vMR Proposal by Keith Boone

Last Updated July 29, 2010

The Virtual Medical Record or VMR is an interface that allows an information system to obtain access to, create, and or modify clinical statements about a given person
. In its simplest form, the VMR could simply be viewed as an association between a person and that list of clinical statements.
The virtual medical record is intended to be a computationally independent model of a person’s electronic health record (EHR). The person associated with the record may be in the role of patient in one or more provider organizations, each of which may maintain an electronic medical record (EMR) for that person. The VMR needs to make it easy to access the composite electronic health record, as well as the filtered views that could be provided by each of the organizations where that person is a patient, and to the person’s own view of their personal health record (PHR). The VMR provides a uniform interface to EHR, EMR or PHR.

The focus of this specification is upon the definition of the VMR in the context of systems accessing it for the purpose of providing clinical decision support. It is specifically limited to those systems providing clinical decision support for a single person. Providing support for non-person living subjects (or even non-living subjects) should be a matter of straightforward extension to this specification, and is also not within its scope. Also out of scope in this iteration is the use the VMR to provide clinical decision support for populations.
Although used for clinical decision support, the VMR cannot be a read-only artifact. A clinical decision support application needs to be able to create new clinical statements and update or revise old ones in order to perform its function. Whether these clinical statements become persistent in the EHR, EMR or PHR is a matter of policy and implementation. The VMR specification remains silent on what happens to clinical information that is created or altered between activations.

Some capabilities are outside of the scope of the Virtual Medical Record as defined in this specification. Other specifications may expand upon this one to incorporate new capabilities. The core VMR capabilities do not support management of associations between patients and their healthcare providers, registration of patients, or management of relationships between healthcare providers and provider organizations. There are no mechanisms defined to allow objects representing persons, patients, providers or provider organizations to be created. These are all assumed to be preexisting objects existing and accessed through the system supplying the VMR implementation.

Classes and Interfaces appearing in the VMR are mostly derived from existing HL7 artifacts, including Clinical Statement, Care Provision, Pedigree, Pharmacy, Medication and Immunization domains, and the HL7 Continuity of Care Document. This model has been developed mostly in a bottom up rather than top down fashion. When an artifact in this specification is derived from an existing HL7 specification, this specification will provide a reference to it. These references are for informational purposes and not normative. The VMR class or interface need not implement all attributes or relationships present in the referenced model. However, a conforming VMR implementation is also not prohibited by this specification from implementing the appropriate attributes or methods to support these either.
Platform Specific Binding

The VMR is a computationally independent model represented in the Unified Modeling Language. It uses the concepts of class, interface, method, and class attribute in ways commonly understood in UML, without having any programming language specific requirements. Subsequent specifications may define bindings to specific programming languages (e.g., C++, Java, C#, PHP, et cetera) or service descriptions (SOAP/WSDL, RESTful web services, et cetera).

Versioning

The VMR takes an approach to defining classes and interfaces that will support compatibility across different versions of the VMR specification. The approach used for versioning of this specification is as follows:

Sets of features will be released in packages, where an implementation can declare conformance to a specific version of a specific package. Conformance to a specific version of a package implies conformance to all versions that precede it (e.g., conformance to Version 3 of the Core package implies conformance to Version 2 and Version 1). A new version of a package may introduce new versions of interfaces or classes in that package. When this occurs, the new features will be added to a new class or interface that derives from the predecessor. The new name of the artifact will be the base name of the class or interface followed by the version number. Thus, if VMR is a class in Release 1 of the Core package, and a new feature was added to the VMR class in Release 2, then VMR2 would derive from VMR, and be added to the Core package in Release 2. If, in release 3, yet another feature was added to the VMR class, then VMR3 would be added to the Core package in Release 3, and it would be derived from VMR2 (and if there were not change to VMR in Release 2, it would derive from VMR).
Packages

The organization of the VMR into packages enables conformance claims to be grouped in useful ways. Conformance to this specification requires that an implementation support all classes and interfaces defined in a package.

Core

Classes and interfaces in the Core package represent the core components of the Virtual Medical Record that must be implemented by all systems claiming conformance.

