
© 2011 Health Level Seven, Inc.. All rights reserved. Page 0

Revision date: 2011-03-25 Print date: 5/17/2011

HL7 Arden V2.8-2011
May, 2011

Health Level Seven
Arden Syntax
Version 2.8

The Arden Syntax for

Medical

Logic Systems

Version 2.8

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 1

Revision date: 2011-03-25 Print date: 5/17/2011

The first version of this standard was developed under the auspices of the American Society for Testing and
Materials (ASTM) and published in April 1992 as ASTM E1460-92. Subsequent versions, Version 2, Version 2.1,
Version 2.5, Version 2.6, and Version 2.7 were developed and published by Health Level Seven, Inc. (HL7). These
versions were accepted as standards by the American National Standards Institute (ANSI) and The International
Standards Organization (ISO). The previous standard, Version 2.7, was accepted as an ANSI standard in 2008.
This version, 2.8, represents an extension of the previous ANSI version.

Arden Syntax for
Medical Logic Systems

TABLE OF CONTENTS
WHAT’S NEW IN VERSION 2.8 ..8
1 SCOPE ...10
2 REFERENCED DOCUMENTS...10

2.1 Health Level Seven Standards..10
2.2 ASTM Standards..10
2.3 ANSI Standards..10
2.4 ISO Standards ..10
2.5 World Wide Web Consortium Recommendations ...11
2.6 Unicode Standards ...11

3 TERMINOLOGY...12
3.1 Definitions..12
 3.1.1 Medical Logic Module (MLM)..12
3.2 Descriptions of Terms Specific to This Standard...12
 3.2.1 time, n...12
 3.2.2 time-of-day, n ...12
 3.2.3 date, n ...12
 3.2.4 duration, n ..12
 3.2.5 institution, n..12
 3.2.6 event, n ...12
3.3 Notation Used in This Standard ...12

4 SIGNIFICANCE AND USE ..13
5 MLM FORMAT...14

5.1 File Format...14
5.2 Character Set ..14
5.3 Line Break ..14
5.4 White Space ...14
5.5 General Layout...14
5.6 Categories ..14
5.7 Slots ...15
5.8 Slot Body Types...15

5.8.1 Textual Slots...15
5.8.2 Textual List Slots ...15
5.8.3 Coded Slots ..15
5.8.4 Structured Slots ..15

5.9 MLM Termination ...15
5.10 Case Insensitivity ...15

Arden Syntax for Medical Logic Systems

Page 2 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

6 SLOT DESCRIPTIONS...16
6.1 Maintenance Category ...16

6.1.1 Title (textual, required)...16
6.1.2 Mlmname (coded, required) ...16
6.1.3 Arden Syntax version (coded, optional*) ...16
6.1.4 Version (textual, required) ...16
6.1.5 Institution (textual, required)..17
6.1.6 Author (textual list, required)...17
6.1.7 Specialist (textual, required)...17
6.1.8 Date (coded, required)..17
6.1.9 Validation (coded, required)...17

6.2 Library Category ..18
6.2.1 Purpose (textual, required) ...18
6.2.2 Explanation (textual, required)...18
6.2.3 Keywords (textual list, required)..18
6.2.4 Citations (structured / textual, optional) ...18
6.2.5 Links (structured / textual, optional) ..19

6.3 Knowledge Category..19
6.3.1 Type (coded, required) ...19
6.3.2 Data (structured, required) ...20
6.3.3 Priority (coded, optional) ...20
6.3.4 Evoke (structured, required)...20
6.3.5 Logic (structured, required)..20
6.3.6 Action (structured, required) ..20
6.3.7 Urgency (coded, optional)..20

6.4 Resources category (optional)..20
6.4.1 Default (coded, required) ...21
6.4.2 Language (coded, required)..21

7 STRUCTURED SLOT SYNTAX..23
7.1 Tokens ...23

7.1.1 Reserved Words ...23
7.1.2 Identifiers ...23
7.1.3 Special Symbols ...23
7.1.4 Number Constants ..23
7.1.5 Time Constants...24
7.1.6 String Constants ...24
7.1.7 Term Constants ..24
7.1.8 Mapping Clauses..25
7.1.9 Comments ..25
7.1.10 White Space..25
7.1.11 Time-of-day Constants...25

7.2 Organization...26
7.2.1 Statements ..26
7.2.2 Expressions ..26
7.2.3 Variables ..27

8 DATA TYPES..28
8.1 Null ..28
8.2 Boolean ..28
8.3 Number...28
8.4 Time ...28

8.4.1 Granularity ...28
8.4.2 Midnight ...29
8.4.3 Now..29
8.4.4 Eventtime ...29
8.4.5 Triggertime...29
8.4.6 Currenttime ..29

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 3

Revision date: 2011-03-25 Print date: 5/17/2011

8.5 Duration ...29
8.5.1 Sub-types..29
8.5.2 Time and Duration Arithmetic ...29

8.6 String..31
8.7 Term...31
8.8 List ...31
8.9 Query Results...31

8.9.1 Primary Time..31
8.9.2 Retrieval Order...31
8.9.3 Data Value..32
8.9.4 Time Function Operator ...32

8.10 Object ...32
8.11 Time-of-day ...32
8.12 Day-of-week...33

9 OPERATOR DESCRIPTIONS..34
9.1 General Properties..34

9.1.1 Number of Arguments..34
9.1.2 Data Type Constraints..34
9.1.3 List Handling..35
9.1.4 Primary Time Handling..40
9.1.5 Time-of-Day Handling...40
9.1.6 Operator Precedence...41
9.1.7 Associativity...41
9.1.8 Parentheses...41

9.2 List Operators...42
9.2.1 , (binary, left associative) ...42
9.2.2 , (unary, non-associative) ...42
9.2.3 Merge (binary, left-associative)..42
9.2.4 Sort (unary, non-associative)..42
9.2.5 Add … To … [At …] (ternary, non-associative) ...43
9.2.6 Remove … From (binary, non-associative) ...43

9.3 Where Operator..44
9.3.1 Where (binary, non-associative)...44

9.4 Logical Operators...45
9.4.1 Or (binary, left associative) ..45
9.4.2 And (binary, left associative) ...46
9.4.3 Not (unary, non-associative) ..46

9.5 Simple Comparison Operators ...46
9.5.1 = (binary, non-associative) ...46
9.5.2 <> (binary, non-associative)...47
9.5.3 < (binary, non-associative) ...47
9.5.4 <= (binary, non-associative)...47
9.5.5 > (binary, non-associative) ...47
9.5.6 >= (binary, non-associative)...48

9.6 Is Comparison Operators..48
9.6.1 Is [not] Equal (binary, non-associative) ...48
9.6.2 Is [not] Less Than (binary, non-associative) ..48
9.6.3 Is [not] Greater Than (binary, non-associative)..48
9.6.4 Is [not] Less Than or Equal (binary, non-associative)..48
9.6.5 Is [not] Greater Than or Equal (binary, non-associative) ...48
9.6.6 Is [not] Within ... To (ternary, non-associative) ...48
9.6.7 Is [not] Within ... Preceding (ternary, non-associative)..49
9.6.8 Is [not] Within ... Following (ternary, non-associative) ...49
9.6.9 Is [not] Within ... Surrounding (ternary, non-associative)..49
9.6.10 Is [not] Within Past (binary, non-associative) ..50
9.6.11 Is [not] Within Same Day As (binary, non-associative)...50

Arden Syntax for Medical Logic Systems

Page 4 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

9.6.12 Is [not] Before (binary, non-associative)..50
9.6.13 Is [not] After (binary, non-associative) ..50
9.6.14 Is [not] In (binary, non-associative) ...50
9.6.15 Is [not] Present (unary, non-associative) ..51
9.6.16 Is [not] Null (unary, non-associative)...51
9.6.17 Is [not] Boolean (unary, non-associative)...51
9.6.18 Is [not] Number (unary, non-associative)...51
9.6.19 Is [not] String (unary, non-associative) ..51
9.6.20 Is [not] Time (unary, non-associative) ...51
9.6.21 Is [not] Time of day (unary, non-associative) ..52
9.6.22 Is [not] Duration (unary, non-associative)..52
9.6.23 Is [not] List (unary, non-associative)..52
9.6.24 [not] In (binary, non-associative) ...52
9.6.25 Is [not] Object (unary, non-associative) ...52
9.6.26 Is [not] <Object-Type> (unary, non-associative) ...52

9.7 Occur Comparison Operators...53
9.7.1 General Properties ..53
9.7.2 Occur [not] Equal (binary, non-associative)...53
9.7.3 Occur [not] Within ... To (ternary, non-associative) ..53
9.7.4 Occur [not] Within ... Preceding (ternary, non-associative)...53
9.7.5 Occur [not] Within ... Following (ternary, non-associative) ..53
9.7.6 Occur [not] Within . . . Surrounding (ternary, non-associative) ...53
9.7.7 Occur [not] Within Past (binary, non-associative) ...53
9.7.8 Occur [not] Within Same Day As (binary, non-associative) ..54
9.7.9 Occur [not] Before (binary, non-associative) ...54
9.7.10 Occur [not] After (binary, non-associative) ...54
9.7.11 Occur [not] At (binary, non-associative)..54

9.8 String Operators ...54
9.8.1 || (binary, left associative)...54
9.8.2 Formatted with (binary, left-associative)..55
9.8.3 String ... (unary, right associative) ...56
9.8.4 Matches Pattern (binary, non-associative)..56
9.8.5 Length (unary, right-associative)..56
9.8.6 Uppercase (unary, right-associative) ..57
9.8.7 Lowercase (unary, right-associative)..57
9.8.8 Trim [Left | Right] (unary, right-associative) ...57
9.8.9 Find...[in] String...[starting at]... (ternary, right-associative)..57
9.8.10 Substring … Characters [starting at …] from … (ternary, right associative).......................58
9.8.11 Localized (unary, non-associative)...59
9.8.12 Localized (binary, right-associative) ..59
9.8.13 As String (unary, non-associative) ...59

9.9 Arithmetic Operators..60
9.9.1 + (binary, left associative) ..60
9.9.2 + (unary, non-associative) ..60
9.9.3 - (binary, left associative)...60
9.9.4 - (unary, non-associative) ...61
9.9.5 * (binary, left associative) ..61
9.9.6 / (binary, left associative) ...61
9.9.7 ** (binary, non-associative) ...61

9.10 Temporal Operators ...61
9.10.1 After (binary, non-associative)...61
9.10.2 Before (binary, non-associative) ..61
9.10.3 Ago (unary, non-associative) ...62
9.10.4 From (binary, non-associative)...62
9.10.5 Time of day [of] (unary, right-associative) ..62
9.10.6 Day of week [of] (unary, right associative)..62

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 5

Revision date: 2011-03-25 Print date: 5/17/2011

9.10.7 Extract Year (unary, right-associative)...62
9.10.8 Extract Month (unary, right-associative)..63
9.10.9 Extract Day (unary, right-associative)..63
9.10.10 Extract Hour (unary, right-associative) ..63
9.10.11 Extract Minute (unary, right-associative)...63
9.10.12 Extract Second (unary, right-associative)...63
9.10.13 Replace Year [of] … With (binary, right-associative) ...63
9.10.14 Replace Month [of] … With (binary, right-associative)...64
9.10.15 Replace Day [of] … With (binary, right-associative) ..64
9.10.16 Replace Hour [of] … With (binary, right-associative)...64
9.10.17 Replace Minute [of] … With (binary, right-associative)..65
9.10.18 Replace Second [of] … With (binary, right-associative) ...65

9.11 Duration Operators...66
9.11.1 Year (unary, non-associative)...66
9.11.2 Month (unary, non-associative)..66
9.11.3 Week (unary, non-associative) ...66
9.11.4 Day (unary, non-associative)..66
9.11.5 Hour (unary, non-associative) ..66
9.11.6 Minute (unary, non-associative)...66
9.11.7 Second (unary, non-associative)...66

9.12 Aggregation Operators ...66
9.12.1 General Properties: ...66
9.12.2 Count (unary, right associative) ...67
9.12.3 Exist (unary, right associative) ...67
9.12.4 Average (unary, right associative)..67
9.12.5 Median (unary, right associative) ...67
9.12.6 Sum (unary, right associative)..68
9.12.7 Stddev (unary, right associative) ..68
9.12.8 Variance (unary, right associative)...68
9.12.9 Minimum (unary, right associative) ...68
9.12.10 Maximum (unary, right associative)...69
9.12.11 Last (unary, right associative) ..69
9.12.12 First (unary, right associative)..69
9.12.13 Any [IsTrue] (unary, right associative) ..69
9.12.14 All [AreTrue] (unary, right associative)...70
9.12.15 No [IsTrue] (unary, right associative) ..70
9.12.16 Latest (unary, right associative) ...70
9.12.17 Earliest (unary, right associative) ...70
9.12.18 Element (binary)...71
9.12.19 Extract Characters ... (unary, right associative)..71
9.12.20 Seqto (binary, non-associative) ..71
9.12.21 Reverse (unary, right-associative) ..71
9.12.22 Index Extraction Aggregation operators...72

9.13 Query Aggregation Operators ..73
9.13.1 General Properties: ...73
9.13.2 Nearest ... From (binary, right associative)..73
9.13.3 Index Nearest ... From (binary, right associative) ..73
9.13.4 Index Of ... From (binary, right-associative)..74
9.13.5 At Least ... From (binary, right-associative)...74
9.13.6 At Most ... From (binary, right-associative)...74
9.13.7 Slope (unary, right associative) ..74

9.14 Transformation Operators ..75
9.14.1 General Properties: ...75
9.14.2 Minimum ... From (binary, right associative)...75
9.14.3 Maximum ... From (binary, right associative)..75
9.14.4 First ... From (binary, right associative) ...76

Arden Syntax for Medical Logic Systems

Page 6 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

9.14.5 Last ... From (binary, right associative)..76
9.14.6 Sublist …Elements [Starting at …] From … (ternary, right-associative)76
9.14.7 Increase (unary, right associative)..77
9.14.8 Decrease (unary, right associative)...77
9.14.9 % Increase (unary, right associative)..77
9.14.10 % Decrease (unary, right associative) ..78
9.14.11 Earliest ... From (binary, right associative) ..78
9.14.12 Latest ... From (binary, right associative)...78
9.14.13 Index Extraction Transformation Operators...78

9.15 Query Transformation Operator...79
9.15.1 General Properties ..79
9.15.2 Interval (unary, right associative)...79

9.16 Numeric Function Operators..80
9.16.1 Arccos (unary, right associative)..80
9.16.2 Arcsin (unary, right associative)...80
9.16.3 Arctan (unary, right associative) ..80
9.16.4 Cosine (unary, right associative) ..80
9.16.5 Sine (unary, right associative) ..80
9.16.6 Tangent (unary, right associative) ..80
9.16.7 Exp (unary, right associative)...80
9.16.8 Log (unary, right associative)...80
9.16.9 Log10 (unary, right associative)...81
9.16.10 Int (unary, right associative)...81
9.16.11 Floor (unary, right associative)...81
9.16.12 Ceiling (unary, right associative) ...81
9.16.13 Truncate (unary, right associative) ...81
9.16.14 Round (unary, right associative)...81
9.16.15 Abs (unary, right associative)...82
9.16.16 Sqrt (unary, right associative) ..82
9.16.17 As Number (unary, non-associative)..82

9.17 Time Function Operator...82
9.17.1 Time (unary, right associative)...82
9.17.2 Time of Objects..83
9.17.3 Attime (binary, right associative) ...83
9.17.4 As Time (unary, non-associative)...83

9.18 Object Operators ..84
9.18.1 Dot (binary, right associative) ..84
9.18.2 Clone (unary, right associative)..84
9.18.3 Extract Attribute Names ... (unary, right associative) ..85
9.18.4 Attribute … From … (binary, right associative) ..85

10 LOGIC SLOT...86
10.1 Purpose...86
10.2 Logic Slot Statements ..86

10.2.1 Assignment Statement..86
10.2.2 If-Then Statement...88
10.2.3 Switch-Case Statement...90
10.2.4 Conclude Statement..90
10.2.5 Call Statement ..91
10.2.6 While Loop...93
10.2.7 For Loop...94
10.2.8 New Statement ...94

10.3 Logic Slot Usage..96
11 DATA SLOT..97

11.1 Purpose...97
11.2 Data Slot Statements ..97

11.2.1 Read Statement...97

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 7

Revision date: 2011-03-25 Print date: 5/17/2011

11.2.2 Read As Statement ...99
11.2.3 Event Statement..99
11.2.4 MLM statement ..100
11.2.5 Argument Statement...100
11.2.6 Message Statement...101
11.2.7 Message As Statement..101
11.2.8 Destination Statement...102
11.2.9 Destination As Statement ...102
11.2.10 Assignment Statement..102
11.2.11 If-Then Statement...102
11.2.12 Switch-Case Statement...102
11.2.13 Call Statement ..102
11.2.14 While Loop...103
11.2.15 For Loop...103
11.2.16 Interface Statement...103
11.2.17 Object Statement ..103
11.2.18 New Statement ...103
11.2.19 Include Statement...104

11.3 Data Slot Usage..104
12. ACTION SLOT..104

12.1. Purpose...104
12.2. Action Slot Statements...104

12.2.1 Write Statement..104
12.2.2 Return Statement ..105
12.2.3 If-then Statement ..106
12.2.4 Switch-Case Statement...106
12.2.5 Call Statement ..106
12.2.6 While Loop...106
12.2.7 For Loop...106
12.2.8 Assignment Statement..106

12.3. Action Slot Usage ..107
13. EVOKE SLOT ...108

13.1. Purpose...108
13.1.1. Occurrence of Some Event...108
13.1.2. A Time Delay After an Event...108
13.1.3. Periodically After an Event ..108

13.2. Events...108
13.2.1. Event Properties ...108
13.2.2. Time of Events ...108
13.2.3. Declaration of Events ...108

13.3. Evoke Slot Statements: ..109
13.3.1. Simple Trigger Statement...109
13.3.2. Delayed Event Trigger Statement ..109
13.3.3. Constant Time Trigger ...110
13.3.4. Periodic Trigger Statement...111
13.3.5. Constant Periodic Trigger Statement..112

13.4. Evoke Slot Usage ...112

ANNEXES (MANDATORY INFORMATION)

A1 Backus-Naur Form. ..113
A2 Reserved Words. ..138
A3 Special Symbols. ..139
A4 Operator Precedence and Associativity..140
A5 Format Specifications (annex to Formatted With, Section 8.8.2),145
A6 Objects in Arden . ..148

Arden Syntax for Medical Logic Systems

Page 8 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

APPENDICES (NON-MANDATORY INFORMATION)
X1 Structured Write Statement Suggested Schema ...151
X2 XML Schema for MLMs..157
X3 Country and Language Codes for HL7 International Affiliate Nations ...170
X4 Sample MLMs..171
X5 Summary of Changes. ..183

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 9

Revision date: 2011-03-25 Print date: 5/17/2011

WHAT’S NEW IN VERSION 2.8
This version features new operators for simple list item adding/removing, for manipulation of time and switch-case
statements. In addition, some operators are extended by the using modifier to e.g. sort lists by complex calculations.
Furthermore, the breakloop terminal is introduced which allows to abort for and while loops. Corrections / updates
to features introduced in previous versions are also included. The modifications include:

• 9.2.4 Added the “Using …” modifier as extension to the sort operator. This modifier will allow to
sort lists by any complex calculation (also added to 9.12.9, 9.12.10, 9.12.16, 9.12.17, 9.14.2, 9.14.3,
9.14.11, and 9.14.12)

• 9.2.5 Added new operator “Add … To … [At …] ” for simple list manipulation by insertion of
elements at arbitrary positions

• 9.2.6 Added new operator “Remove … From …” for simple removing arbitrary elements from a
list

• 9.10.13-18 Added a set of new operators with the form “Replace <timepart> [Of] … With ” to replace a
part of a given date

• 9.13.4 Added new operator “Index Of … From …” to find the index of a specific list element

• 9.13.5 Added the “At Least … [IsTrue|AreTrue] From … ” operator to determine if a list contains
at least N elements which are true

• 9.13.6 Added the “At Most … [IsTrue|AreTrue] From … ” operator to determine if a list contains
at most N elements which are true

• 9.14.6 Added new operator “Sublist … Elements [Starting at …] From …” to extract sub-lists
from given data lists

• 10.2.3 Added the “Switch-Case” statement for simple distinction of different states of a variable

• 10.2.6.1 Added the possibility to use the terminal “BreakLoop” for aborting a while loop (also added
to the for loop 10.2.7.1)

• Changes to BNF to reflect updates to text of standard and fix typographical errors

• Split some precedence groups since operators with different associativity should not be in the same
precedence group

1 SCOPE
This specification covers the sharing of computerized health knowledge bases among personnel, information
systems, and institutions. The scope has been limited to those knowledge bases that can be represented as a set of
discrete modules. Each module, referred to as a Medical Logic Module (MLM), contains sufficient knowledge to
make a single decision. Contraindication alerts, management suggestions, data interpretations, treatment protocols,
and diagnosis scores are examples of the health knowledge that can be represented using MLMs. Each MLM also
contains management information to help maintain a knowledge base of MLMs and links to other sources of
knowledge. Health personnel can create MLMs directly using this format, and the resulting MLMs can be used
directly by an information system that conforms to this specification.

Arden Syntax for Medical Logic Systems

Page 10 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

2 REFERENCED DOCUMENTS

2.1 Health Level Seven Standards 1:
HL7 Version 2.3

HL7 Version 3

2.2 ASTM Standards 2:
E 1238 Specification for Transferring Clinical Laboratory Data Messages Between

Independent Computer Systems

E 1384 Guide for Content and Structure of an Automated Primary Record of Care

2.3 ANSI Standards 3:
ANSI X3.4 - 1986 Coded Character Sets-American National Standard Code for Information

Interchange (7-bit ASCII)

ANSI/ISO 9899 - 1999 Programming Language C

ANSI/ISO/IEC 9075 - 2003 Information technology – Database languages – SQL

ANSI/NISO Z39.88 - 2004 The OpenURL Framework for Context-Sensitive Services

2.4 ISO Standards 4:
ISO 8601 – 2004 Data Elements and Interchange Formats-Information Interchange

(representation of dates and times)

ISO 88599 – 1998 Latin-1 Coded Character Set

ISO / IEC 9075 – 2003 Information technology – Database languages – SQL

ISO 8879 – 1986 Information processing – Text and office systems – Standard Generalized
Markup Language (SGML)

ISO 639-1 - 2002 Codes for the representation of names of languages -- Part 1: Alpha-2 code

ISO 3166-1 - 1997 Codes for the representation of names of countries and their subdivisions.

ISO/IEC 10646:2003 Information technology -- Universal Multiple-Octet Coded Character Set
(UCS)

1 Available from Health Level Seven, Inc.
3300 Washtenaw Ave, Suite 227, Ann Arbor, MI 48104, USA. www.hl7.org

2 Annual Book of ASTM Standards, Vol 14.01. Available from ASTM International ,
100 Barr Harbor Drive, West Conshohocken, PA19428-2959, USA. www.astm.org

3 Available from American National Standards Institute,
1430 Broadway, New York, NY 10018, USA. www.ansi.org

4 Available from ISO,
1 Rue de Varembe, Case Postale 56, CH 1211, Geneve, Switzerland. www.iso.ch

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 11

Revision date: 2011-03-25 Print date: 5/17/2011

2.5 World Wide Web Consortium Recommendations 5:
Extensible Markup Language (XML) 1.0 (Third Edition) 2004-02-04

Extensible Markup Language (XML) 1.1 2004-02-04

2.6 Unicode Standards 6:
Unicode 5.0

5 Available from World Wide Web Consortium (W3C).

MIT, 32 Vassar Street, Room 32-G515, Cambridge, MA 02139 USA or
ERCIM, 2004, route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex France. www.w3c.org.

6 Available from The Unicode Consortium.
P.O. Box 391476, Mountain View, CA 94039-1476, U.S.A. www.unicode.org.

Arden Syntax for Medical Logic Systems

Page 12 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

3 TERMINOLOGY

3.1 Definitions

3.1.1 Medical Logic Module (MLM), n

an independent unit in a health knowledge base. Each MLM contains maintenance information, links to
other sources of knowledge, and enough logic to make a single health decision.

3.2 Descriptions of Terms Specific to This Standard :

3.2.1 time, n

a timestamp, it includes both a date and a time-of-day.

3.2.2 time-of-day, n

hours, minutes, seconds, and possibly, fractions of seconds past midnight.

3.2.3 date, n

Gregorian year, month, and day.

3.2.4 duration, n

a period of time (for example, 3 days) that has no particular start or end point.

3.2.5 institution, n

a health facility of any size that will provide automated decision support or quality assurance.

3.2.6 event, n

a clinically meaningful change in state. This is often, but not always, reflected by a change in the clinical
database. For example, ordering a medication is an event that could update the clinical database; when the
stop time of the medication order is passed, the stopping of the medication would be an event, even though
there might not be any change to the database.

3.3 Notation Used in This Standard
Throughout this standard, the location for optional elements is noted by placing the optional elements
inside square brackets ([]). This is not to be confused with the element operator [] (see Section 9.12.18).
Thus, is [not] equal means that is equal and is not equal are both valid constructs. The two most common
optional elements are not and of.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 13

Revision date: 2011-03-25 Print date: 5/17/2011

4 SIGNIFICANCE AND USE
Decision support systems have been used for health care successfully for many years, and several institutions have
already assembled large knowledge bases. There are many conceptual similarities among these knowledge bases.
Unfortunately, the syntax of each knowledge base is different. Since no one institution will ever define a complete
health knowledge base, it will be necessary to share knowledge bases among institutions.

Many obstacles to sharing have been identified: disparate vocabularies, maintenance issues, regional differences,
liability, royalties, syntactic differences, etc. This standard addresses one obstacle by defining a syntax for creating
and sharing knowledge bases. In addition, the syntax facilitates addressing other obstacles by providing specific
fields to enter maintenance information, assignment of clinical responsibility, links to the literature, and mappings
between local vocabulary terms and terms in the knowledge base.

The range of health knowledge bases is large. This specification focuses on those knowledge bases that can be
represented as a set of Medical Logic Modules (MLMs). Each MLM contains maintenance information, links to
other sources of knowledge, and enough logic to make a single health decision. Knowledge bases that are composed
of independent rules, formulae, or protocols are most amenable to being represented using MLMs.

This specification, which is an outcome of the Columbia-Presbyterian Medical Center 1989 Arden Homestead
retreat on sharing health knowledge bases, was derived largely from HELP of LDS Hospital, Salt Lake City, UT
(1)7, and CARE, the language of the Regenstrief Medical Record System of the Regenstrief Institute for Health Care,
Indianapolis, IN (2).

7 The boldface numbers in parentheses refer to the list of references at the end of this standard.

Arden Syntax for Medical Logic Systems

Page 14 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

5 MLM FORMAT

5.1 File Format
An MLM is a stream of text stored in an ASCII file (ANSI X3.4 - 1986) [international users may extend
this by using UNICODE encoding, but a conforming implementation need only implement X3.4]. One or
more MLMs may be placed in the same file. Within a file, an MLM begins with the marker maintenance:
and ends with the marker end:. MLMs may be separated by white space, as defined in Section 7.1.10
and/or comments as defined in Section 7.1.9.

5.2 Character Set
Within an MLM only the printable ASCII characters (ASCII 33 through and including 126), space (ASCII
32), carriage return (ASCII 13), line feed (ASCII 10), horizontal tab (ASCII 9), vertical tab (ASCII 11), and
form feed (ASCII 12) may be used. The use of horizontal tab is discouraged because there is no agreement
on how many spaces it represents. Other characters, such as the bell and backspace, are not allowed within
the MLM. Inside the library category (Section 6.2), a string constant (Section 7.1.6) or comment (Section
7.1.9), these character set restrictions are lifted.

5.3 Line Break
Lines are delimited by line breaks, which are any one of the following: a single carriage return, a single line
feed, or a carriage return-line feed pair.

5.4 White Space
The space, carriage return, line feed, horizontal tab, vertical tab, and form feed are collectively referred to
as white space. See also Section 7.1.10.

5.5 General Layout
Annex A1 contains a context-free grammar (formal description) of Arden Syntax MLMs expressed in
Backus-Naur Form (3). See Appendix X4 for MLM examples. A typical MLM is arranged like this.

maintenance:

slotname: slot-body;;

slotname: slot-body;;

...

library:

slotname: slot-body;;

...

knowledge:

slotname: slot-body;;

...

Resources: <optional>

Slotname: slot-body;;

.. .

end:

5.6 Categories
An MLM is composed of slots grouped into three required categories, maintenance, library, and
knowledge, and one optional category, resources. A category is indicated by a category name followed
immediately by a colon (that is, maintenance:, library: , knowledge:, and resources:).White space may
precede the category name and follow the colon, but no white space is allowed between the category name
and the colon. Categories must appear in the order they appear in this standard.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 15

Revision date: 2011-03-25 Print date: 5/17/2011

5.7 Slots
Within each category is a set of slots.

Each slot consists of a slot name, followed immediately by a colon (for example, title:), then followed by
the slot body, and terminated with two adjacent semicolons (;;) which is referred to as double semicolon.
White space may precede the slot name and follow the colon, but no white space is allowed between the
slot name and the colon. The content of the slot body depends upon the slot, but it must not contain a
double semicolon, except inside comments (Section 7.1.9), string constants (Section 7.1.6), and mapping
clauses (Section 7.1.8).

Each slot must be unique in the MLM, and categories and slots must follow the order in which they are
listed in this standard. Some slots are required and others are optional.

5.8 Slot Body Types
These are the basic types of slot bodies:

5.8.1 Textual Slots

A textual slot contains arbitrary text (except for double semicolon, which ends the slot). As the MLM
standard is augmented, slots that are currently considered to be textual may become coded or structured. An
example of a textual slot is the title slot, which can contain arbitrary text. For required textual slots, the text
may be empty.

5.8.2 Textual List Slots

Some slots contain textual lists. These are lists of arbitrary textual phrases, optionally separated by single
semicolons (;). An example of a textual list slot is the keywords slot. The list may be empty. It may not
contain a double semicolon (which ends the slot).

5.8.3 Coded Slots

Coded slots contain a simple coded entry like a number, a date, or a term from a predefined list. For
example, the priority slot can only contain a number, and the validation slot can contain only the terms
production, research, etc.

5.8.4 Structured Slots

Structured slots contain syntactically defined slot bodies. They are more complex than coded slots, and are
further defined in Section 7. An example of this kind of slot is the logic slot.

5.9 MLM Termination

The end of the MLM is marked by the word end followed immediately by a colon (that is, end:). White
space may precede the terminator and follow the colon but no white space is allowed between the
terminator and the colon.

5.10 Case Insensitivity
Category names, slot names, and the end terminator may be typed in uppercase (for example, END),
lowercase (for example, end), or mixed case (for example, eNd). See also Sections 7.1.1.2 and 7.1.2.1.

Arden Syntax for Medical Logic Systems

Page 16 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

6 SLOT DESCRIPTIONS
Next to each slot name is an indication of whether the slot is textual, textual list, coded, or structured, and whether it
is required or optional. Slots must appear in the order they appear in this specification.

6.1 Maintenance Category
The maintenance category contains the slots that specify information unrelated to the health knowledge in
the MLM. These slots are used for MLM knowledge base maintenance and change control. The
maintenance category also contains information about the version of the Arden Syntax that is being used.

6.1.1 Title (textual, required)

The title serves as a comment that describes briefly what the MLM does. For example,

title: Hepatitis B Surface Antigen in Pregnant Wome n;;

6.1.2 Mlmname (coded, required)

The mlmname uniquely identifies an MLM within a single authoring institution. It is represented as a string
of characters beginning with a letter and followed by letters, digits, period (.), minus (-), and underscores
(_). An mlmname may be 1 to 80 characters in length. Mlmnames are insensitive to case. The mlmname is
distinct from the name of the ASCII file, which happens to hold one or more MLMs. For example,

mlmname: hepatitis_B_in_pregnancy;;

 or

mlmname: hiv_screening.mlm;;

While mlmname is preferred as the name of this slot, filename is also permitted for backward compatibility.

6.1.3 Arden Syntax version (coded, optional*)

The Arden Syntax version informs the compiler which version of the standard has been used to write the
MLM. If this slot is missing, the MLM is assumed to be written with the ASTM E1460-1992 standard
(which didn't include this slot). Otherwise, the slot is of the following form:

arden: Version <Version number of Arden Syntax stan dard>;;

The text is not case sensitive. For example,

arden: Version 2;;

arden: version 2.1;;

arden: version 2.5;;

arden: version 2.6;;

* This slot is required for versions 2 and later of the syntax, but is optional for backward compatibility.
That is, if it is missing, the assumed version is version 1.

6.1.4 Version (textual, required)

The current version of the MLM is arbitrary text, up to 80 characters in length, as is convenient for the
institution's version control system, such as SCCS (Software Change/Configuration Control System) or
RCS (Revision Control System). It is suggested that versions start at 1.00 and advance by .01 for small
revisions and by 1 for large revisions. The exact form of the version information is institution-specific, but
must allow determining which MLM is the most recent (see Section 11.2.4). For example,

version: 1.00;;

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 17

Revision date: 2011-03-25 Print date: 5/17/2011

6.1.5 Institution (textual, required)

The institution slot contains the name of the authoring institution, up to 80 characters in length. For
example,

institution: Columbia University;;

6.1.6 Author (textual list, required)

The author slot is free-form text. It should contain a list of the authors of the MLM, delimited by
semicolons. The following format should be used: first name, middle name or initial, last name, comma,
suffixes, comma, and degrees.

An electronic mail address enclosed in parentheses may optionally follow each author's name. Internet
addresses are assumed. For example,

author: John M. Smith, Jr., M.D. (jms@camis.columbi a.edu);;

6.1.7 Specialist (textual list, required)

The domain specialist is the person in the institution responsible for validating and installing the MLM.
This slot should always be present but blank when transferring MLMs from one institution to another. It is
the borrowing institution's responsibility to fill this slot and accept responsibility for the use of the MLM.
The format is the same as for the author slot. For example,

specialist: Jane Doe, Ph.D.;;

 or

specialist: ;;

6.1.8 Date (coded, required)

The date of last revision of the MLM must be placed in this slot. Either a date or a date-time (that is, a point
in absolute time composed of a date plus a time-of-day) can be used. The format for dates and for date-time
combinations is ISO complete representation in extended format (with the T or t separator) with optional
time zones (ISO 8601:1988 (E)). Dates are yyyy-mm-dd so that January 2, 1989 would be represented as
1989-01-02. The earliest date-time Arden Syntax must support is January 1, 1800 (1800-01-01T00:00:00Z).
Times are yyyy-mm-ddThh:mm:ss with optional fractional seconds and optional time zones. Thus, 1:30
p.m. on January 2, 1989 UTC would be represented as 1989-01-02T13:30:00Z. For example,

date: 1989-01-02;;

6.1.9 Validation (coded, required)

The validation slot specifies the validation status of the MLM. Use one of the following terms:

a) production—approved for use in the clinical system,

b) research—approved for use in a research study,

c) testing—for debugging (when an MLM is written, this should be the initial value), or

d) expired—out of date, no longer in clinical use.

