rules unambiguously.
Under the document construct as now defined in RPS, all versions of a given document are members of the same set (as defined by set id). A new version in the set will be submitted for the following reasons, individually or in any combination;

· The content of the document object has changed; in the case of a simple document, if a new version of the associated file has been submitted, and in the case of a compound document, if a component (anywhere in the document tree) has been added, dropped or itself updated to a new version.
· An attribute of the document object (e.g. title or code) or of any component object thereof has changed; or,

· One or more keywords associated with the document object or any of its component objects has been added, changed or dropped.

There is also a special case in which a document object is appended to an existing document object. In this case a new document, with a different set id, is associated on submission with an existing document.
Questions for RPS:

(1) Does the MR/CDA document state machine represent what we need/want in RPS?

(2) Do we need/want to explicitly record that one version of a document in a set replaces its predecessor and change the state of the predecessor to “obsolete” as required by the MR/CDA rules?

One case of interest that occurs to me is that of a sequence of labeling documents in one set. Suppose labeling document version N is sent in for review, replacing N-1 which is then made “obsolete”. My reading of the MR/CDA rules is that an obsolete document cannot participate in a new association, though existing associations appear to stand unless explicitly changed. Now suppose that document N-1 was the last approved labeling, and N is the candidate labeling for approval. If we accept the MR/CDA rules the change of state applied to N-1 rendering it obsolete prevents a new reference to the latest version of approved labeling after an update has been submitted. We could ignore that aspect of the rules, but what is the point of recording the change of state if it has no effect?

The case may sound a bit contrived, after all, we could have different compound documents for the same content, representing different regulatory statuses; however, there may be other cases where new references need to be made to documents that have technically be made obsolete.

(3) Does the change of state on a compound document affect the states of its components?

(4) I assume that a document, once submitted, can be withdrawn by the submitter. If a document is submitted in the active state, withdrawal would involve nullifying its state. At this time I see nothing in the model that would do this by reference, so a copy of the document object (i.e. having the same id value) would have to be submitted with the code “obsolete”. However, under MR/CDA rules the document would not be deleted (under MR/CDA rules document objects can be created but not destroyed). Do we need to provide a means for a submitter to retract a document such that it is deleted from the receiver's system?

(5) Do we actually need an append relationship between documents?

If we have one file represented by document A, and a new file to be appended to A, represented as document B, why not simply create a new compound document C, that includes A and B as components, and replace references to A with references to C. The tools will show the viewer that the document now filed where A was filed consists of A and B; do they need to be shown explicitly that B was appended to A?

(6) Since the sequence of versions within a set of document objects (as defined by set id), each associated with a sequence number identifying its place in the temporal evolution of a submission (or reviewable unit) provides a complete record of the history of the set do we need to explicitly make prior versions obsolete or otherwise record a specific relationship between instances for such a linear life cycle?

(7) Do we need to provide any mechanism to record branching and merging life cycles? The MR/CDA rules provide for excerpt and transformation relationships between a new document (new set, new version number) and an existing document, but do not provide for derivation relationships, or explicit split or merge relationships.
Labeling is an interesting case because in the case of a Prior Approval Supplement a labeling document will ‘branch off’ (i.e. be derived from) the latest approved labeling at the time the submission begins its life. After perhaps several versions of the labeling document within a submission, its content will merge with the then latest version of approved labeling to create a new version of approved labeling. This gets even more complicated in the case of two parallel PAS submissions. Each branch would no doubt be started as a new document set, but at present there is no means in the model to indicate the specific document from which the ne document was derived. Do we need this? Similarly the version sequence of approved labeling is likely to be independent of the life of the branches which merge back into it, but again there is no way at present of showing that one document was made by merging the logical content of two or more other documents.

(b) RPS CoU Object
RPS CoU objects are of type document. Now that we can express the life cycle of content objects in rps document objects, life cycle of the CoU object can probably be made simpler.

Once a CoU object has been submitted, it remains in effect until a new version in its set is submitted . A new version in the set will be submitted for the following reasons, individually or in any combination:

· There is a new version of the document associated with the CoU, or a new document replacing the one previously filed under the code (perhaps in error);

· The CoU code is changed (i.e. the document was filed in the wrong place); or,
· One or more keywords associated with the CoU object has been added, changed or dropped.

When a document is to be removed completely, not replaced or filed under a different code, (i.e. the set is being terminated) a new version of the CoU could be submitted to reflect this or the state of the last version in the set could be changed; see (2) below.

Questions for RPS:

(1) Since we can express an append relationship at the document level, do we need to also allow appends at the CoU level?
If we do not allow appends, then a CoU object is never referenced by any other object, except for the next version in its set if we choose to do that.
(2) Since the sequence of versions within a set of CoU objects (as defined by set id), each associated with a sequence number identifying its place in the temporal evolution of a submission (or reviewable unit) provides a complete record of the history of the set do we need to explicitly make prior versions obsolete, or otherwise record a specific relationship between instances?
We could leave each CoU object in a set in an explicit or implicit active state permanently, but how do we indicate that the set has been terminated (perhaps only temporarily)? We could submit a copy of the latest version (with the same id) with the status explicitly set to obsolete, or we could submit a new version with no code and no associated document to indicate termination. If we use the latte then there is no need to have a status code on CoU.
(c) RPS Submission Subdivision Classes

Those RPS classes that represent the administrative divisions and subdivisions of regulatory submissions may also have life cycles.

Questions for RPS:

(1) What states need to be recorded for the submission unit, which is of type act? Objects of this class appear to have a very simple life cycle, being submitted in the “active” state and never taking on a meaningful new state unless withdrawn by its submitter, in which case its state should will become “nullified”.
(2) When a submission unit is nullified are all its contents and the updates attendant thereon also nullified?
(3) Can a submission, reviewable unit or application be withdrawn by the submitter? If so, under what conditions and with what results?

(4) How is regulatory state (status) related to object state (status) for submission, reviewable unit or application, if at all? (The states, transitions and state machine applicable to these classes are those of the act class.)

There are several alternative answers to this question;
· Map regulatory states and transitions to the act states and transitions. The regulator would set the appropriate status in a copy of the object and return it with a submission unit.
· Limit the states of these classes to “new”, “active”, “nullified” and “completed” to be set according to the definitions for act, and leave the explicit regulatory status to be conveyed by the regulator in a submission unit in some other manner, such as in a document or in a separate regulatory status object (to be defined).

· Limit the states of these classes to “new”, “active”, “nullified” or “completed” and use the document class completion code to carry the regulator’s specific status indication drawn from a controlled vocabulary representing the states and terminology meaningful for the type of submission/application and regulatory realm. Again, except for nullified, the state and completion code would be set by the regulator and communicated in a copy of the object sent in a submission unit.
Note that the status “new” might be a better way than mood code for a submitter to indicate that an application (or submission or reviewable unit) is provisional and does not yet carry a regulator assigned id. When the number is assigned, the object can then become “active”.
(d) Other RPS Classes To Which Life Cycles May Apply

The following other RPS classes have or may need life cycle management: keyword definition, application reference, review procedure, submission group, mode, review, manufactured product, product, dedicated service location, product category, territorial authority. These also need to be defined, but can wait until we have the rest done.

The life cycle of the use a keyword on a CoU or document object can only be recorded by a supplying a new version of the CoU or document object with its full complement of keywords because the keyword class does not carry an id to identify an instance of itself; its id always refers to a keyword definition. A similar condition applies to application reference as it is now defined.

Page 1 of 10