Datatypes

The Datatypes package contains data types used by the Virtual Medical Record. These must also be implemented by all systems claiming conformance. This package contains the key data types that a VMR implementation needs to support. The definitions for these data types appear in the HL7 Abstract Data Types standard. Not all data types in that standard appear in this release of the VMR, only those necessary to represent the attributes of the VMR.
Events

The Events package contains the set of classes and interfaces used for managing events in the Virtual Medical Record. Events are a useful concept in dealing with clinical decision support, as a particular event may trigger evaluation of a clinical decision support algorithm. We note however, that events are not an absolute requirement to define a functional Virtual Medical Record, and so leave the definition of the contents of this package out of scope for this specification.
Validation

The Validation package contains the set of classes used for managing conformance and validation of clinical statements. These concepts are interesting in light of recent work on detailed clinical models, templates, static modeling tools, et cetera. Certain uses of a VMR may want to determine if content in the VMR complies with a detailed clinical model, is conforms to the business rules of a given template, or has a valid representation in given static model. This package represents the set of classes and interfaces necessary to address these topics. It is not further described in this specification.

Terminology

The Terminology package contains the set of classes used to access knowledge appearing within controlled vocabularies. The classes and interfaces in this package should represent the necessary capabilities for integration with controlled terminology services.
Representation

The Representation package makes it possible to produce and parse various representations of clinical statements into objects in the VMR. Classes and Interfaces in this package could support import or export of content in to or out of a VMR from various sources, such as CDA R2, HL7 V3 messages or HL7 V2 message. While representations will be critical for integration of a VMR into healthcare IT systems, they are not necessary for the definition of the VMR core, and so are out of scope for this specification.
Classes in Core
Concept
The concept class provides a layer of abstraction between the logic used in a clinical decision support application, and specific knowledge representations (e.g., clinical vocabulary).
One of the functions of this class is to make accessible the knowledge used to classify various clinical statements into the different categories used by the VMR. For example, the VMR supports quick access to records about Vital Signs, and to laboratory results. However, these two results are semantically indistinguishable without some knowledge about which codes represent vital signs and which lab results.
It is fairly clear than any core concepts needed in the VMR which could have alternative vocabulary representations would need to be addressed here (e.g., Severity could be represented using SNOMED CT Concepts or HL7 V3 Severity vocabulary).
String name

A unique name for a concept in an implementation and context.

BL matches(ClininicalStatement statement)

This method returns true if a given clinical statement matches the concept, false if it does not, or null if a match cannot be determined. Or maybe it throws an exception indicating why a match could not be represented?
List<II> valueSets

This method returns a list of identifiers for the value sets containing the codes representing this concept. These value sets can subsequently be accessed through features in the terminology package.
VMRImplementation

A class representing an implementation of a Virtual Medical Record. This class provides access to factory methods to create a medical record for a given person, and to find people that meet particular criteria.
MedicalRecord createRecord(Person subject)
Create a virtual medical record for a given subject.
Person findSubject(II identifier, PN name, ADDR addr, TS birthdate, CD gender)
A method used to locate subjects matching the particular criteria.
Binding coreConcepts
An attribute providing access to the set of core code system bindings that are used by this implementation.

VMRImplementation implementation

The VMR Implementation that created this object.
List<Type>

A list of items of a particular type.

Type Item(int index)

The Ith item in the list.

int Count

The number of items in the list.

void Add(Type item)

A method to add a new item.
Annotation

Text text

The text of the annotation.

Person author

The person creating this annotation.

TS time

The time this annotation was made.

ClinicalStatement subject

The clinical statement that was the subject of this annotation.
Annotatable

Annotation createAnnotation(String text, Person author, TS time)

Creates a new annotation on a clinical statement. If time is NULL, the current time is used for the participation time of the author. Text must be non-blank. The author must be non-null.
List<Annotation> getAnnotations

Gets the annotations associated with a clinical statement in reverse chronological order.
ClinicalStatement

Implements Annotatable
The base class for all clinical statements. Clinical Statements are atomic (they can stand on their own). Thus, the severity and annotation classes do not derive from the ClinicalStatement class.
List<II> Identifiers
A list of identifiers for this clinical statement.
CD code

A code identifying the clinical statement in more detail.
String text

Human readable text representing the content of the clinical statement.
MedicalRecord record
The Virtual Medical Record containing this clinical statement.
Subject subject
The subject this clinical statement applies to.
List<Person> Authors

The author(s) of this clinical statement.

Person LegalAuthenticator

The person taking legal responsibility for this clinical statement.

Person Performers

The person(s) performing the act
Organization Custodian

The organization responsible for maintaining this clinical statement.
TS entryTime
The time that this clinical statement was recorded in the Virtual Medical Record.

TS exitTime

The time that this clinical statement was removed from or replaced in the Virtual Medical Record.
ClinicalStatementFactory

A class that implements the clinicalStatementFactory interface supports the creation of clinical statements that can be used in the context of that class.
Condition createCondition()
Create a clinical statement for a condition.