An example is:

validation: testing;;

MLMs should never be shared with a validation status of production, since the domain specialist for the
borrowing institution must set that validation status.

Arden Syntax for Medical Logic Systems

Page 18 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

6.2 Library Category
The library category contains the slots pertinent to knowledge base maintenance that are related to the
MLM's knowledge. These slots provide health personnel with predefined explanatory information and links
to the health literature. They also facilitate searching through a knowledge base of MLMs.

6.2.1 Purpose (textual, required)

The purpose slot describes briefly why the MLM is being used. For example,

purpose: Screen for newborns who are at risk for de veloping hepatitis B;;

6.2.2 Explanation (textual, required)

The slot explains briefly in plain English how the MLM works. The explanation can be shown to the health
care provider when he or she asks why an MLM came to its decision. For example,

explanation: This woman has a positive hepatitis B surface antigen titer
within the past year. Therefore her newborn is at r isk for developing
hepatitis B.;;

6.2.3 Keywords (textual list, required)

Keywords are descriptive words used for searching through modules. UMLS terms (4) are preferred but not
mandatory. Terms are delimited by semicolons (commas are allowed within a keyword). For example,

keywords: hepatitis B; pregnancy;;

6.2.4 Citations (structured / textual, optional)

The citations slots allows for the documentation of citations to relevant literature to be documented within
an MLM. There are two supported formats for the citations slot. The first is a textual format with no
implied structure. The textual format is provided for backward compatibility and is a deprecated form. The
second is a structured format described later in this section. When using the textual format, citations to the
literature should be entered in Vancouver style (5).

In the structured format, citations must be numbered, serving as specific references. The individual
citations may also be assigned a type. The type should follow the number and specify the function of the
citation for the particular MLM. Citation types are:

a) Support – citations which support, verify, or validate the algorithm in the logic slot;

b) Refute – citations which refute or offer alternatives to the algorithm in the logic slot;

For example,
citations:

 1. SUPPORT Steiner RW. Interpreting the fraction al excretion of sodium.
 Am J Med 1984;77:699-702.

 2. Goldman L, Cook EF, Brand DA, Lee TH, Rouan GW , Weisberg MC, et al. A
 computer protocol to predict myocardial infarctio n in emergency
 department patients with chest pain. N Engl J Med 1988;318(13):797-803.

;;

Within the structured citations format, either Vancouver style (5) or OpenURL format (ANSI/NISO Z39.88)
are acceptable forms for representing individual citations. It is anticipated that the OpenURL format will
become the preferred form in future versions of this standard. Appendix X2 contains examples of citations
formatted using the OpenURL format as part of the discussion of an XML schema for representing MLMs.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 19

Revision date: 2011-03-25 Print date: 5/17/2011

6.2.5 Links (structured / textual, optional)

The links slot allows an institution to define links to other sources of information, such as an electronic
textbook, teaching cases, or educational modules. There are two supported formats for the links slot. The
first is a textual format with no implied structure. The textual format is provided for backward
compatibility and is a deprecated form. The second is a structured format described later in this section.

The structured format may either use the ad-hoc format first presented in Arden Syntax Version 2.0 or the
OpenURL format (ANSI/NISO Z39.88) to represent individual links. The individual links are delimited by
semicolons. The contents of the links are institution-specific

Within the ad-hoc format, links to sites on intranets or the internet should be prefixed by the term URL
(Uniform Resource Locator) and the title of the document and link text should follow the defined standards
for representing protocols and data sources (e.g. "Document Title", 'FILE://link.html'; "Second Document",
'http://www.nlm.nih.gov/'). Electronic material can also be entered in the citations slot above. The
preferred form for structured links is:
 link type, space (ASCII 32), link description (Arden Syntax term), comma, link text (Arden Syntax
string). The only required element is the link text.

For example:

links:

 OTHER_LINK "CTIM .34.56.78";

 MESH "agranulocytosis/ci and sulfamethoxazole/ae";

 URL 'NLM Web Page', "http://www.nlm.nih.gov/";

 URL 'Visible Human Project',

 "http://www.nlm.nih.gov/research/visible/visible_ human.html";

 URL 'DOS HTML File', "file://doslinx.htm";

 URL 'UNIX HTML File', "file://UnixLinx.html/";

;;

Each institution should test for expired links when receiving shared MLMs.

Appendix X2 contains examples of links formatted using the OpenURL format as part of the discussion of
an XML schema for representing MLMs.

Note: This definition of the structured link differ from the 2.5 and previous versions of the structured link.
This change was made to bring the structured link into conformance with the definitions of resource
statements as defined in Section 6.4. Future version of the Arden Syntax standard will provide mechanisms
for calling external links, it was decided to break backward compatibility on this issue to make the related
constructs of links and resources have parallel structure. As the structured link has not been widely
implemented it was felt that this was the proper time to make this change.

6.3 Knowledge Category
The knowledge category contains the slots that actually specify what the MLM does. These slots define the
terms used in the MLM (data slot), the context in which the MLM should be evoked (evoke slot), the
condition to be tested (logic slot), and the action to take should the condition be true (action slot).

6.3.1 Type (coded, required)

The type slot specifies what slots are contained in the knowledge category. The only type that has been
defined so far is data_driven, which implies that there are the following slots: data, priority, evoke, logic,
action, and urgency. For backward compatibility with the 1992 standard, the type data-driven (with a dash
"-" separating the words) is also permitted. That is,

type: data_driven;;

or

type: data-driven;;

Arden Syntax for Medical Logic Systems

Page 20 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

6.3.2 Data (structured, required)

In the data slot, terms used locally in the MLM are mapped to entities within an institution. The actual
phrasing of the mapping will depend upon the institution. The details of this slot are explained in Section
11.

6.3.3 Priority (coded, optional)

The priority is a number from 1 (low) to 99 (high) that specifies the relative order in which MLMs should
be evoked should several of them satisfy their evoke criteria simultaneously. An institution may choose
whether or not to use a priority. The institution is responsible for maintaining these numbers to avoid
conflicts. A borrowing institution will need to adjust these numbers to suit its collection of MLMs. If the
priority slot is omitted, a default value of 50 is used. For example,

priority: 90;;

priority: 40.5;;

6.3.4 Evoke (structured, required)

The evoke slot contains the conditions under which the MLM becomes active. The details of this slot are
explained in Section 13.

6.3.5 Logic (structured, required)

This slot contains the actual logic of the MLM. It generally tests some condition and then concludes true or
false. The details of this slot are explained in Section 10.

6.3.6 Action (structured, required)

This slot contains the action produced when the logic slot concludes true. The details of this slot are
explained in Section 12.

6.3.7 Urgency (coded, optional)

The urgency of the action or message is represented as a number from 1 (low) to 99 (high), or by a variable
representing a number from 1 to 99. It is recommended that only integers be used as values in the urgency
slot. Whereas the priority determines the order of execution of MLMs as they are evoked, the urgency
determines the importance of the action of the MLM only if the MLM concludes true (that is, only if the
MLM decides to carry out its action). If the urgency slot is omitted, or the variable representing urgency is
null or outside the range 1 to 99, a default urgency of 50 is used. For example,

 urgency: 90;;

 urgency: urg_var;;

6.4 Resources category (optional)
The optional resources category contains a set of language slots that specify the textual resources on which
the localized operator may be applied to obtain message contents in different languages (Section 9.8.11).
Each language slot defines a set of key/value pairs that represent text constants in one specific language. At
least one language slot is required if the resources category is defined. Its structure is:

resources:

 default: <language code>;;

 language: <language code>

 <set of language specific resources> ;;

 language : <language code>

 <set of language specific resources> ;;

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 21

Revision date: 2011-03-25 Print date: 5/17/2011

The language codes are defined either as 2-character ISO 639-1 language codes or as combination of a 2-
character ISO 639-1 language code and a 2-character ISO 3166-1 geographical code concatenated by an
underscore. That is,

en

or

en_US

or

en_GB

or

fr

The ISO 639-1 code is mandatory while the extended combination of language and region is optional.
Implementing systems that support localization using this extended language code (that is, a locale) can
further define resources for the individual use of one specific language in different regions in the world.

6.4.1 Default (coded, required)

When using the localized operator, the implementing system has to retrieve the current user language
setting. The default slot specifies what language setting has to be applied on the MLM when this user
language cannot be retrieved by the implementing system. The value of the default slot is a language code
as defined in Section 6.4. That is,

default: de;;

or

default: en_US;;

6.4.2 Language (coded, required)

The resources category also consists of one or more language slots. Each language slot contains of a
language code as defined in Section 6.4 followed by a set of key/value pairs. Each key is a term (see
Section 7.1.7) and its associated value is a string constant (Section 7.1.8). Each key is separated from its
value by a colon (:). Each string defines the result of the localized operator when applied to the
corresponding term. That is,

language: en

 'msg': "Caution, the patient has the following al lergy to penicillin
documented: ";

 'creat': "The patient's calculated creatinine cle arance is
%f ml/min."

;;

language: de

 'msg': "Vorsicht, zu diesem Patienten wurde die f olgende Penicillinallergie
dokumentiert: ";

 'creat': "Die berechnete Kreatinin-Clearance des Patienten beträgt %f
ml/min."

;;

Arden Syntax for Medical Logic Systems

Page 22 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

Each language slot must contain a unique language code (ISO 639.1) or optionally, a language code
concatenated with an underscore “_” followed by a region code (ISO 3166-1). If these region codes are
used, every entry associated with the language must contain a region code. For example,

language: en_US [..] ;;

language: en_UK [..] ;;

is valid while

language: en [..] ;;

language: en_US [..] ;;

is not.

The resources category may contain multiple language slots with a variety of <language code>_<region
code> definitions. If the implementing system is only able to determine the required language at runtime,
but not the required region, the first language slot matching that language is chosen. In the following
example, if only the language code ‘de’ was known, the German definition (de_DE) would be used:

language: de_DE [..] ;;

language: de_AT [..] ;;

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 23

Revision date: 2011-03-25 Print date: 5/17/2011

7 STRUCTURED SLOT SYNTAX

7.1 Tokens
The structured slots consist of a stream of character strings known as lexical elements or tokens. These
tokens can be classified as follows:

7.1.1 Reserved Words

Reserved words are predefined tokens made of letters and digits. They are used to construct statements, to
represent operators, and to represent data constants. Some are not currently used, but are reserved for future
use. The predefined synonyms of operators as well as the operators themselves are considered synonyms.

The existing reserved words are listed in Annex A2.

7.1.1.1 The

The is a special reserved word which is ignored wherever it is found in a structured slot (that is, it is treated
exactly the same as white space). Its purpose is to improve the readability of the structured slots by
permitting statements to be more like English.

7.1.1.2 Case Insensitivity

With the exception of the format with … format specification, the syntax is insensitive to the case of
reserved words. That is, reserved words may be typed in uppercase, lowercase, and mixed case. For
example, then and THEN are the same word. See Sections 5.10 and 9.8.2 and Annex A5.

7.1.2 Identifiers

Identifiers are alphanumeric tokens. The first character of an identifier must be a letter, and the rest must be
letters, digits, and underscores (_). Identifiers must be 1 to 80 characters in length. It is an error for an
identifier to be longer than 80 characters. Reserved words are not considered identifiers; for example, then
is a reserved word, not an identifier. Identifiers are used to represent variables, which hold data.

7.1.2.1 Case Insensitivity

The syntax is insensitive to the case of identifiers. See Sections 5.10 and 7.1.1.2.

7.1.3 Special Symbols

The special symbols are predefined non-alphanumeric tokens. Special symbols are used for punctuation
and to represent operators. They are listed in Annex A3.

7.1.4 Number Constants

Constant numbers contain one or more digits (0 to 9) and an optional decimal point (.). (As in Specification
E 1238 and HL7 2.3, .1 and 345. are valid numbers.) A number constant may end with an exponent,
represented by an E or e, followed by an optional sign and one or more digits. These are valid numbers:

0

345

0.1

34.5E34

0.1e-4

.3

3.

3e10

Arden Syntax for Medical Logic Systems

Page 24 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

7.1.4.1 Negative Numbers

Negative numbers are created using the unary minus operator (-, see Section 9.9.4). The minus sign is not
strictly a part of the number constant.

7.1.5 Time Constants

Time constants use the ISO extended format (with the T or t separator) for date-time combinations with
optional fractional seconds (using . format) and with optional time zones (see Section 6.1.8).

7.1.5.1 Fractional Seconds

Fractional seconds are represented by appending a decimal point (.) and one or more digits (for example,
1989-01-01T13:30:00.123).

7.1.5.2 Time Zones

The local time zone is the default. ISO Coordinated Universal Time (UTC) is represented by appending a z
to the end (for example, 1989-01-01T13:30:00.123Z). The local time zone can be explicitly stated by
appending + or - hh:mm to indicate how many hours and minutes the local time is ahead or behind UTC.
Thus EST (Eastern Standard Time, United States of America) time zone would use 1989-01-01T13:30:00-
05:00, which would be equivalent to 1989-01-01T18:30:00Z.

7.1.5.3 Constructing times

The + operator can be used to construct a time from durations. Here is an example of constructing a time:
1800-01-01 + (1993-1800)years + (5-1)months + (17-1)days produces the value 1993-05-17.

7.1.6 String Constants

String constants begin and end with the quotation mark (", which is ASCII 34). For example,

 "this is a string".

 There is no limit on the length of strings.

7.1.6.1 Internal Quotation Marks

A quotation mark within a string is represented by using two adjacent quotation marks. For example,

 "this string has one quotation mark: "" ".

7.1.6.2 Single Line Break

Within a string, white space containing a single line break (see Section 5.3) is converted to a single space.
For example,

"this is a string with

one space between 'with' and 'one'"

7.1.6.3 Multiple Line Breaks

Within a string, white space containing more than one line break is converted to a single line break.

 "this is a string with

one line break between 'with' and 'one'"

7.1.7 Term Constants

Term constants begin and end with an apostrophe (' which is ASCII 39), and they contain a valid mlmname.
For example,

 'mlm_name'

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 25

Revision date: 2011-03-25 Print date: 5/17/2011

7.1.8 Mapping Clauses

A mapping clause is a string of characters that begins with { and ends with } (ASCII 123 and 125,
respectively). Mapping clauses are used in the data slot to signify institution-specific definitions such as
database queries. The only requirement imposed on what is within the curly brackets is that curly brackets
are not allowed within mapping clauses. The definition of comments and quotes inside mapping clauses is
not specified by this standard; it is recommended that they be the same as those given in this standard. The
Arden Syntax conventions for variable names, such as case insensitivity or the treatment of the as white
space, need not be observed in a mapping clause. A <mapping> may (in an implementation-defined
manner), within the curly brackets, use Arden variables; but it cannot set any Arden variables (Arden
variables can only set by the <var>(s) on the left side of the assignment operator). Because of this, an
MLM may require some modification before it can be processed at another institution, even if the other
institution's compiler is set to skip over read mappings.

It is strongly recommended that MLM authors include comments to all the mapping clauses used in an
MLM, so MLM recipients understand the intention of the mapping clause definition when sharing MLMs.
Identifiers from the UMLS Metathesaurus could aid in identifying and describing the concepts in the
comments. Authors should also put all literals and constants in the data slot, with explanation, to allow
MLM recipients to more easily customize MLMs.

7.1.9 Comments

A comment is a string of characters that begins with /* and ends with */ . Comments are used to document
how the slot works, but they are ignored logically (like the and other white space). Comments do not nest
(e.g., /* A comment /* */ is a single comment). A comment need not be preceded or followed by white
space. Thus, x/**/y is the same as x y.

A comment may also be specified by the characters // through line break (see Section 5.3). When // is
encountered, everything else on the line is ignored, including */ .

7.1.10 White Space

Any string of spaces, carriage returns, line feeds, horizontal tabs, vertical tabs, form feeds, and comments is
known as white space. White space is used to separate other syntactic elements and to format the slot for
easier reading. White space is required between any two tokens that may begin or end with letters, digits, or
underscores (for example, if done). They are also required between two string constants. They are optional
between other tokens (for example, 3+4 versus 3 + 4). See also Sections 5.4 and 7.1.1.1.

7.1.11 Time-of-day Constants

Time-of-day constants use the ISO format (for example, 18:30, 13:23:00.123) without the date field.
Constants are defined analogously to time constants as defined in 7.1.5. Time-of-day constants must
contain at least the two-digit hour and minute components – in other words, they must consist of two
integers ranging from 00 to 23, one colon, and two more integers ranging from 00 to 59. Seconds,
fractional seconds and time zones are optional in time-of-day constants. Midnight is expressed as
00:00:00.000 and all other time-of-day values are greater than this value.

Arden Syntax for Medical Logic Systems

Page 26 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

7.2 Organization
The tokens are organized into the following constructs:

7.2.1 Statements

A structured slot is composed of a set of statements. Each statement specifies a logical constraint or an
action to be performed. In general, statements are carried out sequentially in the order that they appear.
These are examples of statements (each is preceded by a comment that tells what it does):

/* this assigns 0 to variable "var1" */

let var1 be 0;

/* this causes the MLM named "hyperkalemia" to be e xecuted */

call `hyperkalemia`;

/* this concludes "true" if the potassium is greate r than 5 */

if potassium > 5.0 then

conclude true;

endif;

7.2.1.1 Statement Termination

All statements except for the last statement in a slot must end with a semicolon (;). Thus, the semicolon
acts as a statement separator. If the last statement of a slot has a terminating semicolon, there must be at
least one white space between it and the double semicolon that terminates the slot (;;; is illegal but ;/**/;;
is legal). For example, the logic slot could contain:

logic:

last_potas := last potas_list;

if last_potas > 5.0 then

conclude true;

endif;

The syntax of the statements depends upon the individual slot. For a detailed description of the allowable
statement types in each structured slot, see Sections 10, 11, 12, and 13.

7.2.2 Expressions

Statements are composed of reserved words, special symbols, and expressions. An expression represents a
data value, which may belong to any one of the types defined in Section 8. Expressions may contain any of
the following:

7.2.2.1 Constant

The data value may be represented explicitly using a constant like the number 3, the time 1991-03-
23T00:00:00, etc. These are valid expressions:

null

true

345.4

"this is a string"

1991-05-01T23:12:23

7.2.2.2 Variable

An identifier (see Section 7.1.2) within an expression signifies a variable (see Section 7.2.3). These are
valid variables:

var1

this_is_a_variable

a

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 27

Revision date: 2011-03-25 Print date: 5/17/2011

7.2.2.3 Operator and Arguments

An expression may contain an operator and one or more sub-expressions known as arguments. For
example, in 3+4, + is an operator and 3 and 4 are arguments. The result of such an expression is a new data
value, which is 7 in this example. Expressions may be nested so that an expression may be an argument in
another expression. These are valid expressions:

4 * cosine 5

var1 = 7 and var2 = 15

(4+3) * 7

For details on operators, precedence, associativity, and parentheses, see Section 9.1.

7.2.3 Variables

A variable is a temporary holding area for a data value. Variables are not declared explicitly, but are
declared implicitly when they are first used. A variable is assigned a data value using an assignment
statement (see Section 10.2.1). When it is later used in an expression, it represents the value that was
assigned to it. For example, var1 is a valid variable name. If the variable is used before it is assigned a
value, then its value is null .

7.2.3.1 Scope

The scope of a variable is the entire MLM, not an individual slot. MLMs cannot read variables from other
MLMs directly; thus, variables used in an MLM are not available to MLMs that are called (see Section
10.2.5). Non-Arden variables may be referenced and set within mapping statements, as restricted by the
special rules for the individual mapping statements (for example, Section 11.2.4); in mapping statements,
Arden variables may be referenced but not set. It is institution-defined how conflicts between Arden and
non-Arden variable names are resolved.

7.2.3.2 Special Variables

Some variables, such as event variables, MLM variables, message variables, and destination variables, are
special. They can only be used in particular constructs, and not in general expressions. These variables use
special assignment statements in the data slot as defined in Section 11 (these special assignment statements
are equivalent to declarations for the special variables). Special variables can be converted to strings and
passed as arguments. The only valid operators on special variables are is [not] equal (Section 9.6.1), =
(Section 9.5.1), and <> (Section 9.5.2).

Arden Syntax for Medical Logic Systems

Page 28 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

8 DATA TYPES
The basic function of an MLM is to retrieve patient data, manipulate the data, come to some decision, and possibly
perform an action. Data may come from various sources, such as a direct query to the patient database, a constant in
the MLM, or the result of an operation on other data.

Data items may be kept in an ordered collection, called a list (ordered by position in the list, not by primary time).
Lists are described further in Section 8.8.

The data are classified into several data types.

8.1 Null

Null is a special data type that signifies uncertainty. Such uncertainty may be the result of a lack of
information in the patient database or an explicit null value in the database. Null results from an error in
execution, such as a type mismatch or division by zero. Null may be specified explicitly within a slot using
the word null (that is, the null constant). Entities of data type null may also have a primary time. The
following expressions result in null (each is preceded by a comment):

/* explicit null */

null

/* division by zero */

3/0

/* addition of Boolean */

true + 3

8.2 Boolean
The Boolean data type includes the two truth values: true and false. The word true signifies Boolean true
and the word false signifies Boolean false.

The logical operators use tri-state logic by using null to signify the third state, uncertainty. For example,
true or null is true. Although null is uncertain, a disjunction that includes true is always true regardless of
the other arguments. However, false or null is null because false in a disjunction adds no information. See
Section 9.4 for full truth tables.

8.3 Number
There is a single number type, so there is no distinction between integer and floating point numbers.
Number constants (for example, 3.4E-12) are defined in Section 7.1.4. Internally, all arithmetic is done in
floating point. For example, 1/2 evaluates to 0.5.

8.4 Time
The time data type refers to points in absolute time; it is also referred to as timestamp in other systems.
Both date and time-of-day must be specified. Times back to the year 1800 must be supported and times
before 1800-01-01 are not valid. Time constants (for example, 1990-07-12T00:00:00) are defined in
Section 7.1.5.

8.4.1 Granularity

The granularity of time beyond milliseconds is left to the implementing instance. Times stored in patient
databases will have varying granularities. When a time is read by the MLM, it is always truncated to the
beginning of the granule interval. For example, if the time-of-day is recorded only to the minute, then zero
seconds are assumed; if only the date is known, then the time-of-day is assumed to be midnight.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 29

Revision date: 2011-03-25 Print date: 5/17/2011

8.4.2 Midnight

Midnight represents the beginning of a day and is expressed as T00:00:00 in a time data type, or as 00:00 as
a time-of-day. 24:00 is not defined.

8.4.3 Now

The word now is a time constant that signifies the time when the MLM started execution. Now is constant
through the execution of the MLM; that is, if now is used more than once, it will have the same value
within the same MLM. Now inside a nested MLM will therefore be different from the now of the calling
MLM.

8.4.4 Eventtime

One way that MLMs are evoked is by a triggering event. For example, the storage of a serum potassium in
the patient database is an event that might evoke an MLM. The word eventtime is a time constant that
signifies the time that the evoking event occurred (for example, the time that the database was updated).
The eventtime is useful because MLMs may be evoked after a time delay; using eventtime, the MLM can
query for what has occurred since the evoking event.

8.4.5 Triggertime

If the MLM is triggered directly by an event or another MLM, the triggertime is the same as the
eventtime. If the MLM is triggered by a delayed trigger (see Section 13.3.2) or a delayed MLM call (see
Section 12.2.5), the triggertime is the eventtime plus the delay time. Using triggertime , an MLM can
trigger another MLM as if the second MLM were directly triggered by the event. The following inequality
is guaranteed within a single MLM: eventtime < triggertime < now.

8.4.6 Currenttime

The word currenttime represents the system time at the instant the word is encountered during MLM
execution. Currenttime differs from now in that currenttime constantly changes, while now remains
constant while an MLM runs. Thus, the time required to execute an MLM (or query) can be determined by
subtracting now from currenttime . The following inequality is guaranteed within a single MLM:
eventtime <= triggertime <= now <= currenttime.

8.5 Duration
The duration data type signifies an interval of time that is not anchored to any particular point in absolute
time. There are no duration constants. Instead one builds durations using the duration operators (see Section
9.10.7). For example, 1 day, 45 seconds, and 3.2 months are durations.

8.5.1 Sub-types

The duration data type has two sub-types: months and seconds. The reason for the division is that the
number of seconds in a month or in a year depends on the starting date. Durations of months and years are
expressed as months. Durations of seconds, minutes, hours, days, and weeks are expressed as seconds.
There are no complex durations; the sub-type must be either months or seconds, but not both. For both
types of durations, the duration amount may be a floating point value.

The printing of a duration (that is, its string version) is independent of its internal representation. The health
care provider who reads the result of an MLM may not realize that there are two sub-types of durations.
How durations are printed is location-specific. For example, the string version of 6E+08 seconds might be
19.01 years. See Section 9.8.

8.5.2 Time and Duration Arithmetic

Operations among times and durations are carried out as follows:

Arden Syntax for Medical Logic Systems

Page 30 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

8.5.2.1 Time - Time

The subtraction of two times always results in a seconds duration. For example, 1990-03-01T00:00:00 -
1990-02-01T00:00:00 results in 2419200 seconds.

8.5.2.2 Time and Seconds

The addition or subtraction of a time and a seconds duration results in a time. The arithmetic is
straightforward: the time is expressed as the number of seconds since some anchor point (for example,
1800-01-01T00:00:00) and the number of seconds is added to or subtracted from the time. For example,
1990-02-01T00:00:00 + 2419201 seconds results in 1990-03-01T00:00:01.

8.5.2.3 Time and Months

The addition or subtraction of a time and a months duration results in a time. The time is expressed in date
and time-of-day format (for example, 1991-01-31T00:00:00). Months are then added to or subtracted from
the year and month components of the date (that is, 1991-01 in the example). If the resulting time is invalid
due to the number of days in the new month, then the days are truncated to the last valid day of the month.
For example, 1991-01-31T00:00:00 + 1 month results in 1991-02-28T00:00:00. If the month has a
fractional component (for example, 1.1 months) then integer months are used (that is, 1 month and 2
months in the example) and the result is computed through interpolation (the integer part of the months are
added; then the fractional part is used on the next month for addition and on the previous month for
subtraction). For example, 1991-01-31T00:00:00 + 1.1 months results in 1991-02-28T00:00:00 + (0.1 *
2629746 seconds) or 1991-03-03T01:02:54.6. Explanation:

1991-01-31T00:00:00 + 1 month = 1991-02-28T00:00:00

and

0.1 Months * 2629746 seconds / month [from 8.5.2.4] = 262974.6 seconds

262974.6 seconds / (60 seconds / minute) / (1440 minutes /day) = 3.0436875 days

0.0436875 days * 1440 minutes / day = 62.91 minutes

 = 1 hour, 2 minutes, 54.6 seconds.

therefore

0.1 months = 3 days 1 hours 2 minutes 54.6 seconds

thus

1991-01-31T00:00:00 + 1.1 months = 1991-02-28T00:00:00 + 3 days 1 hour 2 minutes 54.6 seconds

 = 1991-03-03T01:02:54.6

Contrary to addition and subtraction on numbers, addition and subtraction of durations is not invertible. For
example:

1993-01-31 + 1 month = 1993-02-28

1993-02-28 - 1 month = 1993-01-28 (3 days earlier)

The order of operations is important: (d+1 month)+1 day may have a different value than d+(1 month+1
day).

Other examples:

1991-01-31T00:00:00 - 2.1 months = 1990-11-26T22:57 :05.4

1991-01-31T00:00:00 - 1.1 months = 1990-12-27T22:57 :05.4

1991-04-30T00:00:00 - 0.1 months = 1991-04-26T22:57 :05.4

8.5.2.4 Months and Seconds

Operations between months and seconds are done by first converting the months arguments to seconds
using this conversion constant: 2629746 seconds/month (the average number of seconds in a month in the
Gregorian calendar). For example, 1 month / 1 second results in 2629746.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 31

Revision date: 2011-03-25 Print date: 5/17/2011

8.6 String
Strings are streams of characters of variable length. String constants are defined in Section 7.1.6. For
example,

"this is a string constant"

8.7 Term
Terms are currently used only to represent mlmnames within a structured slot and the link text portion of a
structured link record. They are used only in a call statement (see Section 10.2.5). In the future they will be
used for controlled vocabulary terms. Term constants are defined in Section 7.1.7. For example,

'mlm_name2'

'http://www.nlm.nih.gov/'

8.8 List
A list is an ordered set of elements, each of which may be null, Boolean, event, destination, message, term,
number, time, duration, or string. There are no nested lists; that is, a list cannot be the element of another
list. Lists may be heterogeneous; that is, the elements in a list may be of different types. There is one list
constant, the empty list, which is signified by using a pair of empty parentheses: (). White space is allowed
within an empty list's parentheses. Other lists are created by using list operators like the comma (,) to build
lists from single items (see Section 9.2). For the output format of lists (including single element lists), see
Section 9.8. For example, these are valid lists:

4, 3, 5

3, true, 5, null

,1

()

If operators that expect list arguments are presented non-list arguments, the arguments are implicitly
converted to single-element lists before the operator is applied.

8.9 Query Results
The result of a database query has a time value in addition to its data value.

Queries in the data slot retrieve data from the patient database or from other databases (for example, a
controlled vocabulary database or a financial database). The result of a query is assigned to a variable for
use in the other slots.

8.9.1 Primary Time

Every item in the patient database is assumed to have some primary time (also called time of occurrence)
associated with it. This time is defined as the medically relevant time for that query. For different entities,
the primary time might signify different times. The primary time of a blood test might be the time it was
drawn from the patient (or the closest to that time), whereas the primary time of a medication order might
be the time the order was placed. If there is no medically relevant time for a data item, its primary time
value should be equivalent to the eventtime (the time when the information was correct).

Implicit in every query to the patient database is a request for the primary time of the data. For example,
when one retrieves a list of serum potassiums, one actually retrieves a list of pairs. Each pair contains a data
value (the serum potassium numeric value) and a time value (for example, when the specimen was drawn).

8.9.2 Retrieval Order

The result of a query is by default sorted in chronological order by the primary time of the result. The query
may specify a different sort order.

Arden Syntax for Medical Logic Systems

Page 32 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

8.9.3 Data Value

If a variable has been assigned the result of a query, then the use of the variable always refers to the data
value. For example, if potas is a variable that has been assigned a list of serum potassiums, then one could
use this statement to check the value of the most recent potassium measurement:

if latest potas > 5.0 then

conclude true;

endif;

8.9.4 Time Function Operator

By using the time operator (see Section 9.17), one can set or retrieve the primary time associated with a
variable or list element. The time retrieve function is describe in Section 9.17.1. Setting primary times is
discussed in the second paragraph of Section 9.17.1. For example, one could use this statement to check the
primary time of the most recent potassium measurement:

if time of latest potas is within the past 3 days t hen

conclude true;

endif ;

The eventtime is not necessarily the primary time of the evoking event. For example, if the storage of a
serum potassium evokes an MLM, then the eventtime is the time that the result was stored in the database,
but the primary time of the result is the time that it was drawn from the patient.

8.10 Object
An object results from use of the New statement (see Section 10.2.8), the read as statement (Section
11.2.2), the destination as statement (Section 11.2.9), or the message as statement (Section 11.2.7). It may
contain multiple named attributes, each of which may contain any valid Arden type (including lists or
objects). The latter capability allows for complex data structures to be manipulated by an MLM (lists
within lists, for example) which would otherwise not be possible. Objects are also useful for interfacing
MLMs with other object-oriented domain models (outside the scope of this document).

8.11 Time-of-day
The time-of-day data type refers to points in time that are not directly linked to a specific date. Time-of-day
constants are analogously defined to time constants leaving the date portion blank. Time-of-day constants
(for example, 23:20:00) are defined in Section 7.1.6.

Operators that can use both time arguments and time-of-day arguments at the same time may follow the
default time-of-day handling as defined in Section 9.1.5 .The primary time handling is unaffected by these
extension.

Note: To improve readability when describing this data type, the phrase “time-of-day” is usually
hyphenated. These hyphens are NOT included when TIME OF DAY is used in an MLM.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 33

Revision date: 2011-03-25 Print date: 5/17/2011

8.12 Day-of-week
The day-of-week data type is a special data type to represent specific days of the week to be used along
with the "day of week" operator. Values of this data type are either expressed by constants or by integer
values.

Day-of-week constants are defined by the following keywords:

MONDAY (1),
TUESDAY (2),
WEDNESDAY (3),
THURSDAY (4),
FRIDAY (5),
SATURDAY (6)
SUNDAY (7),

Note: To improve readability when describing this data type, the phrase “day-of-week” is usually
hyphenated. These hyphens are NOT included when DAY OF WEEK is used in an MLM.

Arden Syntax for Medical Logic Systems

Page 34 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

9 OPERATOR DESCRIPTIONS

9.1 General Properties
Operators are used in expressions to manipulate data. They accept one or more arguments (data values) and
they produce a result (a new data value). The following properties apply to the operator definitions in this
section.

9.1.1 Number of Arguments

Operators may have one, two, or three arguments. Some operators have two forms: one with one argument
and one with two arguments. Operators are described as follows:

unary operator: one argument

binary operator: two arguments

ternary operator: three arguments

9.1.2 Data Type Constraints

Most operators work on only a subset of all the data types. Every operator description includes a type
constraint that shows the position and allowable types of all of its arguments. Its general format is like this:

 <num:type> := <num:type> op <num:type>

In this constraint, op is the operator being described.

9.1.2.1

Each num is one of the following:

1—the operator requires a single element

k, m, or n—the operator normally takes a single element but a list with 0, 1, or more elements may be used
as described below. If the same letter appears more than once in a data type constraint, then the arguments
so indicated must have the same number of elements; otherwise the operation results in null .

9.1.2.2

Each type is one of the following:

null—null data type

Boolean—Boolean data type

number—number data type

time—time data type

time-of-day—time-of-day data type

times—time and time-of-day data type

duration—duration data type

string—string data type

item—not used in expressions, only in call statements (see 10.2.4)

any-type—null, Boolean, number, time, time-of-day, duration, or string

non-null—Boolean, number, time, time-of-day, duration, or string

ordered—number, time, time-of-day, duration, or string

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 35

Revision date: 2011-03-25 Print date: 5/17/2011

9.1.2.3

<num:type>(s) to the right of the := indicates the data type(s) of the argument(s). If the operator is applied
to an argument with a type outside of its defined set, then null results. For example, ** is not defined for
the time data type so 3**1991-03-24T00:00:00 results in null . For most operators, null is not in the
defined set, so null is returned when null is an argument. For example, null is not defined for + so 3+null
results in null .

9.1.2.4

<num:type> to the left of the := indicates the data type of the result. Unless stated otherwise, the operators
can also return null regardless of the stated usual result.

9.1.3 List Handling

Except as otherwise stated, lists are treated as follows. Each operator must apply the here described list
handling first (if applicable) before the specific list handling as described in the respective operator
description is applied.

9.1.3.1

When an operator has a template of the form <n:type> := op <n:type> or <n:type> := <n:type> op, the
scalar operator is applied to each element of the list, producing a list with the same number of elements (if
the list is empty, the resulting list is also empty). For example, -(3,4,5) results in -3, -4, -5.

Unary operators that act this way are:

not …

… is present

… is not present

… is null

… is not null

… is Boolean

… is not Boolean

… is number

… is not number

… is time

… is not time

… is time of day

… is not time of day

… is duration

… is not duration

… is string

… is not string

… is object

… is not object

… is <object-type>

… is not <object-type>

+ …

- …

… ago

… year

… years

… month

… months

… week

… weeks

… day

… days

… hour

… hours

Arden Syntax for Medical Logic Systems

Page 36 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

… minute

… minutes

… second

… seconds

… as number

… as string

… as time

time [of] …

time of day [of] …

arccos [of] …

arcsin [of] …

arctan [of] …

cos [of] …

cosine [of] …

sin [of] …

sine [of] …

tan [of] …

tangent [of] …

exp [of] …

truncate [of] …

floor [of] …

ceiling [of] …

log [of] …

log10 [of] …

abs [of] …

extract year [of] …

extract month [of] …

extract day [of] …

extract hour [of] …

extract minute [of] …

extract second [of] …

int …

round …

sqrt …

string …

length [of] …

uppercase …

lowercase …

trim …

localized …

9.1.3.2

When an operator has a template of the form <1:type> := op <n:type> or <1:type> := <n:type> op, the
operator is applied to the entire list, producing a single element. For example, max(3,4,5) results in 5.

Unary operators that act this way are:

count [of] …

exist [of] …

avg [of] …

average [of] …

median [of] …

sum [of] …

stddev [of] …

variance [of] …

any [of] …

all [of] …

no [of] …

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 37

Revision date: 2011-03-25 Print date: 5/17/2011

min [of] …

minimum [of] …

max [of] …

maximum [of] …

last [of] …

first [of] …

earliest [of] …

latest [of] …

string [of] …

… is list

… is not list

index min [of] …

index minimum [of] …

index max [of] …

index maximum [of] …

index earliest [of] …

index latest [of] …

9.1.3.3

When an operator has a template of the form <m:type> := op <n:type> or <m:type> := <n:type> op, the
operator is applied to the entire list, producing another list. For example, increase(11,15,13,12) results in
(4, -2, -1).

Unary operators that act this way are:

slope [of] …

increase [of] …

decrease [of] …

percent increase [of] …

% increase [of] …

percent decrease [of] …

% decrease [of] …

interval [of] …

extract characters [of] …

sort [data|time] …

reverse …

9.1.3.4

When an operator has a template of the form <n:type> := <n:type> op <n:type>, the scalar operator is
applied pair-wise to the elements of the lists, producing a list with the same number of elements (if the list
is empty, the resulting list is also empty). For example, (1,2)+(3,4) results in (4,6) and ()+() results in ().

If one of the operands is a single element and the other operand has n elements, the single element is
replicated n times. For example, 1+(3,4) is equivalent to (1,1)+(3,4) and results in (4,5).

If the numbers of elements in the two arguments differ and one argument is not a single element, the result
is null .

Binary operators that act this way are:

… or …

… and …

… = …

… eq …

… is …

… <> …

… ne …

… is not equal …

… < …

… lt …

… is less than …

Arden Syntax for Medical Logic Systems

Page 38 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

… is not greater than or equal …

… <= …

… le …

… is less than or equal …

… is not greater than …

… > …

… gt …

… is greater than …

… is not less than or equal …

… >= …

… ge …

… is greater than or equal …

… is not less than …

… is within past …

… is not within past …

… is within same day as …

… is not within same day as …

… is before …

… is not before …

… is after …

… is not after …

… occur equal …

… occur within past …

… occur not within past …

… occur within same day as …

… occur not within same day as …

… occur before …

… occur not before …

… occur after …

… occur not after …

… + …

… - …

… * …

… / …

… ** …

… before …

… after …

… from …

localized … by …

replace year [of] … with …

replace month [of] … with …

replace day [of] … with …

replace hour [of] … with …

replace minute [of] … with …

replace second [of] … with …

The following operators are of the form <n:type> := <m:type> op <m:type>; they replicate the
arguments if necessary but may return a list with a different number of elements:

… where …

9.1.3.5

When an operator has a template of the form <n:type> := <n:type> op1 <n:type> op2 <n:type>, the scalar
operator is applied triple-wise to each element of the lists, producing a list with the same number of
elements (if the list is empty, the resulting list is also empty). For example, (1,2) is within (0,2) to (3,4)
results in (true,true).

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 39

Revision date: 2011-03-25 Print date: 5/17/2011

If one of the operands is a single element and the other operands have n elements, the single element is
replicated n times. If two of the operands are a single element and the other operand has n elements, the
single elements are replicated n times. For example, (1,2) is within 2 to (3,4) is equivalent to (1,2) is
within (2,2) to (3,4) and results in (false,true).

If the number of elements in any pair of arguments differ and one argument is not a single element, the
result is null .

Ternary operators that act this way are:

… is within … to …

… is not within … to …

… is within … preceding …

… is not within … preceding …

… is within … following …

… is not within … following …

… is within … surrounding …

… is not within … surrounding …

… occur within … to …

… occur not within … to …

… occur within … preceding …

… occur not within … preceding …

… occur within … following …

… occur not within … following …

… occur within … surrounding …

… occur not within … surrounding …

9.1.3.6

When an operator has a template of the form <n:type> := op1 <1:type> op2 <m:type>, the operator is
applied to the entire second argument, producing a new list. The first argument must be a single element (if
not, the result of the operator is null). For example, min 2 from (5,3,4) results in (3, 4).

Binary operators that act this way are:

min … from …

minimum … from …

max … from …

maximum … from …

last … from …

first … from …

latest … from …

earliest … from …

index min … from …

index minimum … from …

index max … from …

index maximum … from …

index earliest … from …

index of … from …

add … to …

at least … from …

at most … from …

9.1.3.7

When an operator has a template of the form <n:type> := op1 <n:type> op2 <m:type>, the operator is
applied to the entire second argument, producing a new list. The first argument is typically a single
element. For example, 1 is in (0,3) results in false and (1,2,3) is in (0,3) results in (false,false,true).

Binary operators that act this way are:

nearest … from …

… is in …

Arden Syntax for Medical Logic Systems

Page 40 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

… is not in …

index nearest … from …

remove … from …

9.1.3.8

When an operator has a template of the form <n:type> := <k:type> op <m:type>, the operator is applied
to the entire two lists, producing a new list. For example, 1,(3,4) results in (1,3,4).

Binary operators that act this way are:

… , …

… merge …

… || …

… seqto …

9.1.4 Primary Time Handling

Queries attach primary times to their results (see Sections 8.9.1). Some operators maintain those primary
times and others lose them. Except as otherwise stated, primary times are treated as follows.

9.1.4.1 Unary Operators

Unary operators maintain primary times. In this example, result1 still has primary times attached if data1
is the result of a query:

result1 := sin(data1);

9.1.4.2 Binary and Ternary Operators

Binary and ternary operators maintain primary times if all operands have primary times and all of the
primary times are equal. If any operand is missing a primary time or if the primary times are not all equal,
the primary time is lost.

Example (primary times are the same, the primary time is kept):

Data Values: 6 := 2 * 3;

Time Values: (Jan 1) (Jan 1) (Jan 1);

Example (primary times are different, then primary time is lost):

Data Values: 42 := 6 * 7;

Time Values: (null) (Feb 1) (Jan 1);

9.1.5 Time-of-Day Handling

Operators that are defined for operands of "any" type, ordered types, etc. are not affected by time-of-day
values. For example, aggregation operators such as the average operator still compute a result from a
homogeneous list of time-of-day values, but return null if time-of-day values and time values are combined.
Those operators that can be used with combined time-of-day and time values are defined in the next
sections.

9.1.5.1 Default Time-of-Day Handling

Some binary and ternary operators can combine time and time-of-day values as operands as defined in the
next section. In this case, as the time-of-day data type is a sub-type of the time data type, the operators
automatically use the common information part of the operands, which is the time-of-day-fraction of the
given time value, and ignore the date information of the other operand (see examples of simple comparison
operators in Section 9.5).

Operators that follow the default time-of-day handling are

- simple comparison operators (Section 9.5)

- is after/before (Section 9.6.12, 9.6.13)

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 41

Revision date: 2011-03-25 Print date: 5/17/2011

9.1.5.2 Role of midnight

Operators where the order of the arguments may indicate that the midnight boundary may be spanned are

is within ... to … (Section 9.6.6)

- is within ... to … preceding/following (Section 9.6.7, 9.6.8)

- is within … to … surrounding … (Section 9.6.9)

- Arithmetic operators (Section 9.9)

9.1.5.3 Undefined Operators for time-of-day values

Operators for which time-of-day data types are not allowed as arguments are

• ‘is within same day as’: undefined for time-of-day operands as the required information for the
comparison (date) is not present; returns null

• ‘within past’: undefined for time-of-day operands as the reference of the comparison is usually a
fixed date and time; returns null

9.1.6 Operator Precedence

Expressions are nested structures, which may contain more than one operator and several arguments. The
order in which operators are executed is decided by using an operator property called precedence.
Operators groups into several precedence groups. Operators of higher precedence are performed before
operators of lower precedence. For example, the expression 3+4*5 (three plus four times five) is executed
as follows: since * has higher precedence than +, it is performed first so that 4*5 results in 20; then + is
performed so that 3+20 results in 23. Parentheses can always be used to override operator precedence.

9.1.6.1 Precedence Table

The operators are shown grouped by precedence in Annex A4.

9.1.7 Associativity

When an expression contains more than one operator within the same precedence group, the operators'
associativity property decides the order of execution. The associativity of each operator is shown in Annex
A4. There are three types of associativity:

9.1.7.1 Left

Left associative operators are executed from left to right. For example, 3-4-5 has two subtractions (-). Since
they are the same operator, they must be in the same precedence group. Since - is left associative, 3-4 is
performed first resulting in (-1); then (-1)-5 is performed, resulting in (-6).

9.1.7.2 Right

Right associative operators are executed from right to left. For example, average sum 3 has two operators
in the same precedence group. Since they are right associative, sum 3 is performed first resulting in 3; then
average 3 is performed, resulting in 3.

9.1.7.3 Non-Associative

Non-associative operators cannot have more than one operator from the same precedence group in the same
expression unless parentheses are used. Thus the expression 2**3**4 is illegal since ** (the exponentiation
operator) is non-associative (however, (2**3)**4 and 2**(3**4) are both legal).

9.1.8 Parentheses

One can use parentheses to force a different order of execution. Expressions within parentheses are always
performed before ones outside of parentheses. For example, the expression (3+4)*5 is executed as follows:
3+4 is within parentheses, so it is performed first regardless of precedence, resulting in 7; then * is
performed so that 7*5 results in 35. Similarly, (2**3)**4 is a legal expression which results in 4096.

Arden Syntax for Medical Logic Systems

Page 42 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

9.2 List Operators
The list operators do not follow the default list handling. Primary times are maintained according to Section
9.1.4, unless otherwise specified.

9.2.1 , (binary, left associative)

Binary , (list concatenation) appends two lists. Primary times of the individual list elements are maintained.
Its usage is:

<n:any-type> := <k:any-type> , <m:any-type>

(4,2) := 4, 2

(4,"a",null) := (4,"a") , null

9.2.2 , (unary, non-associative)

Unary , turns a single element into a list of length one. It does nothing if the argument is already a list. Its
usage is (where (3) means a list with 3 as its only element):

<1:any-type> := , <1:any-type>

(,3) := , 3

9.2.3 Merge (binary, left-associative)

The merge operator appends two lists, appends a single item to a list, or creates a list from two single
items. It then sorts the result in chronological order based on the primary times of the elements (as defined
in 9.2.4). All elements of both lists must have primary times; otherwise null is returned (the construct x
where time of it is present can be used to select only elements of x that have primary times).
The primary times are maintained. Merge is typically used to put together the results of two separate
queries. The expression x merge y is equivalent to sort time (x,y). Its usage is (assuming that data1 has a
data value of 2 and a time of 1991-01-02T00:00:00, and that data2 has data values 1,3 and time values
1991-01-01T00:00:00, 1991-01-03T00:00:00):

<n:any-type> := <k:any-type> MERGE <m:any-type>

(1, 2, 3) := data1 MERGE data2

null := (4,3) MERGE (2,1)

9.2.4 Sort (unary, non-associative)

The sort operator reorders a list based on element keys, which are either the element values (keyword
data) or the primary times (keyword time). An optional modifier may be use with the sort operator. If used,
the modifier must be placed immediately after the sort keyword. The following keywords can be placed
after the sort keyword: data or time, which are mutually exclusive. If no modifier is used, the sort operator
defaults to a data sort. Direction of sorting is always ascending. For a descending sort, reverse can be used.

The sort options are considered to be part of the sort operator for precedence purposes. This resolves the
potential conflict with the time [of] operator (9.17.1). Thus the expression "sort time x" should be parsed
as "sort the list x by time" rather than as "extract the primary times from the list x and sort the list of times."

When sorting by primary times, if any of the elements do not have primary times, the result is null. (The
sort argument can always be qualified by where time of it is present, if this is not desired behavior.)
Elements with the same key will be kept in the same order as they appear in the argument. If any pair of
element key cannot not be compared because of type clashes, sort returns null (that is, when sorting by
data, any null value (or non-comparable value) results in null ; when sorting by time, any null primary time
results in null). Its usage is (assuming that data1 has a data value of 30,10,20 with time values 1991-01-
01T00:00:00, 1991-02-01T00:00:00, 1991-01-03T00:00:00):

<n:any-type> := SORT <n:any-type>

<n:any-type> := SORT [DATA | TIME] <n:any-type>

 (10, 20, 30) := SORT DATA data1

(30, 20, 10) := REVERSE (SORT DATA data1)

null := SORT DATA (3,1,2,null)

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 43

Revision date: 2011-03-25 Print date: 5/17/2011

null := SORT DATA (3,"abc")

() := SORT TIME ()

(1, 2, 3, 3) := SORT (1,3,2,3)

(30, 20, 10) := SORT TIME data1

The optional modifier using ... can be appended to the sort operator to control the calculation of the
ordering. Thus, the following expressions can be used to sort the list by the data or the primary times of the
elements:

<n:any-type> := sort <n:any-type> using it; // for sorting by data

<n:any-type> := sort <n:any-type> using time of it; // for sorting by time

The above mentioned expressions will be equivalent to the currently available expressions sort time and
sort data. However, the using operator can be used to sort the list by an arbitrary calculation applied to
each element of the list, e.g.:

<n:any-type> := sort <n:any-type> using sin it; // for sorting the list by

// the sin of each value

<n:any-type> := sort <n:any-type> using abs it; // for sorting the list by

// absolute values of the list elements

<n:any-type> := sort <n:any-type> using extract mon th it; // for sorting the

// list by month part of the list elements

If the using operator is applied to a list of objects, the list may be sorted by a specified field of the given
objects, e.g.:

<n:object> := sort <n:object> using it.height; // f or sorting the objects by

// their field "height"

<n:any-type> := sort <n:any-type> using time of it. value; // for sorting the

// objects by the primary time of their field "valu e"

The modifier using can contain any complex expression incorporating the it keyword.

9.2.5 Add … To … [At …] (ternary, non-associative)

The add ... to ... [at ...] operator expects an arbitrary data value as its first argument and a list as its second
argument. It adds this element to the given list. If no position is given, the element will be added to the end
of the list. If a position is provided, the element is inserted at this position and the index of all elements
from this to the end of the list will be increased by one. If the given position is greater than the cardinality
of the list, the element will be appended at the end of the list. In case a negative position or 0 is given, the
element will be appended at the beginning of the list. If the second argument is not a list, the argument is
assumed a list with one element. When more than one position is given, the positions are first identified and
then the elements are inserted. The usage of the add ... to ... [at ...] operator is:

<n+1:any-type> := ADD <1:any-type> TO <n:any-type>

<n+m:any-type> := ADD <1:any-type> TO <n:any-type> AT <m:number>

(1, 2, 3, 4) := ADD 4 TO (1, 2, 3);

(4, 1, 2, 3) := ADD 4 TO (1, 2, 3) AT 1;

(1, 2, 3, null) := ADD null TO (1, 2, 3);

(null, 4) := ADD 4 TO null;

(1, 2, 3, 4) := ADD 4 TO (1, 2, 3) AT 9;

(4, 4, 1, 2, 3) := ADD 4 TO (1, 2, 3) AT (1, -1);

(1, 2, 3, 4) := ADD 2 TO (1, 3, 4) AT INDEX OF 3 WI THIN (1, 3, 4);

(4, 1, 4, 2, 3) := ADD 4 TO (1, 2, 3) AT (1, 2);

9.2.6 Remove … From … (binary, non-associative)

The remove ... from ... operator expects a number or list of numbers as its first argument and a list as its
second argument. The operator also accepts first and last as its first argument, they are interpreted as the

Arden Syntax for Medical Logic Systems

Page 44 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

number representing the last (the first) index in the given list. The operator removes the elements with the
given indices from the list. The indices of all elements from the given index to the end of the list will be
decreased by one. If the second argument is not a list, the argument is assumed a list with one element.
When more than one position is given, the positions are first detected and then the elements are removed.
The usage of the remove ... from ... operator is:

<n-m:any-type> := REMOVE <m:number> FROM <n:any-typ e>

(2, 1) := REMOVE 1 FROM (3, 2, 1);

("two”, 4, 5) := REMOVE (1,3,6) FROM ("one", "two", 3, 4, 5, 6 days);

(3, 2, 1) := REMOVE null FROM (3, 2, 1);

(3, 2, 1) := REMOVE 8 FROM (3, 2, 1);

() := REMOVE (INDEX OF "3" WITHIN ("3", "3")) FROM ("3", "3");

(null) := REMOVE 2 FROM null;

() := REMOVE 1 FROM null;

(3, 2, 1) := REMOVE () FROM (3, 2, 1);

9.3 Where Operator
The where operator does not follow the default list handling or the default time handling.

9.3.1 Where (binary, non-associative)

The where operator performs the equivalent of a relational select ... where ... on its left argument. In
general, the left argument is a list, often the result of a query to the database. The right argument is usually
of type Boolean (although this is not required), and must be the same length as the left argument. The result
is a list that contains only those elements of the left argument where the corresponding element in the right
argument is Boolean true. If the right argument is anything else, including false, null , or any other type,
then the element in the left argument is dropped. The where operator maintains the primary time(s) of the
operand(s) to the left of where. The primary time(s) of the operand(s) to the right of where are dropped. Its
usage is:

<n:any-type> := <m:any-type> WHERE <m:any-type>

(10,30) := (10,20,30,40) WHERE (true,false,true,3)

Example

7.38 := (7.34, 7.38, 7.4) WHERE time of it is within 20 minutes following time of VentChange

(1/1 16:20) (1/1 18:01) (1/1 16:20) (Jan 1 02:06) (Jan 1 16:12)

Where handles mixed single items and lists in a manner analogous to the other binary operators. If the right
argument to where is a single item, then if it is true, the entire left argument is kept (whether or not it is a
list); if it is not true, then the empty list is returned. If only the left argument is a single item, then the result
is a list with as many of the single items as there are elements equal to true in the right argument. If the two
arguments are lists of different length, then a single null results (the rules in Section 9.1.3.4 are used to
replicate a single-element argument if necessary). For example,

1 := 1 WHERE true

(1,2,3) := (1,2,3) WHERE true

(1,1) := 1 WHERE (true,false,true)

null := (1,2,3,4) WHERE (true,false,true)

Where is generally used to select certain items from a list. The list is used as the left argument, and some
comparison operator is applied to the list in the right argument. For example, potassium_list where
potassium_list > 5.0 would select from the list those values that are greater than 5.

Where can be used to filter out invalid data. For example, if a query returns either numeric values or text
comments, the following can be used to select elements from the query that have proper numeric values:

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 45

Revision date: 2011-03-25 Print date: 5/17/2011

queryResult where they are number

Similarly, if a query returns some values without primary times, the following can be used to select
elements from the query that have proper primary times:

queryResult where time of it is present

In this example, the unary operator time is applied to the queryResult (which is what the value of "it " is),
resulting in a list of times (for those results that have a primary time) and nulls (for those results that do not
have a primary time). The unary operator is present is then applied to that list, give a list of Booleans: true
where there is a primary time and false where there is no primary time. Finally, the where operator is used
to remove those values that do not have primary times.

The following example follows the default time-of-day handling as it combines primary times (time values)
with time-of-day constraints to select those blood glucose values that have been measured after lunch:

post_prandial_blood_glucoses := bc_values where the y occurred within 13:00:00
to 15:00:00

The where operator can also be combined with day-of-week arguments, such as

labResults where day of week of time of them is in (SATURDAY, SUNDAY)

9.3.1.1 It

The word it and synonym they are used in conjunction with where. To simplify where expressions, it may
be used in the right argument to represent the entire left argument. For example, potassium_list where
they > 5.0 would select those values from the list that are greater than 5. It is most useful when the left
argument is a complex expression; for example, (potassium_list + sodium_list/3) where it > 5.0 would
assign the entire expression in parentheses to it . If there are nested where expressions, it refers to the left
argument of the innermost where. If it is used outside of a where expression, then it has a value of null . An
implementation of the Arden Syntax may choose to flag use of it outside a where expression as an error at
compile time.

9.4 Logical Operators

9.4.1 Or (binary, left associative)

The or operator performs the logical disjunction of its two arguments. If either argument is true (even if
the other is not Boolean), the result is true. If both arguments are false, the result is false. Otherwise the
result is null . Its usage is:

<n:Boolean> := <n:any-type> OR <n:any-type>

true := true OR false

false := false OR false

true := true OR null

null := false OR null

null := false OR 3.4

(true, true) := (true, false) OR (false, true)

() := () OR ()

Its truth table is given here. Other means any of these data types: null, number, time, duration, or string.

 OR TRUE FALSE Other (Right
argument)

(Left TRUE TRUE TRUE TRUE

argument) FALSE TRUE FALSE NULL

 other TRUE NULL NULL

Arden Syntax for Medical Logic Systems

Page 46 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

9.4.2 And (binary, left associative)

The and operator performs the logical conjunction of its two arguments. If either argument is false (even if
the other is not Boolean), the result is false. If both arguments are true, the result is true. Otherwise the
result is null . Its usage is:

<n:Boolean> := <n:any-type> AND <n:any-type>

false := true AND false

null := true AND null

false := false AND null

Its truth table is given here. Other means any of these data types: null, number, time, duration, or string.

 AND TRUE FALSE other (Right
argument)

(Left
argument)

TRUE TRUE FALSE NULL

 FALSE FALSE FALSE FALSE

 other NULL FALSE NULL

9.4.3 Not (unary, non-associative)

The not operator performs the logical negation of its argument. Thus true becomes false, false becomes
true, and anything else becomes null . Its usage is:

<n:Boolean> := NOT <n:any-type>

true := NOT false

null := NOT null

Its truth table is given here. Other means any of these data types: null, number, time, duration, or string.

NOT TRUE FALSE other

 FALSE TRUE NULL

9.5 Simple Comparison Operators

9.5.1 = (binary, non-associative)

The = operator has two synonyms: eq and is equal. It checks for equality, returning true or false. If the
arguments are of different types, false is returned. If an argument is null , then null is always returned.
Primary times are not used in determining equality; the primary time of the result is determined by the rules
in Section 9.1.4. Its usage is:

<n:Boolean> := <n:non-null> = <n:non-null>

false := 1 = 2

(null,true,false) := (1,2,"a") = (null,2,3)

null := (3/0) = (3/0)

() := 5 = ()

null := (1,2,3) = ()

() := null = ()

() := () = ()

null := 5 = null

(null,null, null) := (1,2,3) = null

null := null = null

(true,true,false) := (1,2,3) = (1,2,4)

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 47

Revision date: 2011-03-25 Print date: 5/17/2011

true := 1979-02-25T08:20:00 = 08:20:00

Use is present or exists instead of = to test whether an argument is equal to null . See Sections 9.6.15 and
9.12.3.

9.5.2 <> (binary, non-associative)

The <> operator has two synonyms: ne and is not equal. It checks for inequality, returning true or false. If
the arguments are of different types, true is returned. If an argument is null , then null is returned. Its usage
is:

<n:Boolean> := <n:non-null> <> <n:non-null>

true := 1 <> 2

(null,false,true) := (1,2,"a") <> (null,2,3)

null := (3/0) <> (3/0)

false := 1979-02-25T08:20:00 <> 08:20:00

9.5.3 < (binary, non-associative)

The < operator has three synonyms: lt , is less than, and is not greater than or equal. It is used on ordered
types; if the types do not match, null is returned. Its usage is:

<n:Boolean> := <n:ordered> < <n:ordered>

true := 1 < 2

true := 1990-03-02T00:00:00 < 1990-03-10T00:00:00

true := 1990-03-02T00:00:00 < 13:00:00

null := 13:00:00 < 14 hours

true := 2 days < 1 year

true := "aaa" < "aab"

null := "aaa" < 1

9.5.4 <= (binary, non-associative)

The <= operator has three synonyms: le, is less than or equal, and is not greater than. It is used on
ordered types; if the types do not match, null is returned. Its usage is:

<n:Boolean> := <n:ordered> <= <n:ordered>

true := 1 <= 2

true := 1990-03-02T00:00:00 <= 1990-03-10T00:00:00

true := 1990-03-02T00:00:00 <= 13:00:00

true := 2 days <= 1 year

true := "aaa" <= "aab"

null := "aaa" <= 1

9.5.5 > (binary, non-associative)

The > operator has three synonyms: gt, is greater than, and is not less than or equal. It is used on ordered
types; if the types do not match, null is returned. Its usage is:

<n:Boolean> := < n:ordered> > <n:ordered>

false := 1 > 2

false := 1990-03-02T00:00:00 > 1990-03-10T00:00:00

false := 1990-03-02T00:00:00 > 13:00:00

false := 2 days > 1 year

false := "aaa" > "aab"

null := "aaa" > 1

Arden Syntax for Medical Logic Systems

Page 48 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

9.5.6 >= (binary, non-associative)

The >= operator has three synonyms: ge, is greater than or equal, and is not less than. It is used on
ordered types; if the types do not match, null is returned. Its usage is:

<n:Boolean> := <n:ordered> >= <n:ordered>

false := 1 >= 2

false := 1990-03-02T00:00:00 >= 1990-03-10T00:00:00

false := 1990-03-02T00:00:00 >= 13:00:00

false := 2 days >= 1 year

false := "aaa" >= "aab"

null := "aaa" >= 1

9.6 Is Comparison Operators
The following comparison operators include the word is, which can be replaced with are, was, or were. An
optional not may follow the is, negating the result (using the definition of not, see Section 9.4.3). For
example, these are valid:

surgery_time WAS BEFORE discharge_time

surgery_time IS NOT AFTER discharge_time

9.6.1 Is [not] Equal (binary, non-associative)

See Section 9.5.1.

9.6.2 Is [not] Less Than (binary, non-associative)

See Section 9.5.3.

9.6.3 Is [not] Greater Than (binary, non-associative)

See Section 9.5.5.

9.6.4 Is [not] Less Than or Equal (binary, non-associative)

See Section 9.5.4.

9.6.5 Is [not] Greater Than or Equal (binary, non-associative)

See Section 9.5.6.

9.6.6 Is [not] Within ... To (ternary, non-associative)

The is within ... to operator checks whether the first argument is within the range specified by the second
and third arguments; the range is inclusive. It is used on ordered types; if the types do not match, null is
returned. When used with time-of-day arguments, the order of the right and middle argument may be
relevant, as the specified time frame may span over midnight.

When used with arguments that are not time-of-day arguments, operator functionally checks the following
relationship

argument 2 <= argument 1 <= argument 3

and returns true if the relationship is satisfied and false if is not satisfied.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 49

Revision date: 2011-03-25 Print date: 5/17/2011

Its usage is:

<n:Boolean> := <n:ordered> IS WITHIN <n:ordered> TO <n:ordered>

true := 3 IS WITHIN 2 TO 5

false := 3 IS WITHIN 5 TO 2

true := 1990-03-10T00:00:00 IS WITHIN 1990-03-05T00 :00:00 TO 1990-03-
15T00:00:00

true := 3 days IS WITHIN 2 days TO 5 months

true := "ccc" IS WITHIN "a" TO "d"

false := 1990-03-10T15:00:00 IS WITHIN 16:00:00 TO 17:00:00

If the middle and right argument of the last example are swapped, then the reference time frame spans
midnight:

true := 1990-03-10T15:00:00 IS WITHIN 17:00:00 TO 1 6:00:00

true := time of day of time of order IS WITHIN 22:0 0:00 to 02:00:00

The last example returns true, if the order has been placed after 10 pm and 2 am, independently from the
date of the order. The next example checks whether the measurement has been recorded on a weekday.

true := DAY OF WEEK OF TIME OF measurement IS WITHI N MONDAY TO FRIDAY

Note that the day of week of a primary time results in a number, as well as the keywords MONDAY and
FRIDAY. The following code snippet is not valid:

null := measurement OCCURRED WITHIN MONDAY to FRIDA Y

Caution must be used when using the day of week data type with the is . . . within operator, as well as the
other comparison operators. Each day of the week is associated with an integer, with Monday = 1 through
Sunday = 7 (see Section 8.12). Thus, the range of days specified can not begin before Monday and end
after Sunday. For example.

 True := WEDNESDAY IS WITHIN TUESDAY TO FRIDAY

 True := SATURDAY IS WITHIN FRIDAY TO SUNDAY

 FALSE := SATURDAY IS WITHIN FRIDAY TO MONDAY

(this returns false because 6 is not within 5 to 1)

9.6.7 Is [not] Within ... Preceding (ternary, non-associative)

The is within ... preceding operator checks whether the left argument is within the inclusive time period
defined by the second two arguments (from the third argument minus the second to the third). Its usage is:

<n:Boolean> := <n:times> IS WITHIN <n:duration> PRE CEDING <n:times>

true := 1990-03-08T00:00:00 IS WITHIN 3 days PRECED ING 1990-03-10T00:00:00

9.6.8 Is [not] Within ... Following (ternary, non-associative)

The is within ... following operator checks whether the left argument is within the inclusive time period
defined by the second two arguments (from the third argument to the third plus the second). Its usage is:

<n:Boolean> := <n:times> IS WITHIN <n:duration> FOL LOWING <n:times>

false := 1990-03-08T00:00:00 IS WITHIN 3 days FOLLO WING 1990-03-10T00:00:00

9.6.9 Is [not] Within ... Surrounding (ternary, non-associative)

The is within ... surrounding operator checks whether the left argument is within the inclusive time period
defined by the second two arguments (from the third argument minus the second to the third plus the
second). Its usage is:

<n:Boolean> := <n:times> IS WITHIN <n:duration> SUR ROUNDING <n:times>

true := 1990-03-08T00:00:00 IS WITHIN 3 days SURROU NDING 1990-03-10T00:00:00

This operator may be used with small durations as a short-hand notation for some comparisons that can be
also represented by using the ‘is within to’ operator.

Arden Syntax for Medical Logic Systems

Page 50 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

Examples:

false := time of day of time of request is within 2 hours surrounding 14:00

(true, true, true, false, true) := time of day of t ime of measurements

 are within 30 minutes su rrounding 13:00

9.6.10 Is [not] Within Past (binary, non-associative)

The is within past checks whether the left argument is within the time period defined by the right argument
(now minus the right argument to now). Its usage is (assuming now is 1990-03-09T00:00:00):

<n:Boolean> := <n:times> IS WITHIN PAST <n:duration >

true := 1990-03-08T00:00:00 IS WITHIN PAST 3 days

null := 12:00:00 IS WITHIN PAST 2 weeks

9.6.11 Is [not] Within Same Day As (binary, non-associative)

The is within same day as operator checks whether the left argument is on the same day as the second
argument. Its usage is:

<n:Boolean> := <n:time> IS WITHIN SAME DAY AS <n:ti me>

true := 1990-03-08T11:11:11 IS WITHIN SAME DAY AS 1 990-03-08T01:01:01

null := 12:00:00 IS WITHIN SAME DAY AS 1990-03-08T0 1:01:01

9.6.12 Is [not] Before (binary, non-associative)

The is before operator checks whether the left argument is before the second argument; it is not inclusive.
Its usage is:

<n:Boolean> := <n:times> IS BEFORE <n:times>

false := 1990-03-08T00:00:00 IS BEFORE 1990-03-07T0 0:00:00

false := 1990-03-08T00:00:00 IS BEFORE 1990-03-08T0 0:00:00

9.6.13 Is [not] After (binary, non-associative)

The is after operator checks whether the left argument is after the second argument; it is not inclusive. Its
usage is:

<n:Boolean> := <n:times> IS AFTER <n:times>

true := 1990-03-08T00:00:00 IS AFTER 1990-03-07T00: 00:00

false := now is after 18:00:00

The last example assumes, that the MLM runs before 18:00 (for example, now is 2005-01-01T17:30:00).

9.6.14 Is [not] In (binary, non-associative)

The is in operator does not follow the default list handling. It checks for membership of the left argument in
the right argument, which is usually a list. If the left argument is a list, then a list results; if the left
argument is a single item, then a single item results. If the right argument is a single item, then it is treated
as a list of length one. If the first operand is null , true is always returned. If the second operand is null then
null is returned, except the first one is also null . Primary times are retained only if they match (that is, the =
operator is used for determining membership, except that null will match). Its usage is:

<n:Boolean> := <n:any-type> IS IN <m:any-type>

false := 2 IS IN (4,5,6)

(false,true) := (3,4) IS IN (4,5,6)

true := null is in (1/0,2)

false := day of week of (time of potassium) IS IN (SATURDAY, SUNDAY)

See also Section 9.6.24.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 51

Revision date: 2011-03-25 Print date: 5/17/2011

9.6.15 Is [not] Present (unary, non-associative)

The is present operator has one synonym: is not null. (Similarly, is not present has one synonym: is null.)
It returns true if the argument is not null , and it returns false if the argument is null . Is present never
returns null . This operator is used to test whether an argument is null since arg=null always results in null
regardless of arg. Its usage is:

<n:Boolean> := <n:any-type> IS PRESENT

true := 3 IS PRESENT

false := null IS PRESENT

(true,false) := (3,null) IS PRESENT

(false,true) := (3,null) IS NULL

9.6.16 Is [not] Null (unary, non-associative)

See Section 9.6.15.