Allergy createAllergy()
Create a clinical statement for an allergy.

Reaction createReaction()
Create a clinical statement for an adverse reaction

Medication createMedication()
Create a clinical statement for a medication

Immunization createImmunization()
Create a clinical statement for an immunization.

Procedure createProcedure()
Create a clinical statement for a procedure.

Encounter createEncounter()
Create a clinical statement for an encounter.

Result createResult()
Create a clinical statement for a result.
Condition

extends ClinicalStatement, implements Severity

CD judgmentType

A code representing the type of clinical judgment associated with this clinical statement (e.g., Diagnosis, Finding, Symptom, Complaint, et cetera)

Time start, stop

The clinically effective time over which this statement applies.
Status status

The current status of this condition.
List<Treatment> Treatments
The set of treatments that have been used for this condition.
List<ClinicalStatement> Manifestations

A set of clinical statements which represent the known symptoms, findings or other kinds of conditions which are manifestations of this condition (e.g., which this condition caused).
List<ClinicalStatement> Causes

A set of clinical statements which represent the clinical statements that are known to have caused this condition. For example, a condition of status post appendectomy could have a cause of an appendectomy procedure which could have a cause of acute appendicitis.
Allergy

extends Condition
List<Reaction> Reactions

A list of reactions, actual (mood = EVN) or potential (mood = RSK), which could occur as response to triggering this allergy.
CD allergyType (Allergy/Intolerance/UnknownTypeofAdverseReaction)

Substance Allergen

Reaction

Extends Condition
BL hasOccured

True if this reaction is known to have occurred in this past, in which case, the Condition should have a non-Null start time. False if this is only a potential reaction. For example, a person who is known to be allergic to penicillin could have a reaction of anaphylaxis, but may never have experienced it.
Treatment

Extends ClinicalStatement, implements Orderable, Annotatable
CD code

A code

List<Condition> reasons
TS start, stop

The time over which this treatment is intended or has occurred.
Set<TS> frequency
The frequency of treatments.
Medication

extends Treatment, Implements Substance, Implements Annotatable

Immunization

extends Treatment, Implements Substance, Implements Annotatable

Procedure

extends Treatment, Implements Annotatable, Orderable
Encounter

extends Treatment, implements Orderable

Result

Measurement
A coded concept representing the name of the thing measured.

Result
The result of the measurement.
MedicalRecord

The class representing the content of the medical record(s) for a particular subject. This class can represent the aggregation of medical records from multiple organizations stored in a personal health record, or a singular medical record for a specific patient.

Person Subject

The person that is the subject of this medical record. Note that this can be any subtype of Person, including Patient. That has important implications. When the subject of the Medical record is a given patient, the content of the medical record is just what is known of that patient by the organization where they are a patient.

TypeOf(MedicalRecord.Subject) = Patient implies MedicalRecord.ClinicalStatement.custodian = patient.providerOrganization
List<Condition> Conditions
The set of conditions on this person’s problem list.

List<Allergy> Allergies

The set of allergies on this person’s allergy list.

List<Medication> Medications

The set of medications that are on this person’s medication list.

List<Immunization> Immunizations

The set of immunizations that have been recorded for this person.
List<Result> Results

The set of laboratory and other diagnostic results that have been recorded for this person.
List<Result> VitalSigns

The set of vital signs that have been recorded for this person.
List<Provider> Providers
The set of healthcare providers that treat this person.
List<Payer> Payers
The set of programs or payers which cover or pay for some portion of this person’s medical care.
List<Person> FamilyMembers

A set of person’s that are related to this person.

Severity

The severity interface allows a provider to advise on the severity of a condition, allergy, or adverse reaction. There may be one and only one severity observation active at any given time.

Annotatable
The Annotatable interface allows comments to be added to any clinical statement. More than one comment may be present.

Treatment

The treatment interface provides access to common information used for clinical statements representing treatment for a condition.

List<ClinicalStatement> reason

The reason(s) for this this treatment. May include multiple related clinical statements.
Orderable

The orderable interface provides access to common information used for clinical statements that can be ordered.
Provider orderingProvider

II placerOrderNumber

II fillerOrderNumber

Organization placerOrganization

Organization fillerOrganization

List<Code> orderCodes

Code orderStatus
History<Type>
The history interface allows the set of historical facts to be navigated through.

Type Next

Returns the clinical statement that replaced this one.

Type Previous

Returns the clinical statement that this clinical statement replaced.
� Extension of VMR to non-Person living subjects is fairly straightforward. I have not done so in this document because it creates more complexity.