9.6.17 Is [not] Boolean (unary, non-associative)

The is Boolean operator returns true if the argument's data type is Boolean. Otherwise it returns false. Is
Boolean never returns null . Its usage is:

<n:Boolean> := <n:any-type> IS BOOLEAN

true := false IS BOOLEAN

true := 3 IS NOT BOOLEAN

(false,true,false) := (null,false,3) IS BOOLEAN

9.6.18 Is [not] Number (unary, non-associative)

The is number operator returns true if the argument's data type is number. Otherwise it returns false. Is
number never returns null . Its usage is:

<n:Boolean> := <n:any-type> IS NUMBER

true := 3 IS NUMBER

false := null IS NUMBER

The is number is useful for ensuring that a list is all numbers before an aggregation operator is applied.
This avoids returning null . For example,

sum(serum_K where it IS NUMBER)

9.6.19 Is [not] String (unary, non-associative)

The is string operator returns true if the argument's data type is string. Otherwise it returns false. Is string
never returns null . Its usage is:

<n:Boolean> := <n:any-type> IS STRING

true := "asdf" IS STRING

false := null IS STRING

9.6.20 Is [not] Time (unary, non-associative)

The is time operator returns true if the argument's data type is time. Otherwise it returns false. Is time
never returns null . Its usage is:

<n:Boolean> := <n:any-type> IS TIME

true := 1991-03-12T00:00:00 IS TIME

false := null IS TIME

Arden Syntax for Medical Logic Systems

Page 52 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

9.6.21 Is [not] Time of day (unary, non-associative)

The is time of day operator returns true if the argument's data type is time-of-day. Otherwise it returns
false. Is time of day never returns null . Its usage is:

<n:Boolean> := <n:any-type> IS TIME OF DAY

true := 23:20:00 IS TIME OF DAY

true := 23:20:00.12 IS TIME OF DAY

false := 1991-03-12T00:00:00 IS TIME OF DAY

false := null IS TIME OF DAY

9.6.22 Is [not] Duration (unary, non-associative)

The is duration operator returns true if the argument's data type is duration. Otherwise it returns false. Is
duration never returns null . Its usage is:

<n:Boolean> := <n:any-type> IS DURATION

true := (3 days) IS DURATION

false := null IS DURATION

9.6.23 Is [not] List (unary, non-associative)

The is list operator returns true if the argument is a list. Otherwise it returns false. Is list never returns null .
Its usage is:

<1:Boolean> := <n:any-type> IS LIST

true := (3, 2, 1) IS LIST

False := 5 IS LIST

false := null IS LIST

The is list operator does not follow the default list handling because it does not operate on each item in the
argument, but rather operates on the argument as a whole. Thus it never returns a list. Notice the difference:

true := (3, 2, "asdf") IS LIST

(true, true, false) := (3, 2, "asdf") IS NUMBER

9.6.24 [not] In (binary, non-associative)

The operator in is a synonym of is in and behaves in the same manner. Its usage is:

<n:Boolean> := <n:any-type> IN <m:any-type>

false := 2 IN (4,5,6)

(false,true) := (3,4) IN (4,5,6)

true := null in (1/0,2)

See also Section 9.6.14.

9.6.25 Is [not] Object (unary, non-associative)

The is object operator returns true if the argument is an object (any type of object defined with an Object
declaration, as described in Section 11.2.17). Otherwise it returns false. Its usage is:

<n:Boolean> := <n:any-type> IS OBJECT

9.6.26 Is [not] <Object-Type> (unary, non-associative)

The is <object-type> operator returns true if the argument is an object of the named type (as previously
defined with an Object declaration, as described in Section 11.2.17). Otherwise it returns false. Its usage is:

<n:Boolean> := <n:any-type> IS <OBJECT-TYPE>

RectType := OBJECT [x, y, width, height];

Rect := new RectType;

true := Rect IS RectType;

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 53

Revision date: 2011-03-25 Print date: 5/17/2011

9.7 Occur Comparison Operators

9.7.1 General Properties

The following comparison operators are analogous to the is comparison operators in Section 9.6. They use
the word occur instead of is. The word occur can be replaced with occurs or occurred. An optional not
may follow the occur, negating the result (using the definition of not, see Section 9.4.3).

The effect is that rather than using the left argument directly, the primary time of the left argument is used
instead (that is, the time of the left argument is used; see Section 9.17). The following pairs are equivalent
expressions:

time of var IS NOT BEFORE 1990-03-05T11:11:11

var OCCURRED NOT BEFORE 1990-03-05T11:11:11

time of surgery IS WITHIN THE PAST 3 days

surgery OCCURRED WITHIN THE PAST 3 days

time(a) IS WITHIN 1990-03-05T11:11:11 TO time(b)

a OCCURRED WITHIN 1990-03-05T11:11:11 TO time(b)

In the following operator examples, query_result is the result of a query; its primary time is 1990-03-
05T11:11:11; and now is 1990-03-06T00:00:00.

Day-of-week data types are not allowed as arguments to occur comparison operators at this time. Time-of-
day data types are allowed and follow standard time-of-day processing.

9.7.2 Occur [not] Equal (binary, non-associative)
<n:Boolean> := <n:any-type> OCCUR EQUAL <n:times>

false := query_result OCCURRED EQUAL 1990-03-01T00: 00:00

See also Section 9.7.11.

9.7.3 Occur [not] Within ... To (ternary, non-associative)
<n:Boolean> := <n:any-type> OCCUR WITHIN <n:times> TO <n:times>

true := query_result OCCURRED WITHIN 1990-03-01T00: 00:00 TO 1990-03-
11T00:00:00

9.7.4 Occur [not] Within ... Preceding (ternary, non-associative)
<n:Boolean> := <n:any-type> OCCUR WITHIN <n:duratio n> PRECEDING <n:times>

false := query_result OCCURRED WITHIN 3 days PRECED ING 1990-03-10T00:00:00

9.7.5 Occur [not] Within ... Following (ternary, non-associative)
<n:Boolean> := <n:any-type> OCCUR WITHIN <n:duratio n> FOLLOWING <n:times>

false := query_result OCCURRED WITHIN 3 days FOLLOW ING 1990-03-10T00:00:00

9.7.6 Occur [not] Within . . . Surrounding (ternary, non-associative)
<n:Boolean> := <n:any-type> OCCUR WITHIN <n:duratio n> SURROUNDING <n:times>

false := query_result OCCURRED WITHIN 3 days SURRO UNDING 1990-03-10T00:00:00

false := request occurred within 2 hours surroundin g 14:00

(true, true, true, false, true) := measurements occ urred within 30 minutes
surrounding 13:00

9.7.7 Occur [not] Within Past (binary, non-associative)
<n:Boolean> := <n:any-type> OCCUR WITHIN PAST <n:du ration>

true := query_result OCCURRED WITHIN PAST 3 days

Arden Syntax for Medical Logic Systems

Page 54 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

9.7.8 Occur [not] Within Same Day As (binary, non-associative)
<n:Boolean> := <n:any-type> OCCUR WITHIN SAME DAY A S <n:time>

false := query_result OCCURRED WITHIN SAME DAY AS 1990-03-08T01:01:01

null := query_result OCCURRED WITHIN SAME DAY AS 01 :01:01

9.7.9 Occur [not] Before (binary, non-associative)
<n:Boolean> := <n:any-type> OCCUR BEFORE <n:times>

true := query_result OCCURRED BEFORE 1990-03-08T01 :01:01

9.7.10 Occur [not] After (binary, non-associative)
<n:Boolean> := <n:any-type> OCCUR AFTER <n:times>

false := query_result OCCURRED AFTER 1990-03-08T01 :01:01

9.7.11 Occur [not] At (binary, non-associative)

The occur at operator functionally identical to the occur equal operator.

<n:Boolean> := <n:any-type> OCCUR AT <n:times>

false := query_result OCCURRED AT 1990-03-01T00:00 :00

See Section 9.7.2.

9.8 String Operators
The string operators do not follow the default list handling or the default primary time handling.

9.8.1 || (binary, left associative)

The || operator (string concatenation) converts its arguments to strings and then concatenates those strings
together. The null data type is converted to the string null and then appended to the other argument. Thus ||
never returns null . Lists are converted to strings and then appended to the other argument; the list is
enclosed in parentheses and the elements are separated by , with no separating blanks. The string
representation of Booleans, numbers, times, and durations is location-specific to allow for the use of the
native language. The formatted with operators %s operator is used to convert values to strings (see
Section 9.8.2). The string operator is a generalization of the || operator (see Section 9.8.3), except that the
string operator does not do anything special for lists. The primary times of its arguments are lost. Its usage
is:

<1:string> := <m:any-type> || <n:any-type>

"null3" := null || 3

"45" := 4 || 5

"4.7four" := 4.7 || "four"

"true" := true || ""

"3 days left" := 3 days || " left"

"on 1990-03-15T13:45:01" := "on " || 1990-03-15T13: 45:01

"list=(1,2,3)" := "list=" || (1,2,3)

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 55

Revision date: 2011-03-25 Print date: 5/17/2011

9.8.2 Formatted with (binary, left-associative)

The formatted with operator allows a formatting string to be used for additional control over how data
items are output. The formatting string is similar to the ANSI C language printf control string, with
additional ability to format an Arden time. Its usage is

<string> := <data> formatted with <format_string>

"01::02::03" := (1,2,3) formatted with "%2.2d::%2.2 d::%2.2d"

"The result was 10.61 mg"

:= 10.60528 formatted with "The result was %.2f mg"

"The date was Jan 10 1998"

:= 1998-01-10T17:25:00 formatted with "The date was %.2t"

"The year was 1998"

:= 1998-01-10T17:25:00 formatted with "The year was %.0t"

/* longer example */

a := "ten";

b := "twenty";

c := "thirty";

f := "%s, %s, %s or more";

"ten, twenty, thirty or more" := (a, b, c) formatte d with f;

If data is a single item, it serves as the single parameter for format string substitution. If data is a list, the
list is not formatted as a list. Instead, it is assumed to be a list of parameters for format string substitution.
Parameters are substituted into the format string as described below, which becomes the result of the
operation.

A format string consists of a literal string and typically contains 1 or more format specifications.

A format specification, which consists of optional and required fields, has the following form:

%[flags][width][.precision]type

Each field of the format specification is a single character or a number signifying a particular format
option. The simplest format specification contains only the percent sign and a type character (for example,
%s). If a percent sign is followed by a character that has no meaning as a format field, the character is not
revised. For example, to print a percent-sign character, use %%.

Note that to retain compatibility with C language functions, several formatting type specifiers have been
retained that will probably not be useful to the Arden MLM author. The most likely format specification
types an MLM author will use are:

%c (for outputting special characters)

%s (string width control)

%d (integer formatting)

%t (time formatting)

%e (floating point number formatting with exponent)

%f (floating point number formatting without expon ent)

%g (floating point number formatting using %e or % f)

A complete description of supported types within the format specification can be found in Annex A5.

Arden Syntax for Medical Logic Systems

Page 56 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

9.8.3 String ... (unary, right associative)

The string operator expects a string or list of strings as its argument. It returns a single string made by
concatenating all the elements, as the || operator (see Section 9.8.1). If the argument is an empty list, the
result is the empty string (""). The element operator (Section 9.12.18) can be used to select certain items
from the list. The primary times of its arguments are lost. Its usage is:

<1:string> := STRING <m:string>

<1:string> := STRING <m:list of strings>

"abc" := STRING ("a","b","c")

"abc" := STRING ("a","bc")

"" := STRING ()

"edcba" := STRING REVERSE EXTRACT CHARACTERS "abcde "

9.8.4 Matches Pattern (binary, non-associative)

The effect of this operator is similar to the LIKE operator in SQL (ISO / IEC 9075). Matches pattern is
used to determine whether or not a particular string matches a pattern. This operator expects two string
arguments. The first argument is a string to be matched, and the second is the pattern used for matching.
Matches pattern returns a Boolean value: true if the pattern of the second argument matches the first
argument and false if it does not. The first argument also may be a list of strings, in which case the result is
a list of Boolean values, each corresponding to the match between one string and the pattern of the second
argument. If the arguments are not strings, null is returned. Matching is case-insensitive. The primary times
of the arguments are lost.

The pattern of the second argument may be any legal string character. In addition, two wild-card characters
may be used. The underscore (_) will match exactly any one character. The percent sign (%) will match 0
to arbitrarily many characters. In order to match one of the literal wild-card character, precede it with an
escape (\) character.

<n : Boolean> := <n : string> MATCHES PATTERN <1 : string>

true := "fatal heart attack" MATCHES PATTERN "%hear t%";

false := "fatal heart attack" MATCHES PATTERN "hear t";

true := "abnormal values" MATCHES PATTERN "%value_" ;

false := "fatal pneumonia" MATCHES PATTERN "%pulmon ary%";

(true, false) := ("stunned myocardium", "myocardial infarction") MATCHES
PATTERN

 "%myocardium";

true := "5%" MATCHES PATTERN "_\%";

9.8.5 Length (unary, right-associative)

The length operator returns the number of characters in a string. Leading or trailing spaces are included in
this calculation. Applying the length operator to an empty string returns zero, while the length of a non-
string data type or an empty list is null . The length operator is different from the count operator (see
Section 9.12.2), in that length is the number of characters in a single string, while count is the number of
items in a list. Primary times are not preserved.

 <n:number> := LENGTH [OF] <n:string>

 7 := LENGTH OF "Example"

 14 := LENGTH "Example String"

 0 := LENGTH ""

 null := LENGTH ()

 null := LENGTH OF null

(8, 3, null) := LENGTH OF ("Negative", "Pos", 2)

9.8.6 Uppercase (unary, right-associative)

The uppercase operator converts all lowercase characters in a string to uppercase. Non-lowercase
characters, including numeric and punctuation characters, are not affected. The uppercase of a non-string
data type or an empty list is null. Primary times are preserved.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 57

Revision date: 2011-03-25 Print date: 5/17/2011

 <n:string> := UPPERCASE <n:string>

 "EXAMPLE STRING" := UPPERCASE "Example Strin g"

 "" := UPPERCASE ""

 null := UPPERCASE null

 null := UPPERCASE ()

("5-HIAA", "POS", null) := uppercase ("5-Hiaa", "Po s", 2)

9.8.7 Lowercase (unary, right-associative)

The lowercase operator converts all uppercase characters in a string to lowercase. Non-uppercase
characters, including numeric and punctuation characters, are not affected. The lowercase of a non-string
data type or empty list is null . Primary times are preserved.

 <n:string> := LOWERCASE <n:string>

 "example string" := LOWERCASE "Example Strin g"

 "" := LOWERCASE ""

 null := LOWERCASE 12.8

 null := LOWERCASE null

("5-hiaa", "pos", null) := LOWERCASE ("5-HIAA", "Po s", 2)

9.8.8 Trim [Left | Right] (unary, right-associative)

The trim operator removes leading and trailing white space from a string (see Section 7.1.10). The optional
left or right modifier can be applied to remove leading or trailing white space respectively. Printable
characters and embedded white space characters are not affected. The trim of a non-string data type or
empty list is null . Primary times are preserved.

 <n:string> := TRIM [LEFT | RIGHT] <n:stri ng>

 "example" := TRIM " example "

 "" := TRIM ""

 null := TRIM ()

 "result: " := TRIM LEFT " result: "

 " result:" := TRIM RIGHT " result: "

("5 N", "2 E", null) := TRIM (" 5 N", "2 E ", 2)

9.8.9 Find...[in] String...[starting at]... (ternary, right-associative)

The find ... string operator locates a substring within a target string, and returns a number that represents
the starting position of the substring. Find ... string is similar to matches pattern, but returns a number
(rather than a boolean), and does not support wildcards. Find ... string is case-sensitive, and returns a zero
if the target string does not contain the exact substring. If either the substring or target is not a string data
type, null is returned. Primary times are not preserved.

The optional modifier starting at... can be appended to the find ... string operator to control where the
search for the substring begins. Omitting the modifier causes the search to begin at the first character of the
string. The value following starting at... must be an integer, otherwise null is returned. If the value
following starting at... is an integer beyond the length of the target string (i.e. less than 1 or greater than
length target), zero is returned.

<n:number> := FIND <1:string> [IN] STRING <n:string >

<n:number> := FIND <1:string> [IN] STRING <n:string > [STARTING AT <n:number>]

 3 := FIND "a" IN STRING "Example Here"

 5 := FIND "ple" IN STRING "Example Here"

 0 := FIND "s" IN STRING "Example Here"

 null := FIND 2 IN STRING "Example Here"

 null := FIND "a" STRING 510

 (2, 0, 4) := FIND "t" STRING ("start", "meds", "ha lt")

 7 := FIND "e" IN STRING "Example Here" STA RTING AT 1

 1 := FIND "e" IN STRING LOWERCASE "Example Here" STARTING AT 1

 10 := FIND "e" IN STRING "Example Here" STA RTING AT 8

 10 := FIND "e" IN STRING "Example Here" STA RTING AT 10

Arden Syntax for Medical Logic Systems

Page 58 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

 12 := FIND "e" IN STRING "Example Here" STA RTING AT 11

 0 := FIND "e" IN STRING "Example Here" STA RTING AT 13

 null := FIND "e" IN STRING "Example Here" STA RTING AT 1.5

 null := FIND "e" IN STRING "Example Here" STA RTING AT "x"

 (10,12) := FIND "e" IN STRING "Example Here" STA RTING AT (10,11)

9.8.10 Substring … Characters [starting at …] from … (ternary, right associative)

The substring … characters [starting at …] from … operator returns a substring of characters from a
designated target string. This substring consists of the specified number of characters from the source string
beginning with the starting position (either the first character of the string or the specified location within
the string). For example substring 3 characters starting at 2 from "Example" would return "xam" – a 3
character string beginning with the second character in the source string "Example".

The target string must be a string data type, the starting location within the string must be a positive integer,
and the number of characters to be returned must be an integer, or the operator returns null . If a starting
position is specified, its value must be an integer between 1 and the length of the string, otherwise an empty
string is returned. If the requested number of characters is greater than the length of the string, the entire
string is returned. If a starting point is specified, and the requested number of characters is greater than the
length of the string minus the starting point, the resulting string is the original string to the right of and
including the starting position. If the number of characters requested is positive the characters are counted
from left to right. If the number of characters requested is negative, the characters are counted from right to
left. The characters in a substring are always returned in the order that they appear in the string. Default list
handling is observed. Primary times are preserved.

 <n:string> := SUBSTRING <n:number> CHARACTER S [STARTING AT <n:number>]
 FROM <n:string>

 "ab" := SUBSTRING 2 CHARACTERS FROM "a bcdefg"

 "abcdefg" := SUBSTRING 100 CHARACTERS FROM "abcdefg"

 "def" := SUBSTRING 3 CHARACTERS STARTIN G AT 4 FROM "abcdefg"

 "defg" := SUBSTRING 20 CHARACTERS STARTI NG AT 4 FROM "abcdefg"

 null := SUBSTRING 2.3 CHARACTERS FRO M "abcdefg"

 null := SUBSTRING 2 CHARACTERS START ING AT 4.7 FROM "abcdefg"

 null := SUBSTRING 3 CHARACTERS STARTIN G AT "c" FROM "abcdefg"

 null := SUBSTRING "b" CHARACTERS START ING AT 4 FROM "abcdefg"

 null := SUBSTRING 3 CHARACTERS STARTIN G AT 4 FROM 281471

 "d" := SUBSTRING 1 CHARACTERS STARTIN G AT 4 FROM "abcdefg"

 "d" := SUBSTRING –1 CHARACTERS STARTI NG AT 4 FROM "abcdefg"

 "bcd" := SUBSTRING –3 CHARACTERS STARTI NG AT 4 FROM "abcdefg"

 "a" := SUBSTRING 1 CHARACTERS FROM "a bcdefg"

 "g" := SUBSTRING –1 CHARACTERS STARTI NG AT LENGTH OF "abcdefg"

 FROM "abcdefg"

("Pos","Neg",null):= SUBSTRING 3 CHARACTERS FROM (" Positive","Negative",2)

Example: Determine the systolic and diastolic values of patient's blood pressure when observations (bp)
 are stored as strings like this: "98/72", "121/86", or "138/102".

Bp := "121/86";

slash_pos := FIND "/" IN STRING bp;

systolic := SUBSTRING (slash_pos – 1) CHARACTERS FR OM bp;

 or

systolic := SUBSTRING –3 CHARACTERS STARTING AT (s lash_pos - 1) FROM bp;

diastolic := SUBSTRING 3 CHARACTERS STARTING AT (sl ash_pos + 1) FROM bp;

or

diastolic := SUBSTRING (LENGTH of bp) CHARACTERS ST ARTING AT (slash_pos + 1)
FROM bp

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 59

Revision date: 2011-03-25 Print date: 5/17/2011

9.8.11 Localized (unary, non-associative)

The localized operator returns a string that has been previously defined in the language slot of the MLM’s
resources category. The string is looked up by choosing the key/value pair defined in the language slot that
matches the current language setting of the system which executes the MLM. The argument of the operator
specifies the term that is used as key to lookup the value for one specific text resource.

Retrieving the current language setting is implementation specific. If the language cannot be retrieved or no
language slot is defined for the current language, the default language of the resources category is used. If
the term is not defined in the chosen language slot or if the argument is not a Term, null is returned.

According to the examples in Section 6.4.2 its usage is:

<n:string> := LOCALIZED <n:term>

 "Caution, the patient has
the following allergy to
penicillin documented: " := localized 'msg';

 "The patient's calculated
creatinine clearance is
0.33 ml/min." := creat formatted with lo calized 'creat';

 null := localized 'unknown' ;

Or in an German setting:

 "Vorsicht, zu diesem Patienten
wurde die folgende
Penicillinallergie
dokumentiert: " := localized 'msg';

 "Die berechnete Kreatinin-
Clearance des Patienten
beträgt 0,33 ml/min." := creat formatted with localized 'creat';

 null := localized 'unknow n';

9.8.12 Localized (binary, right-associative)

The binary localized operator acts like the unary version of this operator and additionally allows the
selection of the target language as second argument. As second operator, either a string constant or a
variable can be used. Other expressions are not valid.

This operator can be used if the language of the message has to be different from the current language in
the system setting, for example when the system language is English (as the user operates in an English
environment), but the recipient of the message text requires another language, such as German.

Regarding the lookup mechanism and the default language handling it acts in the same way like the unary
version. In addition, if the second argument does not resolve to a string, the default language is used. Its
usage is:

<n:string> := LOCALIZED <n:term> by <n:string>

 "Caution, the patient has
the following allergy to
penicillin documented: " := localized 'msg' by "en_ US";

 "Die berechnete Kreatinin-
Clearance des Patienten
beträgt 0,33 ml/min." := creat formatted with loc alized 'creat' by
 lang_setting; /* l ang_setting == "de" */

9.8.13 As String (unary, non-associative)

The as string operator attempts to convert any data type to a string. If conversion to a string is possible, the
string is returned, otherwise null is returned. The primary time of the argument is preserved.

<n:string> := <n:any-type> AS STRING;

"5" := 5 AS STRING;

"null" := null AS STRING;

"true" := True AS STRING;

Arden Syntax for Medical Logic Systems

Page 60 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

"false" := False AS STRING;

("7", "8", "4100", "ABC", "null", "true", "false", "1997-10-31T00:00:00", "3

days") := ("7", 8, 4.1E+3, "ABC", Null, True, False , 1997-10-31T00:00:00,

3 days) AS STRING;

():= () AS STRING;

9.9 Arithmetic Operators
The behavior of time and duration data types is explained in Section 8.5.2.

9.9.1 + (binary, left associative)

Binary + (addition) adds the left and right arguments. It can perform simple addition, add two durations, or
increment a time by a duration. Underflow or overflow results in null . Its usage is:

<n:number> := <n:number> + <n:number>

6 := 4 + 2

() := 5 + ()

null := (1,2,3) + ()

() := null + ()

null := 5 + null

(null,null,null) := (1,2,3) + null

null := null + null

<n:duration> := <n:duration> + <n:duration>

3 days := 1 day + 2 days

<n:times> := <n:times> + <n:duration>

1990-03-15T00:00:00 := 1990-03-13T00:00:00 + 2 days

1993-05-17T00:00:00 := 0000-00-00 + 1993 years + 5 months + 17 days

<n:times> := <n:duration> + <n:times>

1990-03-15T00:00:00 := 2 days + 1990-03-13T00:00:00

9.9.2 + (unary, non-associative)

Unary + has no effect on its argument if it is of a valid type. Its usage is:

<n:number> := + <n:number>

2 := + 2

null := + "asdf"

<n:duration> := + <n:duration>

2 days := + 2 days

9.9.3 - (binary, left associative)

Binary - (subtraction) subtracts the right argument from the left. It can perform numeric subtraction,
subtract two durations, decrement a time by a duration, or find the duration between two times. Underflow
or overflow results in null . In writing expressions, care must be taken that the subtraction operator is not
confused with the "-" in time constant (Section 7.1.5). Any ambiguity is resolved in favor of time constants.
Its usage is:

<n:number> := <n:number> - <n:number>

4 := 6 - 2

<n:duration> := <n:duration> - <n:duration>

1 day := 3 days - 2 days

<n:times> := <n:times> - <n:duration>

1990-03-13T00:00:00 := 1990-03-15T00:00:00 - 2 days

<n:duration> := <n:times> - <n:times>

2 days := 1990-03-15T00:00:00 - 1990-03-13T00:00:00

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 61

Revision date: 2011-03-25 Print date: 5/17/2011

9.9.4 - (unary, non-associative)

Unary - is used for arithmetic negation; this is how one makes negative number constants. Underflow or
overflow results in null . One cannot put two arithmetic operators together, so the following expression is
illegal: 3 + -4. Instead one must use one of these: 3 + (-4), 3 - 4, or -4 + 3. Its usage is:

<n:number> := - <n:number>

(-2) := - 2

<n:duration> := - <n:duration>

(-2) days := - (2 days)

9.9.5 * (binary, left associative)

The * operator (multiplication) multiplies the left and right arguments. Underflow or overflow results in
null . It can perform numeric multiplication or multiply a duration by a number. Its usage is:

<n:number> := <n:number> * <n:number>

8 := 4 * 2

<n:duration> := <n:number> * <n:duration>

6 days := 3 * 2 days

<n:duration> := <n:duration> * <n:number>

6 days := 2 days * 3

9.9.6 / (binary, left associative)

The / operator (division) divides the left argument by the right one. It can perform numeric division, divide
a duration by a number, or find the ratio between two durations. Null results from division by zero,
underflow, or overflow. Duration unit conversion can be done with the / operator (e.g., ………… / 1 year turns any
duration into years). Its usage is:

<n:number> := <n:number> / <n:number>

4 := 8 / 2

<n:duration> := <n:duration> / <n:number>

2 days := 6 days / 3

<n:number> := <n:duration> / <n:duration>

120 := 2 minutes / 1 second

36 := 3 years / 1 month

9.9.7 ** (binary, non-associative)

The ** operator (exponentiation) raises the left argument to the power of the right argument. Its usage is:

<n:number> := <n:number> ** <1:number>

9 := 3 ** 2

9.10 Temporal Operators
The behavior of time and duration data types is explained in Section 8.5.2.

9.10.1 After (binary, non-associative)

The after operator is equivalent to addition between a duration and a time. Its usage is:

<n:times> := <n:duration> AFTER <n:times>

1990-03-15T00:00:00 := 2 days AFTER 1990-03-13T00:0 0:00

9.10.2 Before (binary, non-associative)

The before operator is equivalent to the subtraction of a duration from a time. Its usage is:

<n:times> := <n:duration> BEFORE <n:times>

1990-03-11T00:00:00 := 2 days BEFORE 1990-03-13T00: 00:00

Arden Syntax for Medical Logic Systems

Page 62 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

9.10.3 Ago (unary, non-associative)

The ago operator subtracts a duration from now, resulting in a time. Its usage is (assuming that now is
1990-04-19T00:03:15):

<n:time> := <n:duration> AGO

1990-04-17T00:03:15 := 2 days AGO

9.10.4 From (binary, non-associative)

The from operator is equivalent to addition between a duration and a time. Its usage is:

<n:times> := <n:duration> FROM <n:times>

2000-09-13T00:08:00 := 2 days FROM 2000-09-11T00:08 :00

9.10.5 Time of day [of] (unary, right-associative)

The time of day operator extracts the time-of-day from a time. Primary times are lost.
Its usage is:

<n:time-of-day> := TIME OF DAY [OF] <n:time>

14:23:17.3 := TIME OF DAY OF 1990-01-03T14:23:17.3

null := TIME OF DAY OF "this is not a time"

/* let time of data0 be 2006-01-01T12:00:00 */

12:00:00 := TIME OF DAY OF (TIME OF data0)

null := TIME OF (TIME OF DAY OF (TIME OF data0))

9.10.6 Day of week [of] (unary, right associative)

The day of week operator returns a positive integer from 1 to 7 that represents the day of the week of a
specified time (Section 8.12). The number 1 corresponds to Monday, 2 corresponds to Tuesday, etc. The
number 7 represents Sunday. This operator may be used with a user-defined list of strings to report an
actual weekday in an appropriate language, or may be used with the reserved words representing the days
of the week. The example below assumes that 2006-0526 was a Friday, 2006-06-03 was a Sunday, 2006-
06-06 was a Tuesday, potassium is the result of a query with the primary times (2006-06-03T09:04:00,
2006-06-06T16:40:00), and the weekday of now is a Monday.

<n:number> := DAY OF WEEK [OF] <n:time>

5 := DAY OF WEEK OF 2006-05-26T13:20:00

(6, 2) := DAY OF WEEK OF (TIME OF potassium)

1 := DAY OF WEEK OF now

null := DAY OF WEEK 15:30:00

true := DAY OF WEEK OF 2006-05-26T13:20:00 = FRIDAY

(true, false) := DAY OF WEEK OF TIME OF potassium I S IN (SATURDAY, SUNDAY)

false := DAY OF WEEK OF now IS IN (SATURDAY, SUNDAY)

A more detailed example:

weekend := DAY OF WEEK OF eventtime is in (SATURDAY , SUNDAY);

// weekend is true if the event occurred on Saturda y or Sunday

weekday := ("Monday", "Tuesday", …, "Sunday");

last_k := last potassium;

last_k_time := time last_k;

msg := "The last potassium was collected on "
|| weekday[DAY OF WEEK OF last_k_time];

//"The last potassium was collected on Tuesday"

9.10.7 Extract Year (unary, right-associative)

The extract year operator extracts the year from a time. Its usage is:

<n:number> := EXTRACT YEAR <n:time>

1990 := EXTRACT YEAR 1990-01-03T14:23:17.3

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 63

Revision date: 2011-03-25 Print date: 5/17/2011

null := EXTRACT YEAR (1 YEAR)

null := EXTRACT YEAR 14:23:17.3

9.10.8 Extract Month (unary, right-associative)

The extract month operator extracts the month from a time. Its usage is:

<n:number> := EXTRACT MONTH <n:time>

1 := EXTRACT MONTH 1990-01-03T14:23:17.3

null := EXTRACT MONTH 1

null := EXTRACT MONTH 14:23:17.3

9.10.9 Extract Day (unary, right-associative)

The extract day operator extracts the day from a time. Its usage is:

<n:number> := EXTRACT DAY <n:time>

3 := EXTRACT DAY 1990-01-03T14:23:17.3

null := EXTRACT DAY "this is not a time"

null := EXTRACT DAY 14:23:17.3

9.10.10 Extract Hour (unary, right-associative)

The extract hour operator extracts the hour from a time. Its usage is:

<n:number> := EXTRACT HOUR <n:times>

14 := EXTRACT HOUR 1990-01-03T14:23:17.3

null := EXTRACT HOUR (1 HOUR)

14 := EXTRACT HOUR 14:23:17.3

9.10.11 Extract minute (unary, right-associative)

The extract minute operator extracts the minute from a time. Its usage is:

<n:number> := EXTRACT MINUTE <n:times>

23 := EXTRACT MINUTE 1990-01-03T14:23:17.3

0 := EXTRACT MINUTE 1990-01-03

null := EXTRACT MINUTE 0000-00-00

23 := EXTRACT MINUTE 14:23:17.3

9.10.12 Extract second (unary, right-associative)

The extract second operator extracts the second from a time. Its usage is:

<n:number> := EXTRACT SECOND <n:times>

17.3 := EXTRACT SECOND 1990-01-03T14:23:17.3

null := EXTRACT SECOND (1 second)

17.3 := EXTRACT SECOND 14:23:17.3

9.10.13 Replace Year [of] … With (binary, right-associative)

The replace year of … with operator allows the replacement of the year part of a time. The result of the
replace year of … with operator preserves the primary time of the first argument. The numeric second
argument must evaluate to a positive integer greater than or equal to 1800, otherwise null is returned. Any
fractional part of the second argument will be removed before evaluation. For example:

<n:time> := REPLACE YEAR [OF] <n:time> WITH <n:numb er>;

var1 := 1990-03-15T15:00:00;

2011-03-15T15:00:00 := REPLACE YEAR OF var1 WITH 20 11;

(2011-03-15T15:00:00, 2010-03-15T15:00:00) := REPLA CE YEAR OF var1 WITH
(2011, 2010);

null := REPLACE YEAR OF var1 WITH -10;

null := REPLACE YEAR OF var1 WITH "7";

var2 := 19:00:00;

Arden Syntax for Medical Logic Systems

Page 64 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

null := REPLACE YEAR OF var2 WITH 2011;

var3 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2011-09-21T16:30:00, 2011-03-15T15:00:00) := REPLA CE YEAR OF var3 WITH 2011;

var3 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(1999-09-21T16:30:00, 2000-03-15T15:00:00) := REPLA CE YEAR OF var3 WITH
(1999, 2000);

null := REPLACE YEAR OF var3 WITH (1999, 2000, 2002);

9.10.14 Replace Month [of] … With (binary, right-associative)

The replace month of … with operator allows the replacement of the month part of a time. The result of
the replace month of … with operator preserves the primary time of the first argument. The numeric
second argument must evaluate to a positive integer between 1 and 12, otherwise null is returned. Any
fractional part of the second argument will be removed before evaluation. For example:

<n:time> := REPLACE MONTH [OF] <n:time> WITH <n:num ber>;

var1 := 1990-03-15T15:00:00;

1990-11-15T15:00:00 := REPLACE MONTH OF var1 WITH 1 1;

(1990-11-15T15:00:00, 1990-10-15T15:00:00) := REPLA CE MONTH OF var1 WITH (11,
10);

null := REPLACE MONTH OF var1 WITH 14;

null := REPLACE MONTH OF var1 WITH "7";

1990-07-15T15:00:00 := REPLACE MONTH OF var1 WITH 7 .45;

var2 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-12-21T16:30:00, 2010-12-15T15:00:00) := REPLA CE MONTH OF var2 WITH 12;

var3 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-06-21T16:30:00, 2010-07-15T15:00:00) := REPLA CE MONTH OF var3 WITH (6,
7);

null := REPLACE MONTH OF var3 WITH (3, 4, 7);

9.10.15 Replace Day [of] …With (binary, right-associative)

The replace day of … with operator allows the replacement of the day part of a time. The result of the
replace day of … with operator preserves the primary time of the first argument. The numeric second
argument must evaluate to a positive integer between 1 and the number of days in the existing month of the
first operator, otherwise, null is returned. Any fractional part of the second argument will be removed
before evaluation. For example:

<n:time> := REPLACE DAY [OF] <n:time> WITH <n:numbe r>;

var1 := 1990-03-15T15:00:00;

1990-03-11T15:00:00 := REPLACE DAY OF var1 WITH 11;

(1990-03-11T15:00:00, 1990-03-10T15:00:00) := REPLA CE DAY OF var1 WITH (11,
10);

null := REPLACE DAY OF var1 WITH 100;

null := REPLACE DAY OF var1 WITH "7";

1990-03-07T15:00:00 := REPLACE DAY OF var1 WITH 7.4 5;

null := REPLACE DAY OF 1990-02-11T15:00:00 WITH 30;

null := REPLACE DAY OF 1990-02-11T15:00:00 WITH 0.8 ;

1990-02-01T15:00:00:= REPLACE DAY OF 1990-02-15T15: 00:00 WITH 1.8;

var2 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-09-07T16:30:00, 2010-03-07T15:00:00) := REPLA CE DAY OF var2 WITH 7;

var3 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-09-12T16:30:00, 2010-03-23T15:00:00) := REPLA CE DAY OF var3 WITH (12,
23);

null := REPLACE DAY OF var3 WITH (12, 23, 24);

9.10.16 Replace Hour [of] … With (binary, right-associative)

The replace hour of … with operator allows the replacement of the hour part of a time or time-of-day. The
result of the replace hour of … with operator preserves the primary time of the first argument. The
numeric second argument must evaluate to a positive integer between 0 and 23, otherwise, null is returned.
Any fractional part of the second argument will be removed before evaluation. For example:

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 65

Revision date: 2011-03-25 Print date: 5/17/2011

<n:times> := REPLACE HOUR [OF] <n:times> WITH <n:nu mber>;

var1 := 1990-03-15T15:00:00;

1990-03-15T11:00:00 := REPLACE HOUR OF var1 WITH 11 ;

(1990-03-15T11:00:00, 1990-03-15T10:00:00) := REPLA CE HOUR OF var1 WITH (11,
10);

null := REPLACE HOUR OF var1 WITH 100;

null := REPLACE HOUR OF var1 WITH "7";

10:00 := REPLACE HOUR OF 18:00 WITH 10;

var2 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-09-21T20:30:00, 2010-03-15T20:00:00) := REPLA CE HOUR OF var2 WITH 20;

var3 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-09-21T07:30:00, 2010-03-15T09:00:00) := REPLA CE HOUR OF var3 WITH (7,
9);

null := REPLACE HOUR OF var3 WITH (7, 9, 13);

9.10.17 Replace Minute [of] … With (binary, right-associative)

The replace minute of … with operator allows the redefinition of the minute part of a time or time-of-day.
The result of the replace minute of … with operator preserves the primary time of the first argument. The
numeric second argument must evaluate to a positive integer between 0 and 59, otherwise, null is returned.
Any fractional part of the second argument will be removed before evaluation. For example:

<n:times> := REPLACE MINUTE [OF] <n:times> WITH <n: number>;

var1 := 1990-03-15T15:00:00;

1990-03-15T15:11:00 := REPLACE MINUTE OF var1 WITH 11;

(1990-03-15T15:11:00, 1990-03-15T15:10:00) := REPLA CE MINUTE OF var1 WITH
(11, 10);

null := REPLACE MINUTE OF var1 WITH 100;

null := REPLACE MINUTE OF var1 WITH "7";

18:10 := REPLACE MINUTE OF 18:00 WITH 10;

var2 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-09-21T16:15:00, 2010-03-15T15:15:00) := REPLA CE MINUTE OF var2 WITH 15;

var3 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-09-21T16:25:00, 2010-03-15T15:23:00) := REPLA CE MINUTE OF var3 WITH
(25, 23);

null := REPLACE MINUTE OF var3 WITH (25, 23, 7);

9.10.18 Replace Second [of] … With (binary, right-associative)

The replace second of … with operator allows the redefinition of the second part of a time or time-of-day.
The result of the replace second of … with operator preserves the primary time of the first argument. The
numeric second argument must be a positive number greater than or equal to 0 and strictly lower than 60,
otherwise, null is returned. Fractional replacement parameters are allowed for the replace second of …
with operator. For example:

<n:times> := REPLACE SECOND [OF] <n:times> WITH <n: number>;

var1 := 1990-03-15T15:00:00;

1990-03-15T15:00:11 := REPLACE SECOND OF var1 WITH 11;

(1990-03-15T15:00:11, 1990-03-15T15:00:10) := REPLA CE SECOND OF var1 WITH
(11, 10);

null := REPLACE SECOND OF var1 WITH -100;

null := REPLACE SECOND OF var1 WITH "7";

18:00:10 := REPLACE SECOND OF 18:00 WITH 10;

var2 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-09-21T16:30:33, 2010-03-15T15:00:33) := REPLA CE SECOND OF var2 WITH 33;

var3 := (2010-09-21T16:30:00, 2010-03-15T15:00:00);

(2010-09-21T16:30:23, 2010-03-15T15:00:42) := REPLA CE SECOND OF var3 WITH
(23, 42);

null := REPLACE SECOND OF var3 WITH (23, 42, 55);

Arden Syntax for Medical Logic Systems

Page 66 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

9.11 Duration Operators
The behavior of the duration data type is explained in Section 8.5.2. Because the precedence of the
temporal operators is lower than that of the duration operators, 3 hours before 3 days ago is parsed as (3
hours) before ((3 days) ago), and it would return what time it was three days and three hours before the
current time.

9.11.1 Year (unary, non-associative)

The year operator has one synonym: years. It creates a months duration from a number: one year is 12
months. Its usage is:

<n:duration> := <n:number> YEAR

24 months := 2 YEAR

9.11.2 Month (unary, non-associative)

The month operator has one synonym: months. It creates a months duration from a number. Its usage is:

<n:duration> := <n:number> MONTH

9.11.3 Week (unary, non-associative)

The week operator has one synonym: weeks. It creates a seconds duration from a number: one week is
604800 seconds. Its usage is:

<n:duration> := <n:number> WEEK

9.11.4 Day (unary, non-associative)

The day operator has one synonym: days. It creates a seconds duration from a number: one day is 86400
seconds. Its usage is:

<n:duration> := <n:number> DAY

9.11.5 Hour (unary, non-associative)

The hour operator has one synonym: hours. It creates a seconds duration from a number: one hour is 3600
seconds. Its usage is:

<n:duration> := <n:number> HOUR

9.11.6 Minute (unary, non-associative)

The minute operator has one synonym: minutes. It creates a seconds duration from a number: one minute
is 60 seconds. Its usage is:

<n:duration> := <n:number> MINUTE

9.11.7 Second (unary, non-associative)

The second operator has one synonym: seconds. It creates a seconds duration from a number. Its usage is:

<n:duration> := <n:number> SECOND

9.12 Aggregation Operators

9.12.1 General Properties:

The aggregation operators do not follow the default list handling, or the default primary time handling.
They perform aggregation on a list. That is, they take a list as an argument (they are all unary) and return a
single item as a result. Unless otherwise noted, if all the elements of the list have the same primary time,
the result maintains that primary time (otherwise the primary time is lost). An argument that is a single item
is treated as a list of length one.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 67

Revision date: 2011-03-25 Print date: 5/17/2011

Each of the operators may be followed by the word of. Parentheses are not required. For example, these are
all the same:

SUM a_list

SUM OF a_list

SUM(a_list)

SUM OF(a_list)

Multiple aggregation and transformation operators (for example, see Section 9.14) may be placed in an
expression without parentheses; for example:

AVERAGE OF LAST 3 FROM a_list

9.12.2 Count (unary, right associative)

The count operator returns the number of items (including null items) in a list. Count never returns null .
The result loses the primary time. Its usage is:

<1:number> := COUNT <n:any-type>

4 := COUNT (12,13,14,null)

1 := COUNT "asdf"

0 := COUNT ()

1 := COUNT null

9.12.3 Exist (unary, right associative)

The exist operator has one synonym: exists. It returns true if there is at least one non-null item in a list of
any type. If the list argument is a single item, then it is treated as a list of length one. Exist never returns
null . If all the elements of the list have the same primary time, the result maintains that primary time
(otherwise the primary time is lost). Its usage is:

<1:Boolean> := EXIST <n:any-type>

true := EXIST (12,13,14)

false := EXIST null

false := EXIST ()

true := EXIST ("plugh",null)

9.12.4 Average (unary, right associative)

The average operator has one synonym: avg. It calculates the average of a number, time, or duration list. If
all the elements of the list have the same primary time, the result maintains that primary time (otherwise the
primary time is lost). Its usage is:

<1:number> := AVERAGE <n:number>

14 := AVERAGE (12,13,17)

3 := AVERAGE 3

null := AVERAGE ()

<1:time> := AVERAGE <n:times>

1990-03-11T03:10:00 := AVERAGE (1990-03-10T03:10:00 , 1990-03-12T03:10:00)

null := AVERAGE (03:10:00, 1990-03-12T03:10:00)

04:10:00 := AVERAGE (03:10:00, 05:10:00)

<1:duration> := AVERAGE <n:duration>

3 days := AVERAGE (2 days, 3 days, 4 days)

9.12.5 Median (unary, right associative)

The median operator calculates the median value of a number, time, or duration list. The list is first sorted.
If there is an odd number of items, it selects the middle value. If there is an even number of items, it
averages the middle two values. If there is a tie, then it selects the latest of those elements that have a
primary time. If a single element is selected or if the two selected elements of the list have the same
primary time, the result maintains that primary time (otherwise the primary time is lost). Its usage is:

<1:number> := MEDIAN <n:number>

Arden Syntax for Medical Logic Systems

Page 68 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

13 := MEDIAN (12,17,13)

3 := MEDIAN 3

null := MEDIAN ()

<1:times> := MEDIAN <n:times>

1990-03-11T03:10:00 := MEDIAN (1990-03-10T03:10:00, 1990-03-11T03:10:00,
1990-03-28T03:10:00)

03:10:00 := MEDIAN (03:10:00, 02:10:00, 23:10:00)

<1:duration> := MEDIAN <n:duration>

3 days := MEDIAN (1 hour, 3 days, 4 years)

9.12.6 Sum (unary, right associative)

The sum operator calculates the sum of a number or duration list. If all the elements of the list have the
same primary time, the result maintains that primary time (otherwise the primary time is lost). Its usage is:

<1:number> := SUM <n:number>

39 := SUM (12,13,14)

3 := SUM 3

0 := SUM ()

<1:duration> := SUM <n:duration>

7 days := SUM (1 day, 6 days)

9.12.7 Stddev (unary, right associative)

The stddev operator returns the sample standard deviation of a numeric list. If all the elements of the list
have the same primary time, the result maintains that primary time (otherwise the primary time is lost). Its
usage is:

<1:number> := STDDEV <n:number>

1.58113883 := STDDEV (12,13,14,15,16)

null := STDDEV 3

null := STDDEV ()

9.12.8 Variance (unary, right associative)

The variance operator returns the sample variance of a numeric list. If all the elements of the list have the
same primary time, the result maintains that primary time (otherwise the primary time is lost). Its usage is:

<1:number> := VARIANCE <n:number>

2.5 := VARIANCE (12,13,14,15,16)

null := VARIANCE 3

null := VARIANCE ()

9.12.9 Minimum (unary, right associative)

The minimum operator has one synonym: min. It returns the smallest value in a homogeneous list of an
ordered type (that is, all numbers, all times, all durations, or all strings), using the <= operator (see Section
9.5.4). If there is a tie, it selects the element with the latest primary time. The primary time of the selected
argument is maintained. Its usage is:

<1:ordered> := MINIMUM <n:ordered>

12 := MINIMUM (12,13,14)

3 := MIN 3

null := MINIMUM ()

null := MINIMUM (1,"abc")

The minimum operator can also be extended by the using modifier as defined for the sort operator (see
9.2.4) to allow more complex calculations of the minimum. For example:

<1:object> := minimum <n:object> using it.age; // will return the youngest

 // person from a list of person s (represented by objects)

180 := minimum (0, 30, 90, 180, 200, 300) using cos ine of it;

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 69

Revision date: 2011-03-25 Print date: 5/17/2011

9.12.10 Maximum (unary, right associative)

The maximum operator has one synonym: max. It returns the largest value in a homogeneous list of an
ordered type, using the >= operator (see Section 9.5.6). If there is a tie, it selects the element with the latest
primary time. The primary time of the selected argument is maintained. Its usage is:

<1:ordered> := MAXIMUM <n:ordered>

14 := MAXIMUM (12,13,14)

3 := MAXIMUM 3

null := MAXIMUM ()

null := MAXIMUM (1,"abc")

The maximum operator can also be extended by the using modifier as defined for the sort operator (see
9.2.4) to allow more complex calculations of the maximum. For example:

<1:object> := maximum <n:object> using it.age; // will return the oldest

 // person from a list of person s (represented by objects)

90 := maximum (0, 30, 90, 180, 200, 300) using sinu s of it;

9.12.11 Last (unary, right associative)

The last operator returns the value at the end of a list, regardless of type. If the list is empty, null is
returned. The expression last x is equivalent to x[count x]. Last on the result of a time-sorted query will
return the most recent value. The primary time of the selected argument is maintained. Note that last is
different than last specified in Arden Syntax version E 1460-92. That operator is now called latest (see
Section 9.12.16). Its usage is:

<1:any-type> := LAST <n:any-type>

14 := LAST (12,13,14)

3 := LAST 3

null := LAST ()

9.12.12 First (unary, right associative)

The first operator returns the value at the beginning of a list. If the list is empty, null is returned. The
expression first x is equivalent to x[1]. First on the result of a time-sorted query will return the
earliest value. The primary time of the selected argument is maintained. Note that first is different than
first specified in Arden Syntax version E 1460-92. That operator is now called earliest (see Section
9.12.17). Its usage is:

<1:any-type> := FIRST <n:any-type>

12 := FIRST (12,13,14)

3 := FIRST 3

null := FIRST ()

9.12.13 Any [IsTrue] (unary, right associative)

The any operator returns true if any of the items in a list is true. It returns false if they are all false.
Otherwise it returns null . The special case of a list with zero members, results in false. If all the elements of
the list have the same primary time, the result maintains that primary time (otherwise the primary time is
lost). The optional keyword “IsTrue” can be used to increase the readability of statements using the any
operator. Its usage is:

<1:Boolean> := ANY [ISTRUE] <n:any-type>

true := ANY IsTrue (true,false,false)

false := ANY false

false := ANY ()

null := ANY (3, 5, "red")

false := ANY (false, false)

null := ANY (false, null)

Arden Syntax for Medical Logic Systems

Page 70 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

9.12.14 All [AreTrue] (unary, right associative)

The all operator returns true if all of the items in a list are true. It returns false if any of the items is false.
Otherwise it returns null . The special case of a list with zero members, results in true. If all the elements of
the list have the same primary time, the result maintains that primary time (otherwise the primary time is
lost). The optional keyword “AreTrue ” can be used to increase the readability of statements using the all
operator. Its usage is:

<1:Boolean> := ALL [ARETRUE] <n:any-type>

false := ALL AreTrue (true,false,false)

false := ALL false

true := ALL ()

null := ALL (3, 5, "red")

null := ALL (true, null)

9.12.15 No [IsTrue] (unary, right associative)

The no operator returns true if all of the items in a list are false. It returns false if any of the items is true.
Otherwise it returns null . The special case of a list with zero members, results in true. If all the elements of
the list have the same primary time, the result maintains that primary time (otherwise the primary time is
lost). The optional keyword “IsTrue” can be used to increase the readability of statements using the no
operator. Its usage is:

<1:Boolean> := NO [ISTRUE] <n:any-type>

false := NO IsTrue (true,false,false)

true := NO false

true := NO ()

null := NO (3, 5, "red")

null := NO (false, null)

9.12.16 Latest (unary, right associative)

The latest operator returns the value with the latest primary time in a list. If any of the elements do not
have primary times, the result is null (the argument can always be qualified by where time of it is present,
if this is not desired behavior). If the list is empty, null is returned. If more than one element has the latest
primary time, the first (with the lowest index) of these elements will be returned. The primary time of the
selected argument is maintained. Its usage is:

<1:any-type> := LATEST <n:any-type>

null := LATEST ()

"penicillin" := LATEST ("penicillin", "ibuprofen", "pseudoephedrine HCL");

(T16:40) (T16:40) (T14:05) (T14:04)

The latest operator can also be extended by the using modifier as defined for the sort operator (see 9.2.4) to
allow more complex calculations of the latest value. For example:

<1:object> := latest <n:object> using it.birthday; //will return the youngest

 // person from a list of person s (represented by objects)

9.12.17 Earliest (unary, right associative)

The earliest operator returns the value with the earliest primary time in a list. If any of the elements do not
have primary times, the result is null (the argument can always be qualified by where time of it is present,
if this is not desired behavior). If more than one element has the earliest primary time, the first (with the
lowest index) of these elements will be returned. If the list is empty, null is returned. The primary time of
the argument is maintained. Its usage is:

<1:any-type> := EARLIEST <n:any-type>

null := EARLIEST ()

" pseudoephedrine HCL" := EARLIEST ("penicillin", " ibuprofen", "pseudoephedrine HCL");

(T14:04) (T16:40) (T14:05) (T14:04)

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 71

Revision date: 2011-03-25 Print date: 5/17/2011

The earliest operator can also be extended by the using modifier as defined for the sort operator (see 9.2.4)
to allow more complex calculations of the earliest value. For example:

<1:object> := earliest <n:object> using it.birthday ; //will return the

 // youngest person from a list of persons (represented by objects)

9.12.18 Element (binary)

The element ([…………]) operator is used to select one or more elements from a list, based on ordinal position
starting at 1 for the first element. The arguments to "index" are a list expression (to the left of the […………]) and
a list of integers (inside the[…………]). The element operator maintains the primary times of the selected
arguments. Its usage is:

<n:any-type> := <k:any-type>[n:index]

20 := (10,20,30,40)[2]

() := (10,20)[()]

(null,20) := (10,20)[1.5,2]

(10,30,50) := (10,20,30,40,50)[1,3,5]

(10,30,50) := (10,20,30,40,50)[1,(3,5)]

(10,20,30) := (10,20,30,40,50)[1 seqto 3]

9.12.19 Extract Characters ... (unary, right associative)

The extract characters operator expects a string as its argument. It returns a list of the single characters in
the string. If the argument has more than one element, the elements are first concatenated, as for the ||
operator (see Section 9.8.1). If the argument is an empty list, the result is the empty list (). The string
operator (Section 9.8.3) can be used to put the list back together; and the index operator (Section 9.12.18)
can be used to select certain items from the list. The primary times of its arguments are lost. Its usage is:

<n:string> := EXTRACT CHARACTERS <m:string>

("a","b","c") := EXTRACT CHARACTERS "abc"

("a","b","c") := EXTRACT CHARACTERS ("ab","c")

() := EXTRACT CHARACTERS ()

() := EXTRACT CHARACTERS ""

"edcba" := STRING REVERSE EXTRACT CHARACTERS "abcde "

9.12.20 Seqto (binary, non-associative)

The seqto operator generates a list of integers in ascending order. Both arguments must be single integers;
otherwise null is returned. If the first argument is greater than the second argument, the result is the empty
list. The primary times are lost. Its usage is:

<n:number> := <1:number> SEQTO <1:number>

(2,3,4) := 2 SEQTO 4

() := 4 SEQTO 2

null := 4.5 SEQTO 2

(2) := 2 SEQTO 2

(-3,-2,-1) := (-3) SEQTO (-1)

(2,4,6,8) := 2 * (1 SEQTO 4)

null := (1.5 seqto 5)

9.12.21 Reverse (unary, right-associative)

The reverse operator generates a new list with the elements in the reverse order. The primary times of its
arguments are maintained. Its usage is:

<n:any-type> := REVERSE <n:any-type>

(3,2,1) := reverse (1,2,3)

(6,5,4,3,2,1) := reverse (1 seqto 6)

() := reverse ()

Arden Syntax for Medical Logic Systems

Page 72 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

9.12.22 Index Extraction Aggregation operators

These operators behave similarly to their non-index extracting counterparts with the exception that they
return the value of the index of the element that matches the specified criteria rather than the value of the
element. These operators do not maintain primary times.

9.12.22.1 Index Latest (unary, right associative)

The index latest operator returns the index of the element with the latest primary time in a list. If any of the
elements do not have primary times, the result is null (the argument can always be qualified by where time
of it is present, if this is not desired behavior). If the list is empty, null is returned. The primary time of the
selected argument is maintained. Its usage is:

<1:any-type> := INDEX LATEST <n:any-type>

null := INDEX LATEST ()

1 := INDEX LATEST ("penicillin", "ibuprofen", "psue dophedrine HCL");

 (T16:40) (T14:05) (T14:04)

9.12.22.2 Index Earliest (unary, right associative)

The index earliest operator returns the index of the element with the earliest primary time in a list. If any
of the elements do not have primary times, the result is null (the argument can always be qualified by
where time of it is present, if this is not desired behavior). If the list is empty, null is returned. The
primary time of the argument is maintained. Its usage is:

<1:any-type> := INDEX EARLIEST <n:any-type>

null := INDEX EARLIEST ()

3 := INDEX EARLIEST ("penicillin", "ibuprofen", "ps uedophedrine HCL");

 (T16:40) (T14:05) (T14:04)

9.12.22.3 Index Minimum (unary, right associative)

The index minimum operator has one synonym: index min. It returns the index of the element with the
smallest value in a homogeneous list of an ordered type (that is, all numbers, all times, all durations, or all
strings), using the <= operator (see Section 9.5.4). If there is a tie, it selects the element with the latest
primary time. Its usage is:

<1:ordered> := INDEX MINIMUM <n:ordered>

1 := INDEX MINIMUM (12,13,14)

1 := INDEX MIN 3

null := INDEX MINIMUM ()

null := INDEX MINIMUM (1,"abc")

9.12.22.4 Index Maximum (unary, right associative)

The index maximum operator has one synonym: index max. It returns the largest value in a homogeneous
list of an ordered type, using the >= operator (see Section 9.5.6). If there is a tie, it selects the element with
the latest primary time. The primary time of the selected argument is maintained. Its usage is:

<1:ordered> := INDEX MAXIMUM <n:ordered>

3 := INDEX MAXIMUM (12,13,14)

1 := INDEX MAX 3

null := INDEX MAXIMUM ()

null := INDEX MAXIMUM (1,"abc")

9.12.22.5 Absence of other index operators

There are no index extraction equivalents for last and first as index first would always return 1 and index
last is equivalent to the count operator.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 73

Revision date: 2011-03-25 Print date: 5/17/2011

9.13 Query Aggregation Operators

9.13.1 General Properties:

The query aggregation operators do not follow the default list handling, or the default primary time
handling. They perform aggregation on a list. That is, they take a list as one argument and return a single
item as a result. If the list argument is a single item, then it is treated as a list of length one. Unless
otherwise specified, if all the elements of the list have the same primary time, the result maintains that
primary time (otherwise the primary time lost).

The unary query aggregation operators (that is, those that do not include the from word) may optionally be
followed by of.

The query aggregation operators follow the default time-of-day handling, when used with a time-of-day
argument. The time-of-day value is a point in time within the current day.

9.13.2 Nearest ... From (binary, right associative)

The nearest ... from operator expects a time as its first argument and a list as its second argument. It selects
the item from the list whose time of occurrence is nearest the specified time. If any of the elements do not
have primary times, the result is null (the argument can always be qualified by where time of it is present,
if this is not desired behavior). In the case of a tie, the element with the smallest index is used. The primary
times of the argument are maintained. Assume that data is a list that is the result of a query with these
values: 12, 13, 14; data has these primary times:1990-03-15T15:00:00, 1990-03-16T15:00:00, 1990-03-
17T15:00:00; and now is 1990-03-18T16:00:00. The usage of the nearest ... from operator is:

<n:any-type> := NEAREST <1:times> FROM <m:any-type>

13 := NEAREST (2 days ago) FROM data

null := NEAREST (2 days ago) FROM (3,4)

null := NEAREST (2 days ago) FROM ()

14 := NEAREST 12:00 FROM data

// the same as NEAREST 1990-03-18T12:00:00

14 := NEAREST 23:00 FROM data

// the same as NEAREST 1990-03-18T23:00:00

A more detailed example: a blood glucose query result contains following values 7.0, 10.0, 12.0,
query_result has the primary times 1990-03-18T12:00:00, 1990-03-18T12:30:00, 1990-03-18T13:00:00,
and now is 1990-03-18T16:00:00.

The blood glucose level before lunch can be retrieved with:

7.0 := NEAREST 12:00 FROM query_result

The blood glucose level after ½ hour is:

12.0 := NEAREST 12:30 FROM query_result

9.13.3 Index Nearest ... From (binary, right associative)

The index nearest ... from operator functions exactly as the nearest … from operator (Section 9.13.2),
except that it returns the index of the element rather than the element itself. Index nearest … from does
not maintain primary time. Assume that data is a list that is the result of a query with these values: 12, 13,
14; data has these primary times:1990-03-15T15:00:00, 1990-03-16T15:00:00, 1990-03-17T15:00:00; and
now is 1990-03-18T16:00:00. The usage of the index nearest ... from operator is:

<n:number> := INDEX NEAREST <n:time> FROM <m:any-ty pe>

2 := INDEX NEAREST (2 days ago) FROM data

null := INDEX NEAREST (2 days ago) FROM (3,4)

Arden Syntax for Medical Logic Systems

Page 74 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

9.13.4 Index Of … From … (binary, right-associative)

The index of ... from operator expects an arbitrary data value as its first argument and a list as its second
argument. It returns a list containing the indices of the occurrences of the given data value within the
provided list. If there is more than one occurrence all occurrences are returned. The result is null if no such
value is found in the list or in case of invalid parameters. The primary times of the arguments are not
maintained. The usage of the index of ... from operator is:

<n:number> := INDEX OF <1:any-type> FROM <m:any-typ e>

(4) := INDEX OF 4 FROM (1, 2, 3, 4, "5", "six", 7);

(5) := INDEX OF “5” FROM (1, 2, 3, 4, "5", "six", 7);

null := INDEX OF 5 FROM (1, 2, 3, 4, "5", "six", 7) ;

null := INDEX OF null FROM (1, 2, 3, 4, "5", "six", 7);

null := INDEX OF 5 FROM null;

(1) := INDEX OF null FROM null;

(1) := INDEX OF 5 FROM 5;

(1,3,5) := INDEX OF 1 FROM (1, 2, 1, 4, 1, "six", 7);

(3,5) := INDEX OF null FROM (1, 2, null, 4, null, " six", 7);

9.13.5 At Least ... [IsTrue|AreTrue] From … (binary, right-associative)

The at least ... from operator expects a number (call it N) as its first argument and a homogeneous list of
Boolean as its second argument. The at least … from operator returns true if at least N items of the list are
true. If the first argument is not a number or the second parameter contains a non-Boolean, null is returned.
If N is greater than the cardinality of the list, false is returned. The primary times of the arguments are not
maintained. The optional keywords “IsTrue” and “AreTrue ” can be used to increase the readability of
statements using the at least … from operator. The usage of the operator is:

<1:Boolean> := AT LEAST <1:number> [ISTRUE|ARETRUE] FROM <n:Boolean>

TRUE := AT LEAST 1 IsTrue FROM (TRUE, TRUE, FALSE, FALSE)

TRUE := AT LEAST 2 AreTrue FROM (TRUE, TRUE, TRUE, FALSE)

FALSE := AT LEAST 2 FROM (TRUE, FALSE, FALSE, FALSE)

FALSE := AT LEAST 7 AreTrue FROM (TRUE, FALSE, FALS E)

null := AT LEAST 2 YEARS FROM (TRUE, FALSE, FALSE)

null := AT LEAST 2 FROM (TRUE, "true", FALSE)

9.13.6 At Most ... [IsTrue|AreTrue] From … (binary, right-associative)

The at most ... from operator expects a number (call it N) as its first argument and a homogeneous list of
Boolean as its second argument. The at most … from operator returns true if at most N items of the list
are true. If the first argument is not a number or the second parameter contains a non-Boolean, null is
returned. If N is greater than the cardinality of the list, false is returned. The primary times of the arguments
are not maintained. The optional keywords “IsTrue” and “AreTrue ” can be used to increase the readability
of statements using the at most … from operator. The usage of the operator is:

<1:Boolean> := AT MOST <1:number> [ISTRUE|ARETRUE] FROM <n:Boolean>

TRUE := AT MOST 2 AreTrue FROM (TRUE, TRUE, FALSE, FALSE)

FALSE := AT MOST 1 IsTrue FROM (TRUE, TRUE, TRUE, F ALSE)

TRUE := AT MOST 2 FROM (TRUE, FALSE, FALSE, FALSE)

FALSE := AT MOST 7 FROM (TRUE, FALSE, FALSE)

null := AT MOST 2 YEARS FROM (TRUE, FALSE, FALSE)

null := AT MOST 2 FROM (TRUE, "true", FALSE)

9.13.7 Slope (unary, right associative)

The slope operator performs a regression and returns the slope for the result of a query assuming the y axis
contains the values and the x axis contains the times. The result is expressed as units per day, but is

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 75

Revision date: 2011-03-25 Print date: 5/17/2011

considered to be a number. Null results if the argument has fewer than two items. If all the elements of the
list have the same primary time, the result is null . If one or more of the primary times is non-existent, the
result is null . The result of the slope operator does not have a primary time. Its usage is (assuming the same
data as above):

<1:number> := SLOPE <n:number>

1 := SLOPE data

null := SLOPE (3,4)

9.14 Transformation Operators

9.14.1 General Properties:

The transformation operators do not follow the default list handling, or the default primary time handling.
They transform a list, producing another list. If the list argument is a single item, then it is treated as a list
of length one. The result is always a list even if there is only one item (except if there is an error, in which
case the result is null).

Operators that are unary (that is, that do not include the from word) may optionally be followed by of.

9.14.2 Minimum ... From (binary, right associative)

The minimum ... from operator has one synonym: min ... from. It expects a number (call it N) as its first
argument and a homogeneous list of an ordered type as its second argument. It returns a list with the N
smallest items from the argument list, in the same order that they are in the second argument, and with any
duplicates preserved. The result is null if N is not a non-negative integer. If there are not enough items in
the argument list, then as many as possible are returned. If there is a tie, then it selects the latest of those
elements that have a primary time. The primary times of the argument are maintained. Its usage is:

<n:ordered> := MINIMUM <1:number> FROM <m:ordered>

(11,12) := MINIMUM 2 FROM (11,14,13,12)

(,3) := MINIMUM 2 FROM 3

null := MINIMUM 2 FROM (3, "asdf")

() := MINIMUM 2 FROM ()

() := MINIMUM 0 FROM (2,3)

(1,2,2) := MINIMUM 3 FROM (3,5,1,2,4,2)

The minimum … from operator can also be extended by the using modifier as defined for the sort operator
(see 9.2.4) to allow more complex calculations of the minimum. For example:

<n:object> := minimum 2 from <n:object> using it.ag e; //will return the two

 // youngest persons from a list of person s (represented by objects)

9.14.3 Maximum ... From (binary, right associative)

The maximum ... from operator has one synonym: max ... from. It expects a number (call it N) as its first
argument and a homogeneous list of an ordered type as its second argument. It returns a list with the N
largest items from the argument list, in the same order that they are in the second argument, and with any
duplicates preserved. The result is null if N is not a non-negative integer. If there are not enough items in
the argument list, then as many as possible are returned. If there is a tie, then it selects the latest of those
elements that have a primary time. The primary times of the argument are maintained. Its usage is:

<n:ordered> := MAXIMUM <1:number> FROM <m:ordered>

(14,13) := MAXIMUM 2 FROM (11,14,13,12)

(,3) := MAXIMUM 2 FROM 3

null := MAXIMUM 2 FROM (3, "asdf")

() := MAXIMUM 2 FROM ()

() := MAXIMUM 0 FROM (1,2,3)

(5,4,4) := MAXIMUM 3 FROM (1,5,2,4,1,4)

The maximum … from operator can also be extended by the using modifier as defined for the sort
operator (see 9.2.4) to allow more complex calculations of the maximum. For example:

Arden Syntax for Medical Logic Systems

Page 76 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

<n:object> := maximum 2 from <n:object> using it.ag e; //will return the two

 // oldest persons from a list of persons (represented by objects)

9.14.4 First ... From (binary, right associative)

The first ... from operator expects a number (call it N) as its first argument and a list as its second
argument. It returns a list with the first N items from the argument list. The result is null if N is not a non-
negative integer. If the list is the result of a time-sorted query, then the returned items are the earliest in
time. If there are not enough items in the argument list, then as many as possible are returned. This means
that first 1 from x differs from first x if x is empty; the former returns () and the latter returns null . The
primary times of the argument are maintained. Its usage is:

<n:any-type> := FIRST <1:number> FROM <m:any-type>

(11,14) := FIRST 2 FROM (11,14,13,12)

(,3) := FIRST 2 FROM 3

(null,1) := FIRST 2 FROM (null,1,2,null)

() := FIRST 2 FROM ()

9.14.5 Last ... From (binary, right associative)

The last ... from operator expects a number (call it N) as its first argument and a list as its second argument.
It returns a list with the last N items from the argument list. The result is null if N is not a non-negative
integer. If the list is the result of a time-sorted query, then the returned items are the latest in time. If there
are not enough items in the argument list, then as many as possible are returned. This means that last 1
from x differs from last x if x is empty; the former returns () and the latter returns null . The primary times
of the argument are maintained. Its usage is:

<n:any-type> := LAST <1:number> FROM <m:any-type>

(13,12) := LAST 2 FROM (11,14,13,12)

(,3) := LAST 2 FROM 3

(2,null) := LAST 2 FROM (null,1,2,null)

() := LAST 2 FROM ()

9.14.6 Sublist …Elements [Starting at …] From … (ternary, right-associative)

The sublist … elements [starting at …] from operator returns a sublist of elements from a designated
target list and is similar to the substring operator (see 9.8.10). This sublist consists of the specified number
of elements from the source list beginning with the starting position (either the first elements of the list or
the specified location within the list). For example sublist 3 elements starting at 2 from (“E”, ”x”, ”a ”,
”m”, ”p”, ”l”, ”e”) would return ("x”, ”a”, ”m") –a 3 element list beginning with the second element in
the source list.

The target list must be a list data type, the starting location within the list must be a positive integer, and the
number of elements to be returned must be an integer, or the operator returns null . If target is not a list data
type, a list with one element is assumed. If a starting position is specified, its value must be an integer
between 1 and the length of the list, otherwise an empty list is returned. If the requested number of
elements is greater than the length of the list, the entire list is returned. If a starting point is specified, and
the requested number of elements is greater than the size of the list minus the starting point, the resulting
list is the original list to the right of and including the starting position. If the number of elements requested
is positive the elements are counted from left to right. If the number of elements requested is negative, the
elements are counted from right to left. The elements in a sublist are always returned in the order that they
appear in the original list. Default list handling is observed. Primary times are preserved.

<n:any-type> := SUBLIST <1:number> ELEMENTS [STARTI NG AT <1:number>] FROM
<m:any-type>

(1, 2) := SUBLIST 2 ELEMENTS FROM (1, 2, 3, 4, 5)

(1, 2, 3, 4, 5) := SUBLIST 100 ELEMENTS FROM (1, 2 , 3, 4, 5)

(4, 5, 6) := SUBLIST 3 ELEMENTS STARTING AT 4 FROM (1, 2, 3, 4, 5, 6, 7)

(4, 5, 6, 7) := SUBLIST 20 ELEMENTS STARTING AT 4 F ROM (1, 2, 3, 4, 5, 6, 7)

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 77

Revision date: 2011-03-25 Print date: 5/17/2011

null := SUBLIST 2.3 ELEMENTS FROM (1, 2, 3, 4, 5, 6 , 7)

null := SUBLIST 2 ELEMENTS STARTING AT 4.7 FROM (1, 2, 3, 4, 5, 6, 7)

null := SUBLIST 3 ELEMENTS STARTING AT "c" FROM (1, 2, 3, 4, 5, 6, 7)

null := SUBLIST "b" ELEMENTS STARTING AT 4 FROM (1, 2, 3, 4, 5, 6, 7)

() := SUBLIST 3 ELEMENTS STARTING AT 4 FROM 281471

(4) := SUBLIST 1 ELEMENTS STARTING AT 4 FROM (1, 2, 3, 4, 5, 6, 7)

(4) := SUBLIST –1 ELEMENTS STARTING AT 4 FROM (1, 2 , 3, 4, 5, 6, 7)

(2, 3, 4) := SUBLIST –3 ELEMENTS STARTING AT 4 FROM (1, 2, 3, 4, 5, 6, 7)

(1) := SUBLIST 1 ELEMENTS FROM (1, 2, 3, 4, 5, 6, 7)

9.14.7 Increase (unary, right associative)

The increase operator returns a list of the differences between successive items in a homogeneous numeric,
time, or duration list. There is one fewer item in the result than in the argument; if the argument is an empty
list, then null is returned. The primary time of the second item in each successive pair is kept. Its usage is:

<n:number> := INCREASE <m:number>

(4,-2,-1) := INCREASE (11,15,13,12)

() := INCREASE 3

null := INCREASE ()

<n: duration> := INCREASE <m:times>

(1 day) := INCREASE (1990-03-01,1990-03-02)

(1 hour) := INCREASE (13:00:00,14:00:00)

<n:duration> := INCREASE <m:duration>

(1 day) := INCREASE (1 day, 2 days)

9.14.8 Decrease (unary, right associative)

The decrease operator returns a list of the negative differences between successive items in a homogeneous
numeric, time, or duration list. There is one fewer item in the result than in the argument; if the argument is
an empty list, then null is returned. Decrease is the additive inverse of increase. The primary time of the
second item in each successive pair is kept. Its usage is:

<n:number> := DECREASE <m:number>

(-4,2,1) := DECREASE (11,15,13,12)

() := DECREASE 3

null := DECREASE ()

<n: duration> := DECREASE <m:times>

((-1) day) := DECREASE (1990-03-01,1990-03-02)

((-1) hour) := DECREASE (13:00:00,14:00:00)

<n:duration> := DECREASE <m:duration>

((-1) day) := DECREASE (1 day, 2 days)

9.14.9 % Increase (unary, right associative)

The % increase operator has one synonym: percent increase. It returns a list of the percent increase
between items in successive pairs in a homogeneous number or duration list (the denominator is the first
item in each pair; if it is zero, then null is returned). The primary time of the second item in each successive
pair is kept. Its usage is:

<n:number> := % INCREASE <m:number>

(36.3636,-13.3333) := % INCREASE (11,15,13)

() := % INCREASE 3

null := % INCREASE ()

<n:number> := % INCREASE <m:duration>

Arden Syntax for Medical Logic Systems

Page 78 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

(100) := % INCREASE (1 day, 2 days)

9.14.10 % Decrease (unary, right associative)

The % decrease operator has one synonym: percent decrease. It returns a list of the percent decrease
between items in successive pairs in a homogeneous number or duration list (the denominator is the first
item in each pair, if it is zero, then null is returned). The primary time of the second item in each successive
pair is kept. Its usage is:

<n:number> := % DECREASE <m:number>

(-36.3636,13.3333) := % DECREASE (11,15,13)

() := % DECREASE 3

null := % DECREASE ()

<n:number> := % DECREASE <m:duration>

(-100) := % DECREASE (1 day, 2 days)

9.14.11 Earliest ... From (binary, right associative)

The earliest ... from operator expects a number (call it N) as its first argument and a list as its second
argument. It returns a list with the earliest N items from the argument list, in the order they appear in the
argument list. The result is null if N is not a non-negative integer. If any of the elements do not have
primary times, the result is null (the argument can always be qualified by where time of it is present, if
this is not desired behavior). If there are not enough items in the argument list, then as many as possible are
returned. This means that earliest 1 from x differs from earliest x if x is empty; the former returns () and
the latter returns null . The primary times of the argument are maintained. Its usage is:

<n:any-type> := EARLIEST <1:number> FROM <m:any-typ e>

() := EARLIEST 2 FROM ()

The earliest … from operator can also be extended by the using modifier as defined for the sort operator
(see 9.2.4) to allow more complex calculations of the earliest value. For example:

<n:object> := earliest 2 from <n:object> using it.b irthday; //will return the

 // two oldest persons from a list of persons (represented by objects)

9.14.12 Latest ... From (binary, right associative)

The latest ... from operator expects a number (call it N) as its first argument and a list as its second
argument. It returns a list with the latest N items from the argument list, in the order they appear in the
argument list. The result is null if N is not a non-negative integer. If any of the elements do not have
primary times, the result is null (the argument can always be qualified by where time of it is present, if
this is not desired behavior). If there are not enough items in the argument list, then as many as possible are
returned. This means that latest 1 from x differs from latest x if x is empty; the former returns () and the
latter returns null . The primary times of the argument are maintained. Its usage is:

<n:any-type> := LATEST <1:number> FROM <m:any-type>

() := LATEST 2 FROM ()

The latest … from operator can also be extended by the using modifier as defined for the sort operator (see
9.2.4) to allow more complex calculations of the latest value. For example:

<n:object> := latest 2 from <n:object> using it.bir thday; //will return the

 // two youngest persons from a list of person s (represented by objects)

9.14.13 Index Extraction Transformation Operators

These operators behave similarly to their non-index extracting counterparts with the exception that they
return the value of the index of the element that matches the specified criteria rather than the element itself.
These operators do not maintain primary times.

9.14.13.1 Index Minimum ... From (binary, right associative)

The index minimum ... from operator has one synonym: index min ... from. It expects a number (call it
N) as its first argument and a homogeneous list of an ordered type as its second argument. It returns a list

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 79

Revision date: 2011-03-25 Print date: 5/17/2011

with the indices of the N smallest items from the argument list, in the same order that they are in the second
argument, and with any duplicates preserved. The result is null if N is not a non-negative integer. If there
are not enough items in the argument list, then as many indices as possible are returned. If there is a tie,
then it selects the latest of those elements that have a primary time. The primary times of the argument are
not maintained. Its usage is:

<n:number> := INDEX MINIMUM <1:number> FROM <m:orde red>

(1,4) := INDEX MINIMUM 2 FROM (11,14,13,12)

(3,4,6) := INDEX MINIMUM 3 FROM (3,5,1,2,4,2)

null := INDEX MIN 2 FROM (3, "asdf")

(,1) := INDEX MINIMUM 2 FROM 3

() := INDEX MINIMUM 0 FROM (2,3)

9.14.13.2 Index Maximum ... From (binary, right associative)

The index maximum ... from operator has one synonym: index max ... from. It expects a number (call it
N) as its first argument and a homogeneous list of an ordered type as its second argument. It returns a list
with the indices of the N largest items from the argument list, in the same order that they are in the second
argument, and with any duplicates preserved. The result is null if N is not a non-negative integer. If there
are not enough items in the argument list, then as many indices as possible are returned. If there is a tie,
then it selects the latest of those elements that have a primary time. The primary times of the argument are
not maintained. Its usage is:

<n:number> := INDEX MAXIMUM <1:number> FROM <m:orde red>

(2,3) := INDEX MAXIMUM 2 FROM (11,14,13,12)

(2,3,5) := INDEX MAXIMUM 3 FROM (3,5,1,2,4,2)

null := INDEX MAX 2 FROM (3, "asdf")

(,1) := INDEX MAXIMUM 2 FROM 3

() := INDEX MAXIMUM 0 FROM (2,3)

9.14.13.3 First… From; Last… From

There are no index extraction operator parallels for first … from and last … from as these can be
generated using either the seqto operator (for first … from) or the seqto and count operators (for last …
from). Thus if these functions are needed, use the following:

Index First x From y : 1 seqto x

Index Last x From y : (count(y)-x) seqto count(y)

9.15 Query Transformation Operator

9.15.1 General Properties

The query transformation operator does not follow the default list handling, or the default primary time
handling. It transforms a list, producing another list. If the list argument is a single item, then it is treated as
a list of length one. The result is always a list even if there is only one item (except if there is an error, in
which case the result is null).

The query transformation operator can only be applied to the result of a query, since it requires that a time
be associated with each item in the argument list. Null is returned if it is used on other data.

The query transformation operator may optionally be followed by of.

9.15.2 Interval (unary, right associative)

The interval operator returns the difference between the primary times of succeeding items in a list. It is
analogous to increase. The primary times of the argument are lost. Its usage is (assuming that data is the
result of a query with these primary times: 1990-03-15T15:00:00, 1990-03-16T15:00:00, 1990-03-
18T21:00:00):

<n:duration> := INTERVAL <m:any-type>

(1 day, 2.25 days) := INTERVAL data

Arden Syntax for Medical Logic Systems

Page 80 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

null := INTERVAL (3,4)

9.16 Numeric Function Operators
The numeric function operators are all unary functions that work with numbers. When an illegal operation
is attempted (for example, log 0) then null is returned.

9.16.1 Arccos (unary, right associative)

The arccos operator calculates the arc-cosine (expressed in radians) of its argument. Its usage is:

<n:number> := ARCCOS <n:number>

0 := ARCCOS 1

9.16.2 Arcsin (unary, right associative)

The arcsin operator calculates the arc-sine (expressed in radians) of its argument. Its usage is:

<n:number> := ARCSIN <n:number>

0 := ARCSIN 0

9.16.3 Arctan (unary, right associative)

The arctan operator calculates the arc-tangent (expressed in radians) of its argument. Its usage is:

<n:number> := ARCTAN <n:number>

0 := ARCTAN 0

9.16.4 Cosine (unary, right associative)

The cosine operator has one synonym: cos. It calculates the cosine of its argument (expressed in radians).
Its usage is:

<n:number> := COSINE <n:number>

1 := COSINE 0

9.16.5 Sine (unary, right associative)

The sine operator has one synonym: sin. It calculates the sine of its argument (expressed in radians). Its
usage is:

<n:number> := SINE <n:number>

0 := SINE 0

9.16.6 Tangent (unary, right associative)

The tangent operator has one synonym: tan. It calculates the tangent of its argument (expressed in
radians). Its usage is:

<n:number> := TANGENT <n:number>

0 := TANGENT 0

9.16.7 Exp (unary, right associative)

The exp operator raises mathematical e to the power of its argument. Its usage is:

<n:number> := EXP <n:number>

1 := EXP 0

9.16.8 Log (unary, right associative)

The log operator returns the natural logarithm of its argument. Its usage is:

<n:number> := LOG <n:number>

0 := LOG 1

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 81

Revision date: 2011-03-25 Print date: 5/17/2011

9.16.9 Log10 (unary, right associative)

The log10 operator returns the base 10 logarithm of its argument. Its usage is:

<n:number> := LOG10 <n:number>

1 := LOG10 10

9.16.10 Int (unary, right associative)

The int operator returns the largest integer less than or equal to its argument (truncates towards negative
infinity). It is synonymous with floor (Section 9.16.11). Its usage is:

<n:number> := INT <n:number>

-2 := INT (-1.5)

-2 := INT (-2.0)

 1 := INT (1.5)

-3 := INT (-2.5)

-4 := INT (-3.1)

-4 := INT (-4)

9.16.11 Floor (unary, right associative)

The floor operator is synonymous with int . It returns the largest integer less than or equal to its argument
(truncates towards negative infinity).

9.16.12 Ceiling (unary, right associative)

The ceiling operator returns the smallest integer greater than or equal to its argument (truncates towards
positive infinity). Its usage is:

<n:number> := CEILING <n:number>

-1 := CEILING (-1.5)

-1 := CEILING (-1.0)

2 := CEILING 1.5

-2 :=CEILING (-2.5)

-3 := CEILING (-3.9)

9.16.13 Truncate (unary, right associative)

The truncate operator removes any fractional part of a number (truncates towards zero). Its usage is:

<n:number> := TRUNCATE <n:number>

-1 := TRUNCATE (-1.5)

-1 := TRUNCATE (-1.0)

1 := TRUNCATE 1.5

9.16.14 Round (unary, right associative)

The round operator rounds a number to an integer.

For positive numbers: If the fractional portion of the operand is greater than or equal to 0.5, the operator
rounds to the next highest integer. Fractional portions less than 0.5 round to the next lowest integer.

For negative numbers: If the absolute value of the fractional portion of the operand is greater than or equal
0.5, the operator rounds to the next lower negative integer. Fractional portions with absolute values less
than 0.5 round to the next highest integer.

Its usage is:

<n:number> := ROUND <n:number>

1 := ROUND 0.5

3 := ROUND 3.4

4 := ROUND 3.5

-4 := ROUND (-3.5)

Arden Syntax for Medical Logic Systems

Page 82 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

-3 := ROUND (-3.4)

-4 := ROUND (-3.7)

9.16.15 Abs (unary, right associative)

The abs operator returns absolute value of its argument. Its usage is:

<n:number> := ABS <n:number>

1.5 := ABS (-1.5)

9.16.16 Sqrt (unary, right associative)

The sqrt operator returns the square root of its argument. Because imaginary numbers are not supported,
the square root of a negative number results in null . Its usage is:

<n:number> := SQRT <n:number>

2 := SQRT 4

null := SQRT(-1)

9.16.17 As Number (unary, non-associative)

The as number operator attempts to convert a string or Boolean to a number. If conversion to a number is
possible, the number is returned, otherwise null is returned. The primary time of the argument is preserved.
The usual use for this will be to convert a string which contains a valid number representation i.e. "123"
into the represented number. If the string does not contain a valid number then the result will be null.
Boolean values are translated at follows: Boolean true is represented at 1 and Boolean false is represented
at 0.

<n:number> := <n:numeric string> AS NUMBER;

5 := "5" AS NUMBER;

null := "xyz" AS NUMBER;

<n:number> := <n:Boolean> AS NUMBER;

1 := True AS NUMBER;

0 := False AS NUMBER;

<n:number> := <n:number> AS NUMBER;

6 := 6 AS NUMBER;

 (7, 8, 230, 4100, null, null, 1, 0, null, null, nu ll) := ("7", 8,
"2.3E+2", 4.1E+3, "ABC", Null, True, False, 1997-10 -31T00:00:00, now, 3
days) AS NUMBER;

():= () AS NUMBER;

9.17 Time Function Operator
The time function operator does not follow the default primary time handling.

9.17.1 Time (unary, right associative)

The time operator returns the primary time (that is, time of occurrence) of the result of a value derived
from a query (see Section 8.9). Null is returned if it is used on data that has no primary time. The result of
time preserves the primary time of its argument; so time time x is equivalent to time x. Its usage is
(assuming that data0 is the result of a query with one element whose primary time is: 1990-03-
15T15:00:00):

<n:time> := TIME [OF] <n:any-type>

1990-03-15T15:00:00 := TIME OF data0

1990-03-15T15:00:00 := TIME TIME data0

(null,null) := TIME (3,4)

The inverse of the time operator (to set the primary time of a value) can be achieved by using time on the
left side of an assignment statement. For example:

TIME [OF] <n:any-type> := <n:time>;

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 83

Revision date: 2011-03-25 Print date: 5/17/2011

TIME data1 := time data2;

If the identifier on the left hand side of an assignment statement refers to a list, the behavior of the time
assignment is undefined. Future versions of the Arden Syntax standard may formally define this behavior.
If the right side of the assignment statement does not refer to a time value, the time operator assigns null to
the primary time of the identifier at the left hand side.

9.17.2 Time of Objects

When an object is passed to the time operator, the result will be null if one or more attributes do not
reference a data item with a primary time, if the data contain primary times but those times differ, or if the
object contains no attributes. If all the objects attributes refer to data items with primary times, and all those
times are equivalent, then this time is returned as the time of the object. If an attribute contains a list, then
the primary time of the object is not defined (returns null) since lists do not have a specific primary time.

LabResult := OBJECT [id, value];

result := new LabResult;

result.id := 123;

time of result.id := 2004-01-16T00:00:00;

result.value := 1.0;

time of result.value := 2004-01-16T00:00:00;

2004-01-16T00:00:00 := time of result; // all attri butes have same primary
time

2004-01-16T00:00:00 := time of result.id;

time of result.id := 2004-01-17T00:00:00;

null := time of result; // primary times differ

2004-01-17T00:00:00 := time of result.id;

9.17.3 Attime (binary, right associative)

The attime operator constructs a time value from two time and time-of-day arguments. The result consists
of the date of the time arguments and the time of the time-of-day argument. Null is returned if it is used
with other arguments than time and time-of-day. The primary times are lost.

<n:time> := <n:time> ATTIME <n:time-of-day>

2006-06-20T15:00:00 := now ATTIME 15:00:00

2001-01-01T14:30:00 := TIME OF intuitive_new_millen ium ATTIME 14:30:00

This operator was known as the at operator in Arden Syntax 2.6. The change from at to attime was made
to resolve a conflict in context-free grammar (Annex 1) and remove the need for precedence rules to
properly parse write statements (12.2.1) that utilize destinations.

9.17.4 As Time (unary, non-associative)

The as time operator attempts to convert a given string to a time. If conversion to a time is possible, the
time is returned, otherwise null is returned. The primary time of the argument is preserved. The common
use for this is to convert a string containing a valid date/time format as described in ISO 8601:1988(E),
e.g., "1999-12-12" or "1999-12-12T13:41", into a time.

<n:time> := <n:string> AS TIME;

<n:time> := <n:time> AS TIME;

1999-12-12 := "1999-12-12" AS TIME;

null := "xyz" AS TIME;

(1999-12-12, 1999-12-12, null, null, null, 1997-10- 31T00:00:00, null) :=

("1999-12-12", 1999-12-12, "ABC", Null, True, "1997 -10-31T00:00:00", 3

days) AS TIME;

():= () AS TIME;

Arden Syntax for Medical Logic Systems

Page 84 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

9.18 Object Operators

9.18.1 Dot (binary, right associative)

 The dot operator (".") selects an attribute from an object based on the name following the dot. It takes an
expression and an identifier. The expression typically evaluates to an object or a list of objects.

<n:any-type> := <expr> "." <identifier>

If the expression does not evaluate to an object, or if the object does not contain the named attribute, then
null is returned. If the expression evaluates to a list, normal Arden list handling is used and a list is
returned. Therefore, if the expression is a list of objects, then a list (of the same length) of the attribute
values named by the identifier is returned (a common usage).

NameType := object [FirstName, LastName];

/* Assume namelist contains a list of 2 NameType ob jects */

("John", "Paul") := namelist.FirstName;

("Lennon", "McCartney") := namelist.LastName;

"John" := namelist[1].FirstName;

 null := namelist[1].Height;

(null, null) := namelist.Height;

The dot operator maintains the primary time of the attribute it references.

chemistry_panel := object [albumin, calcium, phosph orus];

/* assume patientResult is a single chemistry_panel object with albumin = 4.0
mg/dL, calcium = 8.7 mg/dL and phosphorus = 3.0 mg/ dL on 15 December 2004
*/

calciumPhosphorusProduct := patientResult.calcium * patientResult.phosphorus;

26.1 := calciumPhosphorusProduct;

2004-12-15T16:00:00 := time of patientResult.calciu m;

Dot operators may be used together, when objects are stored as attributes of other objects.

PatientInfo := object [Name, Birthdate];

/* Assume patient contains an object of type Patien tInfo, and the Name
attribute contains an object of type NameType */

"John" := patient.Name.FirstName;

9.18.2 Clone (unary, right associative)

The clone operator returns a copy of its argument. Practically, this only affects objects, because these are
the only data types which retain identity across multiple operations. (See Annex A6 for details of object
identity). When an object is copied, a new object of the same type is created, and all its fields are initialized
by assigning values from corresponding fields in the argument object. The fields, which may contain
objects, are themselves cloned, resulting in a deep copy. If any field contains a list, that list is cloned, and
any objects stored in the list are also cloned.

The clone operator insures that no objects are shared between the argument and the result. The clone
returns another, distinct object that has the same structure and value as the original object.

Effectively, clone works like this depending on the argument type:

Object A deep copy of the object is returned.

List A copy of the list is returned, which contains a clone of each item in the original
list, in the same order.

Other types The original item is returned.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 85

Revision date: 2011-03-25 Print date: 5/17/2011

<n:any-type> := CLONE [OF] <n:any-type>

<Copy of Object> := CLONE OF <Object>

1990-03-15T15:00:00 := CLONE OF 1990-03-15T15:0 0:00

(1,2, <Copy of Object>) := CLONE (1,2, <Object>)

null := CLONE null

When the clone operator is applied, the resulting object will contain the same primary times as the
argument object. Application of the clone operator to a top level object or any embedded objects ensures
that the fields in any new object have the same primary time as the original fields.

9.18.3 Extract Attribute Names ... (unary, right associative)

The extract attribute names operator expects an object as its argument. It returns a list containing the
attribute names of the object argument. Only the immediate attribute names of the argument are returned.
If an attribute is itself an object, the attribute names of the embedded object are not returned, i.e. no nested
lists. If the argument is not an object, null is returned.

<n:string> := EXTRACT ATTRIBUTE NAMES <1:any-type>

(in data slot)

MedicationDose := OBJECT [Medication, Dose, Status] ;

dose := NEW MedicationDose with "Ampicillin", "500m g", "Active";

(in data slot or logic slot)

dose_attributes := extract attribute names dose

dose_attributes = ("Medication","Dose","Status")

9.18.4 Attribute … From … (binary, right associative)

The attribute … from … operator expects a string containing the name of an attribute and an object as
arguments. It returns the value of the named attribute. If the named attribute is itself an object, the sub-
object is returned. If no attributes with the supplied name exists within the named object, null is returned.
This is analogous to referring to attributes using dot notation. However, the attribute … from … operator
allows the name of the attribute to be supplied at run-time rather than requiring knowing the attribute name
at design-time.

<n:any-type> := attribute <m:string> FROM <m:object >

(in data slot)

MedicationDose := OBJECT [Medication, Dose, Status] ;

dose := NEW MedicationDose with "Ampicillin", "500m g", "Active";

(in data slot or logic slot)

medication_name := attribute "Medication" from dose

medication_name = "Ampicillin"

medication_name := dose.Medication

medication_name = "Ampicillin"

dose_attributes := extract attribute names dose

medication_name := attribute dose_attributes[1] fro m dose

medication_name = "Ampicillin"

Arden Syntax for Medical Logic Systems

Page 86 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

10 LOGIC SLOT

10.1 Purpose
The logic slot uses data about the patient obtained from the data slot, manipulates the data, tests some
condition, and decides whether to execute the action slot. It is in this slot that most of the actual health logic
is obtained.

10.2 Logic Slot Statements
The logic slot is composed of a set of statements.

10.2.1 Assignment Statement

The assignment statement places the value of an expression into a variable. There are two equivalent
versions:

<identifier> := <expr> ;

LET <identifier> BE <expr> ;

<identifier> is an identifier; it represents the name of the variable. <expr> is a valid expression as defined
in Section 7.2.2.

Any reference to the identifier that occurs after the assignment statement will return the value that was
assigned from the expression (even if it is in another structured slot; for example, the action slot). A
subsequent assignment to the same variable will overwrite the value. If a variable is referred to before its
first assignment, null is returned. However, it is poor programming practice to depend on this.

The following variables cannot be re-assigned outside of the data slot after they have been assigned in the
data slot: event (Section 11.2.3), mlm (Section 11.2.4), and interface (Section 11.2.16). Once defined in
the data slot, they should not change.

After executing these statements, the value of variable var2 is 5:

 var1 := 1;

 var1 := 3;

 var2 := var1 + 2;

10.2.1.1 Object Attribute Assignment

The identifier on the left side of an assignment statement may be specified by an object attribute reference,
using the following form:

<identifier> . <attribute-name>

This allows the assignment to individual attributes of an object. The identifier should name a variable.
When the statement is executed, if the variable references an object whose type contains an attribute of the
specified name, then that attribute value will be set to the result of evaluating the expression on the right
side of the assignment statement.

If at execution time the named variable does not refer to an object, or that object does not contain an
attribute of the specified name, then this statement will still evaluate the expression but will not assign the
result.

Rectangle := Object [Left, Top, Width, Height];

rect := new Rectangle;

// assign attributes

rect.Left := 0;

rect.Top := 0;

rect.Width := 10;

rect.Height := 20;

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 87

Revision date: 2011-03-25 Print date: 5/17/2011

// incorrect assignment

rect.Depth := 30;

null := rect.Depth

Note that objects in Arden retain their identity during assignment, references, etc. If more than one
reference to an object exists, and that object is modified, other references to the same object will be
affected.

rect1 := new Rectangle;

// assign attributes

rect1.Left := 0;

rect1.Top := 0;

rect1.Width := 10;

rect1.Height := 20;

rect2 := rect1; // references the same Rectangle

rect1.Width := 50;

50 := rect2.Width; // rect2.width reflects change to shared object

10.2.1.2 Enhanced Assignment Statement

In addition to the basic assignment and simple object assignment statements described above, any
expression that ends with a dot operation (Section 9.18.1) or element operation (Section 9.12.18) may be
placed on the left hand side of an assignment statement. This does not apply for multiple-assignment. If the
left side contains a parenthesised list of variables, then this arbitrary expression syntax may not be used.

This enhancement streamlines the processing of lists and objects. For example,

//simple example using index

my_list := 5, 10, 15;

my_list[3] := 20; //contents of my_list are now 5, 10, 20

//create one object with three nested objects

message_type := OBJECT [id, msg];

my_collection_type := OBJECT [name, message_list];

message_list := ();

for i in 1 seqto 3 do

 message_text := new message_type with i , "this is message
" || i;

 message_list := message_list, message_text;

enddo;

my_obj := new my_collection_type with "Reminders",
message_list;

//traditional syntax

n := 2;

obj1 := my_obj.message_list [n];

obj1.msg := "this is a replacement message";

Arden Syntax for Medical Logic Systems

Page 88 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

message2 := new message_type with 10, "this is mess age 10";

my_obj.message_list := first (n-1) from my_obj.mes sage_list,

 message2, last (count of my_obj.message_list - n) from
my_obj.message_list;

var1 := first (n-1) from my_obj.message_list;

var2 := last (count of my_obj.message_list - n) fro m
my_obj.message_list;

//enhanced syntax

n := 2;

my_obj.message_list[n].msg := "this is a replacemen t message";
//modify nth item

my_obj.message_list[n] := new message_type with 10, "this is
message 10"; //replace nth item

//additional examples

my_obj.message_list.msg := "This is a test"; //modi fies
message in all objects

my_var := my_obj.message_list.msg; //contents of my _var are
"This is a test", "This is a test", "This is a test "

my_list[1] := my_var; //contents of my_list change d to "This
is a test", "This is a test", "This is a test", 10, 20

10.2.2 If-Then Statement

The if-then statement permits conditional execution based upon the value of an expression. It tests whether
the expression (<expr>) is equal to a single Boolean true. If it is, then a block of statements (<block>) is
executed. (A block of statements is simply a collection of valid statements possibly including other if-then
statements; thus the if-then statement is a nested structure.) If the expression is a list, or if it is any single
item other than true, then the block of statements is not executed. The flow of control then continues with
subsequent statements. The if-then statement has several forms:

10.2.2.1 Simple If-Then Statement

This form executes <block1> if <expr1> is true:

IF <expr1> THEN

<block1>

ENDIF;

10.2.2.2 If-Then-Else Statement

This form executes <block1> if <expr1> is true; otherwise it executes <block2>:

IF <expr1> THEN

<block1>

ELSE

<block2>

ENDIF;

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 89

Revision date: 2011-03-25 Print date: 5/17/2011

10.2.2.3 If-Then-Elseif Statement

This form sequentially tests each of the expressions <expr1> to <exprN> (there may be any number of
them). When it finds one that is true, its associated block is executed. Once one block is executed, no other
expressions are tested, and no other blocks are executed. If none of the expressions is true, then <blockE>
is executed. The else <blockE> portion is optional. Its form is:

IF <expr1> THEN

<block1>

ELSEIF <expr2> THEN

<block2>

ELSEIF <expr3> THEN

<block3>

...

ELSEIF <exprN> THEN

<blockN>

ELSE

<blockE>

ENDIF;

10.2.2.4 Treatment of Null

It is important to emphasize that non-true is different from false. That is, the else portion of the if-then-else
statement is executed whether the expression is false, or null , or anything other than true. Thus these two
if-then statements, which appear to be the same, produce different results when var1 is null .

IF var1 THEN

var2 := 0;

ELSE

var2 := 45;

ENDIF;

IF not(var1) THEN

var2 := 45;

ELSE

var2 := 0;

ENDIF;

To avoid the null problem, it is safer to test for existence first, then test for true.

IF var1 is Boolean THEN

IF var1 THEN

var2 := "var1 is true";

ELSE

var2 := "var1 is false";

ENDIF;

ELSE

var2 := "var1 is null or some other type";

ENDIF;

10.2.2.5 Treatment of Lists

Lists are always non-true; therefore using an expression that contains a list will always produce the same
negative result. Instead, one of the Boolean aggregation operators should be used: any, all, or no (see
Sections 9.12.13, 9.12.14, and 9.12.15). For example, to execute a statement if any of the elements in
Bool_list is true, use:

IF any(Bool_list) THEN

var2 := 0;

ENDIF;

Arden Syntax for Medical Logic Systems

Page 90 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

10.2.3 Switch-Case Statement

The switch-case statement permits conditional execution based on the value of an expression. It tests
whether an expression (<expr1>, <expr2>, <expr3> …) is equal to the value of the provided variable
(<var>). If they are equal, the corresponding block of statements (<block1>, <block2>, <block3> …) is
executed. A block of statements is simply a collection of valid statements, possibly including other switch-
case statements; thus the switch-case statement is a nested structure. If the expression does not match the
value of the provided variable, then the corresponding block of statements is not executed. The flow of
control then continues with subsequent statements.

The switch-case statement has several forms:

10.2.3.1 Simple Switch-Case Statement

This form executes <block1> if the value of <var> equals <expr1> and <block2> if the value is equal to
<expr2>:

SWITCH <var>

 CASE <expr1>

 <block1>

 CASE <expr2>

 <block2>

ENDSWITCH;

The following example will set the variable “returnVal” to 7 if the value of the incoming variable “inVal” is
equal to 1 and to 9 if the value of the incoming variable “inVal” is equal to 2.

switch inVal

 case 1

 returnVal := 7;

 case 2

 returnVal := 9;

endswitch;

10.2.3.2 Switch-Case-Default Statement

This form executes <block1> if the value of <var> equals <expr1> and <block2> if the value is equal to
<expr2>. If none of the both match with the value of <var> then the default block <block3> is executed:

SWITCH <var>

 CASE <expr1>

 <block1>

 CASE <expr2>

 <block2>

 DEFAULT

 <block3>

ENDSWITCH

The following example will set the variable “returnVal” to 7 if the value of the incoming variable “inVal” is
equal to 1, to 9 if the value of the incoming variable “inVal” is equal to 2 and to 0 otherwise.

switch inVal

 case 1

 returnVal := 7;

 case 2

 returnVal := 9;

 default

 returnVal := 0; //error state

endswitch;

10.2.4 Conclude Statement

The conclude statement ends execution in the logic slot. If the expression (<expr>) in the conclude
statement is a single true then the action slot is executed immediately. Otherwise the whole MLM

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 91

Revision date: 2011-03-25 Print date: 5/17/2011

terminates immediately. No further execution in the logic slot occurs regardless of the expression. There
may be more than one conclude statement in the logic slot, but only one will be executed in a single run of
the MLM. Its form is:

CONCLUDE <expr>;

The cautions for the if-then statement about null and list (in Section 10.2.1.2) also hold for the conclude
statement.

If no conclude statement is executed, then the logic slot terminates after it executes its last statement, and
the action slot is not executed. In effect, the default is conclude false.

These are valid conclude statements:

CONCLUDE false;

CONCLUDE potas > 5.0;

10.2.5 Call Statement

The call statement permits nesting of MLMs. Given an MLM filename, the MLM can be called directly
with optional parameters and return zero or more results. Given an event definition, all the MLMs that are
normally evoked by that event can be called; the called MLMs can be given optional parameters and
optionally return results. Given an interface definition, the foreign function can be called directly with
optional parameters and return zero or more results. There are two basic forms (the pairs represent
equivalent versions):

<var> := CALL <name>;

LET <var> BE CALL <name>;

<var> := CALL <name> WITH <expr>;

LET <var> BE CALL <name> WITH <expr>;

(<var>, <var>, …) := CALL <name> WITH <expr>;

LET (<var>, <var>, …) BE CALL <name> WITH <expr>;

<var> := CALL <name> WITH <expr>, …, <expr>;

LET <var> BE CALL <name> WITH <expr>, …, <expr>;

(<var>, <var>, …) := CALL <name> WITH <expr>, …, <e xpr>;

LET (<var>, <var>, …) BE CALL <name> WITH <expr>, … , <expr>;

10.2.5.1 Commas

Because arguments to a call are separated by commas (see argument, Section 11.2.5), and comma is also
an operator (list construction, see Section 9.2.1), there is an apparent ambiguity. This ambiguity is resolved
in favor of comma as a parameter separator. Any argument expression containing the comma operator or
another operator of the same or lower precedence must be enclosed in parentheses. For example,

This call passes three arguments:

x := CALL xxx with (a,b),(c merge d),e+f;

This call passes two arguments:

y := CALL yyy WITH expr1, expr2;

This call appears similar to the one above, but it only passes one argument :

z := CALL zzz WITH (expr3, expr4);

10.2.5.2 <name>

<name> is an identifier that must represent either a valid MLM variable as defined by the MLM statement
in the data slot (see Section 11.2.4), a valid event variable as defined by the event statement in the data slot
(see Section 11.2.3), a valid interface variable as defined by the interface statement in the data slot (see

Arden Syntax for Medical Logic Systems

Page 92 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

Section 11.2.16), or an MLM, event, or interface variable defined through the use of an include statement
(Section 11.2.19).

10.2.5.3 <exprs>

<expr>s are optional parameters, which may be of any type, including list and null. Primary times
associated with the parameter are maintained.

10.2.5.4 <var>

<var> is an identifier that represents the local variable that will be assigned the result.

10.2.5.5 MLM Call

If <name> is an MLM variable, then when the call statement is executed, the main MLM (that is, the one
issuing the call) is interrupted, and the named MLM is called. If the called MLM has argument
statement(s) in its data slot (see Section 11.2.5), then the values of the <expr>s are assigned. If a called
MLM's argument statement has more variables (parameters) than sent by the call statement, then null is
assigned to the extra variable(s). If the call statement passes more variables (parameters) than the called
MLM is expecting, the additional parameters are silently dropped. The called MLM is executed, and when
it terminates, execution of the main MLM resumes. If the called MLM concludes true and there is a return
statement in the called MLM's action slot (see Section 12.2.2), then the value of its expression is assigned
to <var>. If the return statement has more values than the calling MLM can accept, then the extra return
values are silently dropped. If the return statement has fewer values than the calling MLM is expecting,
then the extra return values are null . If there is no return statement, or if the called MLM concludes false,
then null is assigned to <var>. Examples:

var1 := CALL my_mlm1 WITH param1, param2;

(var2, var3, var4) := CALL my_mlm2 WITH param1, par am2;

10.2.5.6 Event Call

If <name> is an event variable, then execution is similar. The main MLM is interrupted, and all the MLMs
whose evoke slots refer to the named event are executed (see Section 13). They each receive the parameters
if there are any via their argument statement(s). The results of all called MLM's return statements are
concatenated together into a list; called MLMs with no return statement and called MLMs that return a
single null are not included in the result. The order of the returned values is implementation dependent. The
result is assigned to <var>, and execution continues. <var> will always be a list, even if it has one item.
Example:

var1 := CALL my_event WITH param1, param2;

10.2.5.7 Interface Call

If <name> is an interface variable, then when the call statement is executed, the MLM (that is, the one
issuing the call) is interrupted, and the named interface is called. If the called interface functions accept
variables (parameters), then the values of the <expr>s are assigned. If a called interface's function expects
more variables (parameters) than sent by the call statement, then null is assigned to the extra variable(s).
The called function is executed, and when it finishes, execution of the MLM resumes. If the called function
returns one or more values, then the values are assigned to the <var>s. If the function returns more values
than the calling MLM can accept, then the extra return values are silently dropped. If the interface function
returns fewer values than the calling MLM is expecting, then the extra values are null . If the function does
not return any values, then null is assigned to <var>. Examples:

var1 := CALL my_interface_function1 WITH param1, p aram2;

(var1, var2, var3) := CALL my_interface_function2 W ITH param1, param2;

10.2.5.8 Example: Call Statement

Here is a valid call statement:

/* Define find_allergies MLM */

find_allergies := MLM 'find_allergies';

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 93

Revision date: 2011-03-25 Print date: 5/17/2011

/* Lists two medications and their allergens */

med_orders:= ("PEN-G", "aspirin");

med_allergens:= ("penicillin", "aspirin");

/* Lists three patient allergies and their reaction s */

patient_allergies:= ("milk", "codeine", "penicillin ");

patient_reactions:= ("hives", NULL, "anaphylaxis");

/* Passes 4 arguments and receives 3 lists as value s */

(meds, allergens, reactions):= call find_allergies with med_orders,

 med_allergens,

 patient_allergies,

 patient_reactions;

10.2.5.9 Example: Interface Statement

Here is a valid interface statement:

/* Define find_allergies external function*/

find_allergies := INTERFACE
{\\RuleServer\AllergyRules\my_institution\find_alle rgies.exe};

/* Lists two medications and their allergens */

med_orders:= ("PEN-G", "aspirin");

med_allergens:= ("penicillin", "aspirin");

/* Lists three patient allergies and their reaction s */

patient_allergies:= ("milk", "codeine", "penicillin ");

patient_reactions:= ("hives", NULL, "anaphylaxis");

/* Passes 4 arguments and receives 3 lists as value s */

(meds, allergens, reactions):= call find_allergies with med_orders,

 med_allergens,

 patient_allergies,

 patient_reactions;

10.2.5.10 Enhanced Assignment in Call Statement

The call statement also supports the same enhanced assignment syntax described in the assignment
statement (Section 10.2.1.2)

10.2.6 While Loop

A simple form of looping is provided by the while loop. Its form is:

WHILE <expr> DO

<block>

ENDDO;

The while loop tests whether an expression (<expr>) is equal to a single Boolean true (similar to the
conditional execution introduced in the if ... then syntax - see Section 10.2.1.2). If it is, the block of
statements (<block>) is executed repeatedly until <expr> is not true. If <expr> is not true, the block is
not executed.

Authors should take care when using while loops in MLMs, since it is possible to create infinite loops. It is
the author's responsibility, not the compiler, to avoid infinite looping.

Here is an example:

/* Initialize variables */

a_list:= ();

m_list:= ();

r_list:= ();

num:= 1;

/* Checks each allergen in the medications to deter mine if the patient is
allergic to it */

while num <= (count med_allergen) do

allergen:= last(first num from med_allergens);

allergy_found:= (patient_allergies = allergen);

Arden Syntax for Medical Logic Systems

Page 94 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

reaction:= patient_reactions where allergy_found;

medication:= med_orders where (med_allergens = alle rgen);

/* Adds the allergen, medication, and reaction to v ariables that will */

/* be returned to the calling MLM */

If any allergy_found then

a_list:= a_list, allergen;

m_list:= m_list, medication;

r_list:= r_list, reaction;

endif;

/* Increments the counter that is used to stop the while-loop */

num:= num + 1 ;

enddo;

10.2.6.1 Breakloop Statement

The block of statements (<block>) of a while loop may contain a breakloop statement. If the execution
reaches such a breakloop statement, the direct superior loop will be aborted immediately. If the breakloop
statement occurs within a nested loop, it will always apply to the innermost loop only. Breakloop
statements are only allowed inside of loops.

An example is:

num:= 1;

/* Checks each allergen in the medications and stop s if patient is allergic
to it */

while num <= (count med_allergen) do

 allergen:= last(first num from med_allergens);

 allergy_found:= (patient_allergies = allergen);

 /* be returned to the calling MLM */

 If any allergy_found then

 breakloop ; // execution of the while-loop will stop immedia tely

 endif;

 /* Increments the counter that is used to stop t he while-loop */

 num:= num + 1 ;

 [...]

enddo;

10.2.7 For Loop

Another form of looping is provided by the for loop. Its form is:

FOR <identifier> in <expr> DO

<block>

ENDDO;

The <expr> will usually be a list generator. If <expr> is empty or null, the block is not executed.
Otherwise, the block is executed with the <identifier> taking on consecutive elements in <expr>. The
<identifier> cannot be assigned to inside the <block> (the compiler must produce a compilation error if
this is attempted). After the enddo, the <identifier> becomes undefined and its value should not be used. A
compiler may flag this as an error.

Here is an example:

/* Initialize variables */

a_list:= ();

m_list:= ();

r_list:= ();

/* Checks each allergen in the medications to deter mine if the patient is
allergic to it */

for allergen in med_allergens do

allergy_found:= (patient_allergies = allergen);

reaction:= patient_reactions where allergy_found;

medication:= med_orders where (med_allergens = alle rgen);

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 95

Revision date: 2011-03-25 Print date: 5/17/2011

/* Adds the allergen, medication, and reaction to v ariables that will */

/* be returned to the calling MLM */

If any allergy_found then

a_list:= a_list, allergen;

m_list:= m_list, medication;

r_list:= r_list, reaction;

endif;

enddo;

Here is an example using a set number of iterations:

for i in (1 seqto 10) do

…

enddo;

10.2.7.1 Breakloop Statement

The breakloop statement, defined in Section10.2.6.1, is also permitted in the <block> of the for loop.
When a breakloop statement is executed, the <identifier> becomes undefined and its value should not be
used.

10.2.8 New Statement

The new statement causes a new object to be created, and assigns it to the named variable.

<var> := NEW <object-identifier>;

<var> := NEW <object-identifier> WITH <expr 1>, <ex pr 2>, <expr n>;

LET <var> BE NEW <object-identifier>;

LET <var> BE NEW <object-identifier> WITH <expr 1>, <expr 2>, <expr n>;

<object-identifier> is a name which represents an object type declared previously by an object declaration
(see Section 11.2.17).

MedicationDose := OBJECT [Medication, Dose, Status] ;

dose := NEW MedicationDose with "Ampicillin", "500m g", "Active";

In the simple case (without the with clause) all attributes of the object are initialized to null. In the full
statement, a set of 1 or more comma-separated expressions should follow the with reserved word. Each
expression is evaluated and assigned as a value of an attribute of the object. They are assigned in the order
the attributes were declared in the object statement. If the number of expressions is less than the number of
attributes, remaining attributes are initialized to null. If the number of expressions is greater than the
number of attributes, the extra expressions are evaluated but the results are silently discarded.

As with a call statement, commas between expressions will be considered as separating successive attribute
initializer expressions rather than as defining a list. If you want to initialize an attribute with a list you need
to enclose the list in parentheses. See Section 10.2.5.1 for detailed information.

dose := NEW MedicationDose with "Ampicillin", ("500 ", "700"), "Active";

10.2.8.1 New Statement with Named Initializer

There are times when the MLM author may wish to initialize one or more fields explicitly, not necessarily
in the order they are declared. It is desirable to have an easy way to initialize certain fields (attributes)
directly by name. Allowing field initialization by name is clearer in the MLM code, especially when the
object has a large number of fields.

my_var := NEW <object-type>
 { WITH <expr_1>, <expr_2>, ..., <expr_n> }
 { WITH [attribute_1 := <expr_1>, attribute_2 := < expr_2>, ...,
 attribute_3 := <expr_3>] };

The first WITH clause is optional, and allows one or more Arden expressions to be specified. They will get
evaluated in order and initialize attributes of the object beginning with the first field specified in the
OBJECT declaration.

Arden Syntax for Medical Logic Systems

Page 96 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

The second WITH clause is also optional, and uses the square braces [,] to distinguish itself from the
ordered parameters of the first WITH clause. The attribute_1,... should be declared names of object
attributes. The attribute names may occur in any order, and allow the MLM author to indicate that one or
more attributes should be set following the ordered attribute initialization (the first WITH clause). In many
cases this may be clearer and more succinct, such as when you wish to set one of the last fields in the
attribute list and allow previous fields to have default (null) values.

Note that although both WITH clauses are optional, if they both occur, the ordered attribute list must
precede the named initializer list. The named initializer list will also take precedence in the case that an
attribute gets initialized in both the ordered list and the named list.

Example:

 obj_def := object [x, y, z];
 testobj := NEW obj_def with [z:=10, y:= "roger"];

10.3 Logic Slot Usage
The general approach in the logic slot is to use the operators and expressions to manipulate the patient data
obtained in the data slot in order to test for some condition in the patient. Once sufficient data, positive or
negative, has been amassed the conclude statement is executed. If there is no conclude statement in the
logic slot, then it will never conclude true, and the action slot will never be executed. Some logic slots are
simple (for example, test whether the serum potassium is greater than 5.0), and some are complex (for
example, calculate a diagnosis score).

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 97

Revision date: 2011-03-25 Print date: 5/17/2011

11 DATA SLOT

11.1 Purpose
The purpose of the data slot is to define local variables used in the rest of the MLM. The goal is to isolate
institution-specific portions to one slot. Within the data slot, the institution-specific portions are placed in
mapping clauses (see Section 7.1.8) so that the institution-specific part does not interfere with the MLM
syntax. To simplify maintenance, it is recommended that, in the absence of conditional assignments,
include, object, mlm, interface, and event statements appear before read statements within the data slot.

11.2 Data Slot Statements
The following variables cannot be re-assigned in the logic slot after they have been assigned in the data
slot: event (Section 11.2.3), mlm (Section 11.2.4), interface (Section 11.2.16), and object (Section
11.2.17). Once defined in the data slot, they should not change.

11.2.1 Read Statement

The main source of data is the patient database. Each institution will need to do its own queries; databases
may be hierarchical, relational, object oriented, etc. The vocabulary used to represent entities in the
database will vary from institution to institution. (No attempt was made to select a standard vocabulary in
this version of this specification.) The read statement is designed to isolate those parts of a database query
that are specific to an institution from those parts that are universal.

There is no restriction that a read statement must derive its input from the patient database. A read
statement might access a medical dictionary, for example; or it might interactively request information from
somebody (and, if the compiler does on-demand optimization, the interaction might happen only if needed).
How this is done is implementation defined.

11.2.1.1

The database query itself is divided into three parts: the aggregation or transformation operator, the time
constraint, and the rest of the query. For backward compatibility, parentheses may be placed around the
<mapping> where <constraint> part. The general form of the read statement is (there are two equivalent
versions):

<var> := READ <aggregation> <mapping> WHERE <constr aint>;

LET <var> BE READ <aggregation> <mapping> WHERE <co nstraint>;

11.2.1.2 Definitions

<var> is a variable that is assigned the result of the query.

<aggregation> is an aggregation operator (see Section 9.12) or a transformation operator (see Section
9.14), which is applied after the query constraints. If <aggregation> is omitted, then all the data that satisfy
the constraints are returned. Only the following aggregation and transformation operators are permitted:

exist

sum

average

avg

minimum

min

maximum

max

last

first

earliest

latest

minimum ... from

Arden Syntax for Medical Logic Systems

Page 98 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

min ... from

max ... from

maximum ... from

last ... from

first ... from

earliest ... from

latest ... from

In the default sort ordering, first and last are equivalent to earliest and latest.

<constraint> is any occur comparison operator (see Section 9.7) with it (or they) as the left argument. In
this case it refers to the body of the query. The comparison operator specifies the time constraints for the
query. If <constraint> is omitted, then there are no constraints on time. Examples of valid constraints are:

they occurred within the past 3 days

it occurred before the time of surgery

<mapping> is a valid mapping clause (see Section 7.1.8), which contains the institution-specific part of the
query enclosed in curly brackets. It contains any vocabulary terms and any query syntax that is necessary in
the institution to perform a query, except that the aggregation and time constraints are missing. <mapping>
is required.

11.2.1.3 Examples

These are valid read statements (the portions within curly brackets are arbitrary):

var1 := READ {select potassium from results where s pecimen = `serum`};

var1 := READ last {select potassium from results};

LET var1 BE READ {select potassium from results} WH ERE it occurred within the
past 1 week;

var1 := READ first 3 from {select potassium from re sults} WHERE it occurred
within the past 1 week;

11.2.1.4 Effect

The effect of the read statement is to execute a query, mapping the data in the patient database to a variable
that can be used elsewhere in the MLM. The execution of the read statement will be institution-specific.
The time constraints must be added to whatever other constraints are within the mapping clause, and the
aggregation or transformation operator must also be added to complete the query.

11.2.1.5 Result Type

The result of a query includes the primary time for each item that is returned (see Section 8.9). If
<aggregation> is an aggregation operator, then the query returns a single item. If <aggregation> is a
transformation operator or it is absent, then the query returns a list. Thus even if the query requests an
entity that is usually singular, such as the birthdate of the patient, a list is assumed unless an aggregation
operator is applied (but the list might contain only a single value, in which case it would be
indistinguishable from a scalar). The reason for this is that a patient database may have multiple values for
a birthdate; it may be that the last one is assumed to be correct. For example,

birthdate := READ last {select birthdate from demog raphics};

11.2.1.6 Multiple Variables

A query may return more than one result at a time. This is useful for batteries of tests in order to keep the
corresponding tests within one blood sample coordinated. The two versions are equivalent (the parentheses
around the where are optional):

(<var>, <var>, ...) := READ <aggregation> <mapping> WHERE <constraint> ;

LET (<var>, <var>, ...) BE READ <aggregation> (<map ping> WHERE <constraint>);

This is the only situation where a "list of lists" is allowed. The where constraint (if any) is applied
separately to each of the resulting lists. Queries must always return the same number of elements, with the
same primary times.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 99

Revision date: 2011-03-25 Print date: 5/17/2011

11.2.1.7

There may be one or more <var> within the parentheses. <aggregation>, <constraint>, and <mapping>
are defined as above. The fact that multiple entities are being queried at once is represented in the
institution-specific part, <mapping>. The <aggregation> and <constraint> are performed separately on
the individual variables; it is institution-defined whether the <mapping> returns all the values with
matching primary times. For example,

/* in this example three anion gaps are calculated */

(Na,Cl,HCO3) := read last 3 from {select sodium, ch loride, bicarb from
electro};

anion_gap := Na - (Cl + HCO3) ;

11.2.1.8

The order in which read mappings are evaluated is undefined, except that an implementation must
guarantee that a read mapping is evaluated before the first time that its value is needed. An implementation
may optimize code to avoid executing a read mapping, even if the read mapping has side effects.

11.2.2 Read As Statement

The read as statement is very similar to the read statement (11.2.1.1). However, rather than returning query
results as a set of lists, where each list represents a collection of values for a particular query field (or
column), it returns a single list of objects, each of which consist of named attributes (fields) and values. The
attribute names are specified in the object declaration, which should have been declared previously (see
Section 11.2.17).

<var> := READ AS <object-type> <aggregation> <mappi ng> WHERE <constraint>;

LET <var> BE READ AS <object-type> <aggregation> <m apping> WHERE
<constraint>;

<object-type> is a name which represents an object type declared previously by an object declaration (see
Section 11.2.17).

MedicationDose := object [Medication, Dose, Status] ;

med_doses := read as MedicationDose

 { select med, dosage, status from client where st atus != "inactive" };

It is often easier to manipulate data in this format, because it allows associated values to stay together when
lists of data are appended or otherwise manipulated.

It is up to the MLM author to assure that the implementation-specific contents of the curly braces produces
the values to be assigned to attributes, and in the correct order.

The following example shows two ways to retrieve three anion gap values, first using read and then using
read as. Note that the text of the implementation-dependent section (curly braces) did not need to change in
this example, although of course this standard does not specify anything about this section. The point here
is that the same data is retrieved in each case, but it is just returned in a different form.

/* in this example the data to calculate three anio n gaps are retrieved */

(Na,Cl,HCO3) := read last 3 from {select sodium, ch loride, bicarb from
electro};

/* using READ AS */

AnionGap := Object [Na, Cl, HCO3];

gaps := read as AnionGap last 3 from {select sodium , chloride, bicarb from
electro};

11.2.3 Event Statement

The event statement assigns an institution-specific event definition to a variable. An event can be an
insertion or update in the patient database, or any other medically relevant occurrence. The variable is
currently used in the evoke slot (see Section 13), as part of the call statement to call other MLMs (see
Section 10.2.5), and as a Boolean value in a logic or action slot.. There are two equivalent versions:

<var> := EVENT <mapping>;

Arden Syntax for Medical Logic Systems

Page 100 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

LET <var> BE EVENT <mapping>;

11.2.3.1 Definitions

 <var> is a variable that represents the event to be defined. It can only be used in the evoke slot or as part
of a call statement.

<mapping> is a valid mapping clause (see Section 7.1.8) which contains the institution-specific event
definition. How the event is defined and used is up to the institution.

The variable that represents the event can be treated like a Boolean in the logic or action slots. The Boolean
value of the variable is false until the MLM is called by the referred event.

The time operator (see Section 9.17) can be applied to an event variable. It yields the clinically relevant
time of the event. This may be different from the eventtime variable, which refers to the time that the event
was recorded in the database (see Section 8.4.4).

The order in which event mappings are evaluated is undefined, except that an implementation must
guarantee that an event mapping is evaluated before the first time that its value is needed.

11.2.3.2 Example
event1 := EVENT {storage of serum potassium};

11.2.4 MLM statement

The MLM statement assigns a valid mlmname to a variable. That variable is currently used only as part of
the call statement to call another MLM, as defined in Section 10.2.5. There are two basic forms (the pairs
represent equivalent versions):

<var> := MLM <term>;

LET <var> BE MLM <term>;

<var> := MLM <term> FROM INSTITUTION <string>;

LET <var> BE MLM <term> FROM INSTITUTION <string>;

11.2.4.1 Examples
LET MLM1 BE MLM 'my_mlm1';

mlm2 := MLM 'my_mlm2.mlm' FROM INSTITUTION "my inst itution";

11.2.4.2 Definitions

<var> is a variable that represents the MLM to be called. It can only be used as part of a call statement.

<term> is a valid constant term as defined in Section 7.1.7. It is the mlmname of the MLM to be called.
mlm_self (case insensitive) is a special constant that represents the name of the current MLM.

<string> is a valid constant string as defined in Section 7.1.6. If specified, it is the institution name found
in the institution slot of the MLM to be called.

If the institution is specified, then a unique MLM is found using the institution name, the mlmname, and
the latest version number. If the institution is not specified, then a unique MLM is found using the same
institution as the main (calling) MLM, the mlmname, the MLM's validation, and the latest version number.
Although the exact form of the version is institution-specific, within an institution it is possible to
determine the latest version of an MLM (see Section 6.1.4).

11.2.4.3 Examples
mlm1 := MLM 'mlm_to_be_called';

mlm2 := MLM 'diagnosis_score' FROM INSTITUTION "LDS Hospital";

11.2.5 Argument Statement

The argument statement is used by an MLM that is called by another MLM, as defined in Section 10.2.5.
If the main MLM passes parameters to the called MLM, then the called MLM retrieves the parameters via
the argument statement. The argument statements access the corresponding passed arguments. Thus, the

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 101

Revision date: 2011-03-25 Print date: 5/17/2011

first variable <var1> refers to the first passed argument, the second variable <var2>to the second argument,
etc.

If there is a mismatch of variables where the number of variables is greater than the number of arguments
passed from the CALL, null is assigned to the extra left-hand-side variable(s). If the MLM is evoked
instead of called, all the arguments are treated as null (just like any other uninitialized variable).

There are two basic forms (the pairs represent equivalent version). One receives a single parameter, and the
other receives multiple parameters:

<var> := ARGUMENT;

LET <var> BE ARGUMENT;

(<var1>,<var2>,…) := ARGUMENT;

LET (<var1>,<var2>,…) BE ARGUMENT;

<var> is a variable that is assigned whatever expression followed with in the main MLM's call statement.
If there was no such expression, or if the MLM was not called by another MLM, then null is assigned.

11.2.5.1 Example

In the calling MLM:

var1 := CALL my_mlm WITH param1, (item1, item2);

In the called MLM, named "my_mlm":

(arg1, list1) := ARGUMENT;

11.2.6 Message Statement

The message statement assigns an institution-specific message (for example, an alert) to a variable. It
allows an institution to write coded messages in the patient database (see Section 12.2). There are two
equivalent versions:

<var> := MESSAGE <mapping>;

LET <var> BE MESSAGE <mapping>;

<var> is a variable that represents the message to be defined. It can only be used in a write statement.

<mapping> is a valid mapping clause (see Section 7.1.8), which contains the message definition. How the
message is defined and used is up to the institution.

11.2.6.1 Example
message1 := MESSAGE {pneumonia~23 45 65};

11.2.7 Message As Statement

The message as statement is very similar to the message statement (11.2.5). However, rather than returning
a variable, it returns a single object, which consists of named attributes (fields) and values. The attribute
names are specified in the object statement, which should have occurred previously in the MLM (see
Section 11.2.13). If the mapping clause is empty, it may be omitted in this statement. However, it is up to
the implementation if a non-empty mapping clause is allowed.

<var> := MESSAGE AS <object-type> <mapping>;

<var> := MESSAGE AS <object-type>;

LET <var> BE MESSAGE AS <object-type> <mapping>;

LET <var> BE MESSAGE AS <object-type>;

<object-type> is a name which represents an object type declared previously by an object statement (see
Section 11.2.17).

11.2.7.1 Example
message_obj := OBJECT [subject, text];

high_PTT_msg := MESSAGE AS message_obj {Elevated PT T};

def_msg := MESSAGE AS message_obj; // default mappi ng clause

Arden Syntax for Medical Logic Systems

Page 102 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

11.2.8 Destination Statement

The destination statement assigns an institution-specific destination to a variable. It allows one to write a
message to an institution-specific destination (see Section 12.2.1). There are two equivalent versions:

<var> := DESTINATION <mapping>;

LET <var> BE DESTINATION <mapping>;

<var> is a variable that represents the destination to be defined. It can only be used in a write statement.

<mapping> is a valid mapping clause (see Section 7.1.8) that represents an institution-specific destination.
How the destination is defined and used is up to the institution.

11.2.8.1 Example

In this example, the destination is an electronic mail address:

destination1 := DESTINATION {email: user@cuasdf.bit net};

destination2 := DESTINATION { attending_physician(P t_id) };

destination3 := DESTINATION { "primary physician em ail" };

11.2.9 Destination As Statement

The destination as statement is very similar to the destination statement (11.2.6.1). However, rather than
returning a variable, it returns a single object, which consists of named attributes (fields) and values. The
attribute names are specified in the object statement, which should have occurred previously in the MLM
(see Section 11.2.17). If the mapping clause is empty, it may be omitted in this statement. However, it is up
to the implementation if a non-empty mapping clause is allowed.

<var> := DESTINATION AS <object-type> <mapping>;

<var> := DESTINATION AS <object-type>;

LET <var> BE DESTINATION AS <object-type> <mapping> ;

LET <var> BE DESTINATION AS <object-type>;

<object-type> is a name which represents an object type declared previously by an object statement (see
Section 11.2.17).

It is up to the MLM author to assure that the implementation-specific contents of the mapping produces the
values to be assigned to attributes, and in the correct order.

11.2.9.1 Example
dest_obj := object [dest_method, recip_name, recip_ address];

email_attending := DESTINATION AS dest_obj {Attendi ng Phys Email};

def_destination := DESTINATION AS dest_obj;

11.2.10 Assignment Statement

The assignment statement, defined in Section 10.2.1, is also permitted in the data slot.

11.2.11 If-Then Statement

The if-then statement, defined in Section 10.2.1.2, is also permitted in the data slot.

11.2.12 Switch-Case Statement

The switch-case statement, defined in Section 10.2.3, is also permitted in the data slot.

11.2.13 Call Statement

The call statement, defined in Section 10.2.5, is also permitted in the data slot.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 103

Revision date: 2011-03-25 Print date: 5/17/2011

11.2.14 While Loop

The while loop (with an optional breakloop statement), defined in Section 10.2.6, is also permitted in the
data slot.

11.2.15 For Loop

The for loop (with an optional breakloop statement), defined in Section 10.2.7, is also permitted in the
data slot.

11.2.16 Interface Statement

The interface statement assigns an institution-specific foreign function interface definition to a variable.
The interface statement permits specification of a foreign function, i.e., a function written in another
programming language. Sometimes medical logic requires information not directly available from the
database (via read statements). It may be desirable to call operating system functions or libraries obtained
from other vendors. A foreign function, when specified, can then be called with the call statement (see
Section 10.2.5). Curly braces ({}) are used to specify the foreign function. The specification within the
curly braces is implementation specific. There are two equivalent versions:

<var> := INTERFACE <mapping>;

LET <var> BE INTERFACE <mapping>;

<var> is a variable that represents the interface to be defined. It can only be used as part of a call statement.

<mapping> is a valid mapping clause (see Section 7.1.8) which contains the institution-specific event
definition. How the function interface is defined and used is up to the institution.

11.2.16.1 Example
data:

/* Declares the third-party drug-drug interaction f unction */

/* The implementation within the {}-braces shows th at a string (char*)
will be returned */

/* when the third-party API (ThirdPartyAPI) is used to call */

/* the drug-drug interaction function (DrugDrugInte raction) */

/* The function expects that two medicaion strings (char*, char*) will be
passed */

func_drugint := INTERFACE {

char* ThirdPartyAPI:DrugDrugInteraction (char*, cha r*)

};

;;

evoke:

;;

logic:

/* Calls the drug-drug interaction function */

alert_text := call func_drugint with "terfenadine", "erythromycin";

11.2.17 Object Statement

The object statement assigns object declaration to a variable. This variable should not be reassigned in
another statement, and the variable name becomes the object type name (as used in a read as statement
(Section 11.2.2) or new statement (Section 10.2.8). The object statement permits specification of the
attributes and attribute ordering of an object type.

<var> := OBJECT "[" <attribute-name-1>, <attribute- name-2> ... "]";

LET <var> BE OBJECT "[" <attribute-name-1>, <attrib ute-name-2> ... "]";

MedicationDose := OBJECT [Medication, Dose, Status] ;

Object attributes follow the same rules as variable names regarding allowed characters. As with variable
names, character case is not significant.

Arden Syntax for Medical Logic Systems

Page 104 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

11.2.18 New Statement

The new statement, defined in Section 10.2.8, is also permitted in the data slot.

11.2.19 Include Statement

The include statement is analogous to the include statement in C-based languages in that indicates an
external MLM may be consulted for object, MLM, event, interface variable and resource definitions. The
include statement references a variable previously assigned in an MLM statement (11.2.3). When object
definitions or resource definitions occur in both the local MLM and a remote MLM, the definition in the
local scope always takes precedence. If two remote MLMs define objects or resource definitions with the
same name or key, the definitions in MLMs referred to later in the local MLM take precedence. The basic
form of the statement is

INCLUDE <var>;

11.2.19.1 Example
mlm2 := MLM 'my_mlm2.mlm' FROM INSTITUTION "my inst itution";

INCLUDE mlm2;

11.3 Data Slot Usage
The data slot is used to map institution-specific entities to variables used locally in the MLM. Keeping the
mappings in one slot facilitates modifying an MLM for use in another institution.

Although the data slot can perform assignment statements and if-then statements like the logic slot, it is
recommended that most of the logic be left in the logic slot. For example, it would be possible to write an
MLM with all its mappings and health logic in the data slot, leaving only a simple conclude statement in
the logic slot; but this defeats the purpose of separating the data slot and the logic slot. Assignment
statements and if-then statements should be used in the data slot only where necessary to support database
queries (for example, to calculate a time constraint or to handle details of database semantics, such as
handling missing data).

12 ACTION SLOT

12.1 Purpose
Once the MLM has concluded that the condition specified in the logic slot holds true, the action slot is
executed, performing whatever actions are appropriate to the condition. Typical actions include sending a
message to a health care provider, adding an interpretation to the patient record, returning a result to a
calling MLM, and evoking other MLMs. Good programming practice is for an MLM's action slot to
contain only return statements, or to contain only call and write statements. If an MLM is called from an
action slot (see Section 12.2.5) or evoked by an external event (see Section 13), the only effect of a return
statement is to terminate execution of the action slot.

12.2 Action Slot Statements

12.2.1 Write Statement

The write statement is the main statement in the action slot. It sends a text or coded message (for example,
an alert) to a destination. It has several forms:

WRITE <expr>;

WRITE <expr> AT <destination>;

WRITE <message>;

WRITE <message> AT <destination>;

<expr> is any valid expression, which usually contains text to be read by the health care provider or
variables defined in the logic slot.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 105

Revision date: 2011-03-25 Print date: 5/17/2011

<destination> is a destination variable as defined in Section 11.2.8. The format and implementation of the
destination is institution-specific. Typical destinations include the patient record, a printer, databases, and
electronic mail addresses. When the destination is omitted, the message is sent to the default destination.
This is generally the health care provider or the patient record, but the implementation is institution-
specific.

<message> is a message variable as defined in Section 11.2.6. The message variable permits institutions to
write institution-specific coded MLM messages to databases that will not accommodate the <expr> form.

<expr> is often a string. If a particular implementation or deployment of Arden Syntax needs to use XML
to structure messages, a string expression can be used to compose this message. Appendix X1 shows the
recommended DTD for structured messages.

The effect of the write statement is to send the specified message either to the default destination (which is
usually a health care provider or the patient record) or the destination that is specified.

Within a single MLM, the effect of grouping write statements is unspecified, and depends on the
implementation of the syntax.

If an MLM is called by another MLM's action block (see Section 12.2.5), its write statements are output as
a separate group from the calling MLM's. However, the order of the groupings is unspecified and depends
on the implementation of the syntax.

Note that embedding the AT operator (Section 9.17.3) in a WRITE statement can introduce ambiguity. The
use of the operator in this context is implementation-specific.

12.2.1.1 Examples<expr>

In these examples, serum_pot is a variable assigned in the logic slot, email_dest is a destination variable
defined in the data slot, and a_message is a message variable defined in the data slot.

WRITE "the patient's potassium is" || serum_pot;

WRITE "this is an email alert" AT email_dest;

WRITE a_message;

12.2.1.2 Examples<message>

An institution can store coded messages without using the message variable. For example, the following
message could be stored not as a free text string but as a unique code that symbolizes the message along
with a single field that holds the serum potassium value, which is variable:

WRITE "the patient's potassium is " || serum_pot;

WRITE CK0023 || serum_pot;

CK0023 would be the institution-specific code representing "the patient's potassium is".

The message must be explicitly assigned to the institution-specific code before the code is used in a write
statement. Generally, this assignment should take place in the data slot.

12.2.2 Return Statement

The return statement is used in MLMs that are called by other MLMs. It returns a result back to the calling
MLM; the result is assigned to the variable in the call statement (see Section 10.2.5). One or more results
can be returned by the MLM. Its form is:

RETURN <expr>;

RETURN <expr>, ... , <expr>;

<expr> is any valid expression, which may be a single item or a list. Primary times are maintained.

When a return statement is executed, no further statements in the MLM are executed.

12.2.2.1 Examples:
RETURN (diagnosis_score,diagnosis_name);

RETURN diagnosis_score, diagnosis_name;

Arden Syntax for Medical Logic Systems

Page 106 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

The first example returns one expression, which is a list. The second example returns two expressions.

12.2.3 If-then Statement

The if-then statement, defined in Section 10.2.1.2, is also permitted in the action slot.

12.2.4 Switch-Case Statement

The switch-case statement, defined in Section 10.2.3, is also permitted in the action slot.

12.2.5 Call Statement

The call statement in the action slot permits an MLM to call other MLMs conditionally based upon the
conclusion in the logic slot. It is similar to the call statement in the logic slot defined in Section 10.2.5; the
arguments can be accessed with the argument statement in Section 11.2.5. Given an mlmname, the MLM
can be called directly with an optional delay. Given an event definition, all the MLMs that are normally
evoked by that event can be called with an optional delay. If the call statement is used to evoke an event,
any arguments are ignored. Its forms are:

CALL <name>;

CALL <name> DELAY <duration>;

CALL <name> WITH <expr>;

CALL <name> WITH <expr> DELAY <duration>;

CALL <name> WITH <expr>, ..., <expr>;

CALL <name> WITH <expr>, ..., <expr> DELAY <duratio n>;

<name> is an identifier that must represent either a valid MLM variable as defined by an MLM statement
in the data slot (see Section 11.2.4), or a valid event variable as defined by an event statement in the data
slot (see Section 11.2.3).

<duration> is a valid expression whose value is a duration.

12.2.5.1 Operation

If <name> is an MLM variable, then when the main MLM terminates, the named MLM is called. If
<name> is an event variable, then all the MLMs whose evoke slots refer to the named event are executed
(see Section 13). If a delay is present, then the execution of the called MLMs is delayed by the specified
duration. Whereas the call statement in the logic slot is synchronous, the call statement in the action slot is
asynchronous. The order of execution of called MLMs is implementation dependent.

12.2.5.2 Example

(where mlmx has been assigned a suitable value in the data slot, say by mlmx := MLM 'my_mlm'):

CALL mlmx DELAY 3 days ;

12.2.6 While Loop

The while loop (with an optional breakloop statement), defined in Section 10.2.5.10, is also permitted in
the action slot

12.2.7 For Loop

The for loop (with an optional breakloop statement), defined in Section 10.2.6.1, is also permitted in the
action slot.

12.2.8 Assignment Statement

The assignment statement, defined in Section 10.2.1, is also permitted in the action slot. Note that with
Arden versions prior to 2.5, assignment statements were not permitted in the action slot. This capability
was added in 2.5 to allow increased flexibility for things like while loops, which are not usable without

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 107

Revision date: 2011-03-25 Print date: 5/17/2011

assignment. MLM authors should remember to keep the logic to the logic slot, as much as possible. Refer
to Section 12.3, below, for details.

12.3 Action Slot Usage
The action slot is usually simple, containing a single message to be written or a single value to be returned
to a calling MLM. Multiple actions can be performed by listing several action statements. The slot can be
made more complex by using its if-then statement to select among alternative actions. While this is useful,
it is recommended that the amount of health logic in the action slot be kept to a minimum.

Arden Syntax for Medical Logic Systems

Page 108 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

13 EVOKE SLOT

13.1 Purpose
The evoke slot defines how an MLM may be triggered. An MLM may be triggered by any of the following:

13.1.1 Occurrence of Some Event

For example, on the storage of a serum potassium value in the patient database, in order to check for values
that are far out of range.

13.1.2 A Time Delay After an Event

For example, five days after ordering gentamicin for a patient, in order to check renal function.

13.1.3 Periodically After an Event

For example, every five days after ordering gentamicin for a patient, in order to check renal function over a
period of time.

13.1.4 A Constant Time Trigger

For example, on 07-27-2007 at 12:00:00.

13.1.5 A Constant Periodic Time Trigger

For example, start on Friday at 18:00:00, trigger again every week for one year.

13.2 Events
Events are distinct from data. An event may be an update or insertion in the patient database, a medically
relevant occurrence, or an institution-defined occurrence. Examples include the storage of a serum
potassium level, the ordering of a medication, the transferring of a patient to a new bed, and the recording
of a new address for a patient.

13.2.1 Event Properties

The main attribute of an event is the time that it occurred, which must be an instant in time. Events have no
values. Note the distinction between events and data. Data have values and have primary times, which are
the times that are medically most relevant. For example, a serum potassium result may have a value of 5.0
and a primary time that is the time that it was drawn from the patient. But the storage of serum potassium
event has no value, and its time is the time that the potassium was stored in the patient database.

13.2.2 Time of Events

The time of operator (see Section 9.17) applied to an event results in the time that the event occurred. For
example, time of storage_of_potassium returns the time that the potassium was stored. This value might
be different from the time of the corresponding data value that is retrieved by a read mapping (the data
value typically uses a clinically relevant time, which would often be different from the time of storing the
data). Eventtime (see Section 8.4.4) is the time of the event that evoked the MLM.

13.2.3 Declaration of Events

Events are declared in the data slot as defined in Section 11.2.3.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 109

Revision date: 2011-03-25 Print date: 5/17/2011

13.3 Evoke Slot Statements:

13.3.1 Simple Trigger Statement

A simple trigger statement specifies an event or a set of events. When any of the events occurs, the MLM
is triggered. Its form is:

<event-expr>

<event-expr> is an expression that contains only event variables as defined in Section 11.2.3, the or
operator (see Section 9.4.1), the any operator (see Section 9.12.13), and parentheses. The keyword call
may also be present, to indicate that the MLM may be called by another MLM.

13.3.1.1 Operation

Although events do not have values, they are used in this statement as if they were syntactically Boolean.
Thus one ends up with a statement like this: event1 OR event2 OR event3. The MLM is triggered
whenever an event occurs and any of the evoke statements evaluate to true. If more than one event occurs,
the MLM may be triggered. No additional trigger criteria must be satisfied for the MLM to be evoked.

13.3.1.2 Examples

In the following examples, all the variables are event variables defined in the data slot.

penicillin_storage

penicillin_storage OR cephalosporin_storage

ANY OF (penicillin_storage,cephalosporin_storage,am inoglycoside_storage)

data:

penicillin_storage := event {store penicillin order }

cephalosporin_storage := event {store cephalosporin order}

;;

evoke:

penicillin_storage OR

cephalosporin_storage;;

13.3.2 Delayed Event Trigger Statement

A delayed event trigger statement permits the MLM to be triggered some time after an event occurs. It is
of this form:

<time-expr> AFTER TIME [OF] <event>

<time-expr> is an expression that contains only times expressed as one of the following.

• time constants (see Section 7.1.5),

• as time-of-day constants applied to the at operator in combination with a day-of-week keyword or
the reserved words today, and tomorrow using the attime reserved word to combine a day-of-
week with a time-of-day in the form <day of week> ATTIME <time of day>

• a duration constant formed by using a number constant with a duration operator

combined using the OR keyword

<event> is an event variable.

<day of week> is a day-of week-variable (see Section 8.12) or the reserved words today or tomorrow.

<time of day> is a time-of-day variable (see Section 8.11)

For example:

TODAY ATTIME 15:00 AFTER TIME OF penicillin_storage

The MLM execution is delayed until 15:00 of the day the penicillin_storage event occurs. If the time of day
is after 15:00 the MLM will execute immediately unless the evoke slot contains another time constant (see

Arden Syntax for Medical Logic Systems

Page 110 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

subsection "use of or"). If the MLM has to be executed the following day, tomorrow can be used as time
constant, for example:

TOMORROW ATTIME 02:30 AFTER TIME OF penicillin_stor age

Here, the MLM execution is delayed until 02:30 of the next day. If the execution of the MLM has
scheduled for a given day of the week, that day can be also specified within the evoke slot:

MONDAY ATTIME 13:00 AFTER TIME OF penicillin_storag e

The day-of-week is one of the literals Sunday, Monday, Tuesday etc. The MLM execution is delayed until
13:00 of the designated day. If the day of week of "eventtime" is the same as the designated day and
eventtime is later than 13:00, the MLM execution is delayed until the following week.

13.3.2.1 Use of OR

Time expressions for the delayed trigger can be combined using OR. In this case the whole expression is
evaluated to find the next earliest trigger time. For example:

MONDAY ATTIME 13:00 OR FRIDAY ATTIME 12:00 AFTER TI ME OF penicillin_storage

This triggers the MLM on Monday if the event occurs between Friday after 12:00 and Monday before
13:00. If the event occurs outside of this time interval, the MLM is triggered on Friday.

13.3.2.2 Operation

The MLM is triggered at the time specified in the delayed trigger statement. This is usually some specified
duration after the occurrence of an event. In the special case, that the delay time is given as an absolute
point in time, the triggering is delayed to this timestamp, as soon as the event occurs. If the event occurs
after this timestamp, the MLM triggers immediately.

13.3.2.3 Examples

In the following examples, all variables are event variables:

3 days after time of penicillin_storage

1992-01-01T00:00:00 AFTER TIME OF penicillin_storag e

TOMORROW ATTIME 02:00 AFTER TIME OF penicillin_stor age

If time expressions are combined with OR, the MLM will be executed at the next scheduled time.

TODAY ATTIME 13:00 OR TOMORROW AT 02:00 AFTER TIME OF penicillin_storage

13.3.3 Constant Time Trigger Statement

A constant time trigger statement permits the MLM to be triggered at a specific instance in time. It has
two forms:

<time-expr>

<duration-expr> AFTER <time-expr- simple>

<duration-expr> is a duration constant formed by using a number constant (see Section 7.1.4) with a
duration operator (see Section 9.10.4).

<time-expr> as defined for the delayed event trigger statement above

<time-expr-simple> is defined as <time-expr> but without <duration-expr>

13.3.3.1 Operation

The MLM is triggered at the time specified by the time expression. This is either an absolute point in time,
or a relative date (such as tomorrow or simply a duration). A relative date is always evaluated relative to the
timepoint when the MLM becomes executable in the system. If a time expression evaluates to a point in
time which lies in the past, the MLM is triggered immediately.

For example:

TOMORROW ATTIME 02:30

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 111

Revision date: 2011-03-25 Print date: 5/17/2011

The MLM is triggered the day after it got executable at 02:30.

20 hours

The MLM is triggered 20 hours after it got executable.

13.3.3.2 Examples

In the following examples, variables are event variables:

1992-01-01T00:00:00

3 days AFTER 01-01-2007

TOMORROW ATTIME 02:30

If used with time-of-day-constants and more than one time constant is specified in the evoke slot, the MLM
will be executed at the next scheduled time.

TODAY ATTIME 13:00 OR TOMORROW AT 02:00

13.3.4 Periodic Event Trigger Statement

A periodic event trigger statement permits the MLM to be triggered at specified time intervals after an
event occurs. The cycles may continue for a specified duration, and they may be terminated by a Boolean
condition. It has two forms:

EVERY <duration-expr> FOR <duration-expr> STARTING <delayed-event-trigger>

EVERY <duration-expr> FOR <duration-expr> STARTING <delayed-event-trigger>
UNTIL <Boolean-expr>

<duration-expr> is a duration constant formed by using a number constant (see Section 7.1.4) with a
duration operator (see Section 9.10.4).

<Boolean-expr> is any valid expression. It is usually a Boolean expression that becomes true when the
MLM triggering should stop.

<delayed-event-trigger> is a delayed event trigger as defined above.

Simple trigger statements not using a delayed event trigger also are supported. Example:

EVERY 1 day FOR 14 days STARTING time of event2

13.3.4.1 Operation

The MLM is first triggered at the time specified after the starting word. It is then triggered repeatedly in
cycles of length equal to the duration specified after the every word. These cycles continue for the duration
specified after the for word. The for duration is inclusive, so every 1 day for 1 day starting 3 days after
time of event1 would trigger the MLM twice: at three days and at four days after the event.

13.3.4.2 Until

If there is an until clause, then it is evaluated as soon as the MLM is triggered; the clause may contain
references to the patient database unrelated to the event. If it is true then the MLM exits immediately, and
no further triggering occurs. Otherwise, the MLM is executed, and it is triggered again after the every
duration (assuming the for duration has not run out).

13.3.4.3 Examples

In the following examples, variables beginning with event are event variables:

every 1 day for 14 days starting 1992-01-01T00:00:0 0 after time of event1

every 1 day for 14 days starting time of event2

every 2 hours for 1 day starting today at 12:00 aft er time of event3

every 1 week for 1 month starting 3 days after time of event4 until
last(serum_potassium) > 5.0

Arden Syntax for Medical Logic Systems

Page 112 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

13.3.5 Constant Periodic Time Trigger Statement

A constant periodic time trigger statement permits the repeatedly execution of a MLM at specific
instances of time, independent of events. It has two forms:

EVERY <duration-expr> FOR <duration-expr> STARTING <constant-time-trigger>

EVERY <duration-expr> FOR <duration-expr> STARTING <constant-time-trigger>
UNTIL <Boolean-expr>

<duration-expr> as defined for the periodic event trigger statement

<Boolean-expr> as defined for the periodic event trigger statement

<constant-time-trigger> is a constant time trigger as defined above.

Consider the following evoke slot:

EVERY 1 DAY FOR 5 months STARTING 2008-10-01T06:30;

This evoke slot could be used to run an influenza rule every day for the five months of the 2008 flu season.

13.3.5.1 Operation

As defined for the periodic event trigger statement, but the first execution is determined by a constant
time trigger statement.

13.3.5.2 Until

As defined for the periodic event trigger statement.

13.3.5.3 Examples

In the following examples, variables beginning with event are event variables:

every 1 day for 14 days starting 1992-01-01T00:00:0 0

every 2 hours for 1 day starting today at 12:00

every 1 week for 1 month starting 3 days after 1992 -01-01T00:00:00 until
last(serum_potassium) > 5.0

13.4 Evoke Slot Usage
The evoke slot usually contains a single statement that specifies when an MLM is triggered. If the evoke
slot has more than one statement, then the MLM is evoked whenever any of the criteria in any of the
statements occurs.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 113

Revision date: 2011-03-25 Print date: 5/17/2011

Annexes
 (Mandatory Information)

A1 BACKUS-NAUR FORM
The MLM syntax is defined using Backus-Naur Form (BNF) (3). In the interest of readability and computability, the
context free grammar is expressed in Backus-Naur Form rather than in the more compact Extended Backus-Naur
Form (EBNF) (3). The following definitions hold:

<expression> - represents the non-terminal expression

"IF" – represents the terminal if , iF, If , or IF

":=" – represents the terminal :=

::= - is defined as

/*...*/ - a comment about the grammar

| - or

Terminals are listed in uppercase, but the language is case insensitive outside of character strings. In structured slots,
space, carriage return, line feed, horizontal tab, vertical tab, and form feed are considered white space and are
ignored. In addition, the terminal the is treated as white space (that is, the word the is ignored).

With minor modifications, the following grammar can be processed by an LALR(1) parser generator, except where
noted by comments against individual rules

/****** physical file containing one or more MLMs * *****/

/****** file of individual MLMs ******/

<mlms> ::=

 <mlm>

 | <mlm> <mlms>

/****** categories ******/

<mlm> ::=

 <maintenance_category>

 <library_category>

 <knowledge_category>

 <resources_category>

 "END:"

<maintenance_category> ::=

 "MAINTENANCE:" <maintenance_body>

Arden Syntax for Medical Logic Systems

Page 114 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

<maintenance_body> ::=

 <title_slot>

 <mlmname_slot>

 <arden_version_slot>

 <version_slot>

 <institution_slot>

 <author_slot>

 <specialist_slot>

 <date_slot>

 <validation_slot>

<library_category> ::=

 "LIBRARY:" <library_body>

<library_body> ::=

 <purpose_slot>

 <explanation_slot>

 <keywords_slot>

 <citations_slot>

 <links_slot>

<knowledge_category> ::=

 "KNOWLEDGE:" <knowledge_body>

<knowledge_body> ::=

 <type_slot>

 <data_slot>

 <priority_slot>

 <evoke_slot>

 <logic_slot>

 <action_slot>

 <urgency_slot>

<resources_category> ::=

 /* empty */

 | "RESOURCES:" <resources_body>

<resources_body> ::=

 <default_slot>

 <language_slots>

/****** slots ******/

/****** maintenance slots ******/

<title_slot> ::=

 "TITLE:" <text> ";;"

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 115

Revision date: 2011-03-25 Print date: 5/17/2011

< <mlmname_slot> ::=

 "MLMNAME:" <mlmname_text> ";;"

 | "FILENAME:" <mlmname_text> ";;"

 /* the "FILENAME:" form is only valid */

 /* combination with the empty version */

 /* of <arden_version_slot> */

<mlmname_text> ::=

 <letter>

 | <mlmname_text><mlmname_text_rest>

<mlmname_text_rest> ::=

 <letter>

 | <digit>

 | "."

 | "-"

 | "_"

<arden_version_slot> ::=

 "ARDEN:" <arden_version> ";;"

 | /*empty*/

 /* the empty version is only valid */

 /* combination with the "FILENAME" */

 /* form of < mlmname_slot > */

<arden_version> ::=

 "VERSION" "2"

 | "VERSION" "2.1"

 | "VERSION" "2.5"

 | "VERSION" "2.6"

 | "VERSION" "2.7"

 | "VERSION" "2.8"

<version_slot> ::=

 "VERSION:" <mlm_version> ";;"

<mlm_version> ::=

 <text>

<institution_slot> ::=

 "INSTITUTION:" <text> ";;" /* text limited to 8 0 characters */

<author_slot> ::=

 "AUTHOR:" <text> ";;" /* see 6.1.6 for details */

<specialist_slot> ::=

 "SPECIALIST:" <text> ";;" /* see 6.1.7 for deta ils */

<date_slot> ::=

 "DATE:" <mlm_date> ";;"

<mlm_date> ::=

 <iso_date>

 | <iso_date_time>

Arden Syntax for Medical Logic Systems

Page 116 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

<validation_slot> ::=

 "VALIDATION:" <validation_code> ";;"

 <validation_code> ::=

 "PRODUCTION"

 | "RESEARCH"

 | "TESTING"

 | "EXPIRED"

/****** library slots ******/

<purpose_slot> ::=

 "PURPOSE:" <text> ";;"

<explanation_slot> ::=

 "EXPLANATION:" <text> ";;"

<keywords_slot> ::=

 "KEYWORDS:" <text> ";;"

/* May require special processing to handle both list and text versions */

<citations_slot> ::=

 /* empty */

 | "CITATIONS:" <citations_list> ";;"

 | "CITATIONS:" <text> ";;" /* deprecated – */

 /* supported for backward compatibility */

<citations_list> ::=

 /* empty */

 | <single_citation>

 | <single_citation> ";" <citations_list>

<single_citation> ::=

 <digits> "." <citation_type> <citation_text>

 | <citation_text>

/* This is a separate definition to allow for future expansion */

 <citation_text> ::=

 <string> /* see ANSI/NISO Z39.88 */

 /* for preferred OpenURL format */

 <citation_type> ::=

 /* empty */

 | "SUPPORT"

 | "REFUTE"

/* May require special processing to handle both list and text versions */

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 117

Revision date: 2011-03-25 Print date: 5/17/2011

<links_slot> ::=

 /* empty */

 | "LINKS:" <links_list> ";;"

 | "LINKS:" <text> ";;" /* deprecated – */

 /* supported for backward compatibility */

<links_list> ::=

 /* empty */

 | <single_link>

 | <links_list> ";" <single_link>

<single_link> ::=

 <link_type> <link_name> <link_text>

<link_type> ::=

 /* empty */

 | "URL_LINK"

 | "MESH_LINK"

 | "OTHER_LINK"

 | "EXE_LINK"

<link_name> ::=

/* empty */

| <string>

/* This is a separate definition to allow for future expansion */

<link_text> ::=

 <term> /* see ANSI/NISO Z39.88 */

 /* for preferred OpenURL format */

/****** knowledge slots ******/

<type_slot> ::=

 "TYPE:" <type_code> ";;"

/* This is a separate definition to allow for future expansion */

<type_code> ::=

 "DATA_DRIVEN"

 | "DATA-DRIVEN" /* deprecated – supported for back wards */

 /* compatibility */

<data_slot> ::=

"DATA:" <data_block> ";;"

<priority_slot> ::=

 /* empty */

 | "PRIORITY:" <number> ";;"

<evoke_slot> ::=

 "EVOKE:" <evoke_block> ";;"

<logic_slot> ::=

 "LOGIC:" <logic_block> ";;"

Arden Syntax for Medical Logic Systems

Page 118 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

<action_slot> ::=

 "ACTION:" <action_block> ";;"

<urgency_slot> ::=

 /* empty */

 | "URGENCY:" <urgency_val> ";;"

<urgency_val> ::=

 <number>

 | <identifier>

/****** resource slots ******/

<default_slot> ::=

 "DEFAULT:" <iso639-1> ";;" /* 2-character lang uage code */

<language_slots> ::=

 <language_slots> <language_slot>

 | <language_slot>

<language_slot> ::=

 "LANGUAGE:" <iso639-1>

 <resource_terms>

 ";;"

<resource_terms> ::=

 <resource_terms> ";" <term> ":" <string>

 | <term> ":" <string>

/****** logic block ******/

<logic_block> ::=

 <logic_block> ‘;’ <logic_statement>

 | <logic_statement>

<logic_statement> ::=

 /* empty */

 | <logic_assignment>

 | "IF" <logic_if_then_else2>

 | "FOR" <identifier> "IN" <expr> "DO" <logic_block > ";" "ENDDO"

 | "WHILE" <expr> "DO" <logic_block> ";" "ENDDO"

 | <logic_switch>

 | "BREAKLOOP"

 | "CONCLUDE" <expr>

<logic_if_then_else2> ::=

 <expr> "THEN" <logic_block> ";" <logic_elseif> " ;"

<logic_elseif> ::=

 "ENDIF"

 | "ELSE" <logic_block> ";" "ENDIF"

 | "ELSEIF" <logic_if_then_else2>

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 119

Revision date: 2011-03-25 Print date: 5/17/2011

<logic_assignment> ::=

 <identifier_becomes> <expr>

 | <time_becomes> <expr>

 | <identifier_becomes> <call_phrase>

 | "(" <data_var_list> ")" ":=" <call_phrase>

 | "LET" "(" <data_var_list> ")" "BE" <call_phrase>

| <identifier_becomes> <new_object_phrase>

<identifier_becomes> ::=

 <identifier_or_object_ref> ":="

 | "LET" <identifier_or_object_ref> "BE" | "NOW" ": ="

<logic_switch> ::=

 "SWITCH" <identifier> ":"

 <logic_switch_cases>

 "ENDSWITCH" ";"

<logic_switch_cases> ::=

 /* empty */

 | "CASE" <expr_factor> <logic_block> <logic_switch _cases>

 | "DEFAULT" <expr_factor> <logic_block>

<identifier_or_object_ref> ::=

 <identifier>

 | <identifier_or_object_ref> "[" <expr> "]"

 | <identifier_or_object_ref> "." <identifier_or_ob ject_ref>

 /* field reference */

<time_becomes> ::=

 "TIME" "OF" <identifier> ":="

 | "TIME" <identifier> ":="

 | "LET" "TIME" "OF" <identifier> "BE"

 | "LET" "TIME" <identifier> "BE"

<call_phrase> ::=

 "CALL" <identifier>

 | "CALL" <identifier> "WITH" <expr>

/****** expressions ******/

<expr> ::=

 <expr_sort>

 | <expr> "," <expr_sort>

 | "," <expr_sort>

Arden Syntax for Medical Logic Systems

Page 120 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

<expr_sort> ::=

 <expr_add_list>

 | <expr_add_list> "MERGE" <expr_sort>

 | "SORT" <sort_option> <expr_sort>

 | <expr_add_list> "MERGE" <expr_sort> "USING" <ex pr_function>

 | "SORT" <sort_option> <expr_sort> "USING" <exp r_function>

<sort_option> ::=

 /*empty*/

 | "TIME"

 | "DATA"

<expr_add_list> ::=

 <expr_remove_list>

 | "ADD" <expr_where> "TO" <expr_where>

 | "ADD" <expr_where> "TO" <expr_where> "AT" <expr_ where>

<expr_remove_list> ::=

 <expr_where>

 | "REMOVE" <expr_where> "FROM" <expr_where>

<expr_where> ::=

 <expr_range>

 | <expr_range> "WHERE" <expr_range>

<expr_range> ::=

 <expr_or>

 | <expr_or> "SEQTO" <expr_or>

<expr_or> ::=

 <expr_or> "OR" <expr_and>

 | <expr_and>

<expr_and> ::=

 <expr_and> "AND" <expr_not>

 | <expr_not>

<expr_not> ::=

 "NOT" <expr_comparison>

 | <expr_comparison>

<expr_comparison> ::=

 <expr_string>

 | <expr_find_string>

 | <expr_string> <simple_comp_op> <expr_string>

 | <expr_string> <is> <main_comp_op>

 | <expr_string> <is> "NOT" <main_comp_op>

 | <expr_string> <in_comp_op>

 | <expr_string> "NOT" <in_comp_op>

 | <expr_string> <occur> <temporal_comp_op>

 | <expr_string> <occur> "NOT" <temporal_comp_op>

 | <expr_string> <occur> <range_comp_op>

 | <expr_string> <occur> "NOT" <range_comp_op>

 | <expr_string> "MATCHES" "PATTERN" <expr_string>

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 121

Revision date: 2011-03-25 Print date: 5/17/2011

<expr_find_string> ::=

 "FIND" <expr_string> "IN" "STRING" <expr_string>

<string_search_start>

 | "FIND" <expr_string> "STRING" <expr_string> <str ing_search_start>

<expr_string> ::=

 <expr_plus>

 | <expr_string> "||" <expr_plus>

 | <expr_string> "FORMATTED" "WITH" <format_string>

 | <expr_string> "FORMATTED" "WITH" <expr_plus>

 | "TRIM" <trim_option> <expr_string>

 | <case_option> <expr_string>

 | "SUBSTRING" <expr_plus> "CHARACTERS" <string_sea rch_start> "FROM"

<expr_string>

<format_string> ::=

 """ <format_specification> """ /* The format strin g is a true */

 /* Arden Syntax string, enclosed */

 /* in a single pair of double */

 /* quotes (") */

<format_specification> ::= /* See Section 9.8.2 and Annex 5 for */

 /* explanation of valid combination and thei r */

 /* meanings. */

 <format_specification> <format_specification_sin gle>

 | <format_specification_single>

<format_specification_single> ::=

 "%"<format_options><format_flag><width><precisio n>

 /* No spaces are permitted between elements in a bove form */

 | <text>

<format_options> ::=

 /* empty */

 | "+"

 | "-"

 | "0"

 | " " /* space */

 | "#"

Arden Syntax for Medical Logic Systems

Page 122 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

<format_flag> ::= /* Format flags are case sensitive */

 "c"

 | "C"

 | "d"

 | "I"

 | "o"

 | "u"

 | "x"

 | "X"

 | "e"

 | "E"

 | "f"

 | "g"

 | "G"

 | "n"

 | "p"

 | "s"

 | "t"

<width> ::=

 /* empty */

 | <digits>

<precision> ::=

 /* empty */

 | "."<digits>

<trim_option> ::=

 /* empty */

 | "LEFT"

 | "RIGHT"

<case_option> ::=

 "UPPERCASE"

 | "LOWERCASE"

<string_search_start> ::=

 /* empty */

 | "STARTING" "AT" <expr_plus>

<expr_plus> ::=

 <expr_times>

 | <expr_plus> "+" <expr_times>

 | <expr_plus> "-" <expr_times>

 | "+" <expr_times>

 | "-" <expr_times>

<expr_times> ::=

 <expr_power>

 | <expr_times> "*" <expr_power>

 | <expr_times> "/" <expr_power>

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 123

Revision date: 2011-03-25 Print date: 5/17/2011

<expr_power> ::=

 <expr_attime>

 | <expr_function> "**" <expr_function>

 /* exponent (second argument) must be an expres sion */

 /* that evaluates to a scalar number */

<expr_attime> ::=

 <expr_before>

 | <expr_before> "ATTIME" <expr_attime>

<expr_before> ::=

 <expr_ago>

 | <expr_duration> "BEFORE" <expr_ago>

 | <expr_duration> "AFTER" <expr_ago>

 | <expr_duration> "FROM" <expr_ago>

<expr_ago> ::=

 <expr_function>

 | <expr_function> "AGO"

 | <expr_duration>

 | <expr_duration> "AGO"

<expr_duration> ::=

 <expr_function>

 | <expr_function> <duration_op>

<expr_function> ::=

 <expr_factor> | <of_func_op> <expr_function>

 | <of_func_op> "OF" <expr_function>

 | <from_of_func_op> <expr_function>

 | <from_of_func_op> "OF" <expr_function>

 | <from_of_func_op> <expr_factor> "FROM" <expr_fun ction>

 | "REPLACE" <timepart> "OF" <expr_function> "W ITH" <expr_factor>

 | "REPLACE" <timepart> <expr_function> "WITH" <exp r_factor>

 | <from_of_func_op> <expr_function> "USING" <expr_ function>

 | <from_of_func_op> "OF" <expr_function> "USING" < expr_function>

 | <from_of_func_op> <expr_factor> "FROM" <expr_fun ction> "USING"

<expr_function>

 | <from_func_op> <expr_factor> "FROM" <expr_functi on>

 | <index_from_of_func_op> <expr_function>

 | <index_from_of_func_op> "OF" <expr_function>

 | <index_from_of_func_op> <expr_factor> "FROM" <ex pr_function>

 | <at_least_most_op> <expr_factor> "FROM" <expr_fu nction>

 | <at_least_most_op> <expr_factor> "ISTRUE" "FROM" <expr_function>

 | <at_least_most_op> <expr_factor> "ARETRUE" "FROM " <expr_function>

 | "INDEX" "OF" <expr_factor> "FROM" <expr_function >

 | <index_from_func_op> <expr_factor> "FROM" <expr_ function>

 | <expr_factor> "AS" <as_func_op>

 | <expr_attribute_from>

 | <expr_sublist_from>

Arden Syntax for Medical Logic Systems

Page 124 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

<expr_attribute_from> ::=

 "ATTRIBUTE" <expr_factor> "FROM" <expr_factor>

<expr_sublist_from> ::=

 "SUBLIST" <expr_factor> "FROM" <expr_factor>

 | "SUBLIST" <expr_factor> "STARTING" "AT" <expr_fa ctor> "FROM"

<expr_factor>

<expr_factor> ::=

 <expr_factor_atom>

 | <expr_factor_atom> "[" <expr> "]" /* number [<e xpr>] is not */

 /* a valid construct */

 | <expr_factor> "." <identifier> /* object d ot notation */

<expr_factor_atom> ::=

 <identifier>

 | <number>

 | <string>

 | <time_value>

 | <boolean_value>

 | <weekday_literal>

 | "TODAY"

 | "TOMORROW"

 | "NULL"

 | <it> /* Value of <it> is NULL outside of a */

 /* where clause and may be flagged as an * /

 /* error in some implementations. * /

 | "(" ")"

 | "(" <expr> ")"

/****** for readability *******/

<it> ::= "IT" | "THEY"

/****** comparison synonyms ******/

<is> ::= "IS" | "ARE" | "WAS" | "WERE"

<occur> ::= "OCCUR" | "OCCURS" | "OCCURRED"

/****** operators ******/

<simple_comp_op> ::=

 "=" | "EQ"

 | "<" | "LT"

 | ">" | "GT"

 | "<=" | "LE"

 | ">=" | "GE"

 | "<>" | "NE"

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 125

Revision date: 2011-03-25 Print date: 5/17/2011

<main_comp_op> ::=

 <temporal_comp_op>

 | <range_comp_op>

 | <unary_comp_op>

 | <binary_comp_op> <expr_string>

/* the WITHIN TO operator will accept any ordered p arameter, */

/* including numbers, strings (single characters), times, Boolean /*

<range_comp_op> ::=

 "WITHIN" <expr_string> "TO" <expr_string>

<temporal_comp_op> ::=

 "WITHIN" <expr_string> "PRECEDING" <expr_string>

 | "WITHIN" <expr_string> "FOLLOWING" <expr_string>

 | "WITHIN" <expr_string> "SURROUNDING" <expr_strin g>

 | "WITHIN" "PAST" <expr_string>

 | "WITHIN" "SAME" "DAY" "AS" <expr_string>

 | "BEFORE" <expr_string>

 | "AFTER" <expr_string>

 | "EQUAL" <expr_string>

 | "AT" <expr_string>

<unary_comp_op> ::=

 "PRESENT"

 | "NULL"

 | "BOOLEAN"

 | "NUMBER"

 | "TIME"

 | "DURATION"

 | "STRING"

 | "LIST"

 | "OBJECT"

 | <identifier> /*names an object i.e. left side of OBJECT statement*/

 | "TIME" "OF" "DAY"

<binary_comp_op> ::=

 "LESS" "THAN"

 | "GREATER" "THAN"

 | "GREATER" "THAN" "OR" "EQUAL"

 | "LESS" "THAN" "OR" "EQUAL"

 | "IN"

<of_func_op> ::=

 <of_read_func_op>

 | <of_noread_func_op>

<in_comp_op> ::=

 "IN"

Arden Syntax for Medical Logic Systems

Page 126 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

<of_read_func_op> ::=

 "AVERAGE" | "AVG"

 | "COUNT"

 | "EXIST" | "EXISTS"

 | "SUM"

 | "MEDIAN"

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 127

Revision date: 2011-03-25 Print date: 5/17/2011

<of_noread_func_op> ::=

 "ANY"

 | "ANY" "ISTRUE"

 | "ALL"

 | "ALL" "ARETRUE"

 | "NO"

 | "NO" "ISTRUE"

 | "SLOPE"

 | "STDDEV"

 | "VARIANCE"

 | "INCREASE"

 | "PERCENT" "INCREASE" | "%" "INCREASE"

 | "DECREASE"

 | "PERCENT" "DECREASE" | "%" "DECREASE"

 | "INTERVAL"

 | "TIME"

 | "TIME" "OF" "DAY"

 | "DAY" "OF" "WEEK"

 | "ARCCOS"

 | "ARCSIN"

 | "ARCTAN"

 | "COSINE" | "COS"

 | "SINE" | "SIN"

 | "TANGENT" | "TAN"

 | "EXP"

 | "FLOOR"

 | "INT"

 | "ROUND"

 | "CEILING"

 | "TRUNCATE"

 | "LOG"

 | "LOG10"

 | "ABS"

 | "SQRT"

 | "EXTRACT" "YEAR"

 | "EXTRACT" "MONTH"

 | "EXTRACT" "DAY"

 | "EXTRACT" "HOUR"

 | "EXTRACT" "MINUTE"

 | "EXTRACT" "SECOND"

 | "EXTRACT" "TIME" "OF" "DAY"

 | "STRING"

 | "EXTRACT" "CHARACTERS"

 | "REVERSE"

 | "LENGTH"

 | "CLONE"

 | "EXTRACT" "ATTRIBUTE" "NAMES"

Arden Syntax for Medical Logic Systems

Page 128 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

<from_func_op> ::=

 "NEAREST"

<index_from_func_op> ::=

 "INDEX" "NEAREST"

<from_of_func_op> ::=

 "MINIMUM" | "MIN"

 | "MAXIMUM" | "MAX"

 | "LAST"

 | "FIRST"

 | "EARLIEST"

 | "LATEST"

<index_from_of_func_op> ::=

 "INDEX" "MINIMUM" | "INDEX" "MIN"

 | "INDEX" "MAXIMUM" | "INDEX" "MAX"

 | "INDEX" "EARLIEST"

 | "INDEX" "LATEST"

<as_func_op> ::=

 "NUMBER"

 | "TIME"

 | "STRING"

<at_least_most_op> ::=

 "AT" "LEAST"

 | "AT" "MOST"

<duration_op> ::=

 "YEAR" | "YEARS"

 | "MONTH" | "MONTHS"

 | "WEEK" | "WEEKS"

 | "DAY" | "DAYS"

 | "HOUR" | "HOURS"

 | "MINUTE" | "MINUTES"

 | "SECOND" | "SECONDS"

<timepart> ::=

 "YEAR"

 | "MONTH"

 | "DAY"

 | "HOUR"

 | "MINUTE"

 | "SECOND"

/****** factors ******/

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 129

Revision date: 2011-03-25 Print date: 5/17/2011

<string> ::=

 <plainstring>

 | "LOCALIZED" <term> <localize_option>

<localize_option> ::=

 /* empty */

 | "BY" <plainstring>

 | "BY" <identifier>

<boolean_value> ::=

 "TRUE"

 | "FALSE"

<time_value> ::=

 "NOW"

 | <iso_date_time>

 | <iso_date>

 | "EVENTTIME"

 | "TRIGGERTIME"

 | "CURRENTTIME"

 | <time_of_day>

/****** data block ******/

<data_block> ::=

 <data_block> ";" <data_statement>

 | <data_statement>

<data_statement> ::=

 /* empty */

 | <data_assignment>

 | "IF" <data_if_then_else2>

 | "FOR" <identifier> "IN" <expr> "DO" <data_block> ";" "ENDDO"

 | "WHILE" <expr> "DO" <data_block> ";" "ENDDO"

 | <data_switch>

 | "BREAKLOOP"

 | "INCLUDE" <identifier>

<data_if_then_else2> ::=

 <expr> "THEN" <data_block> ";" <data_elseif>

<data_elseif> ::=

 "ENDIF"

 | "ELSE" <data_block> ";" "ENDIF"

 | "ELSEIF" <data_if_then_else2>

<data_switch> ::=

 "SWITCH" <identifier> ":"

 <data_switch_cases>

 "ENDSWITCH" ";"

Arden Syntax for Medical Logic Systems

Page 130 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

<data_switch_cases> ::=

 /* empty */

 | "CASE" <expr_factor> <data_block> <data_switch_c ases>

 | "DEFAULT" <expr_factor> <data_block>

<data_assignment> ::=

 <identifier_becomes> <data_assign_phrase>

 | <time_becomes> <expr>

 | "(" <data_var_list> ")" ":=" "READ" <read_phrase >

 | "LET" "(" <data_var_list> ")" "BE" "READ" <read_ phrase>

 | "(" <data_var_list> ")" ":=" "READ" "AS" <identi fier> <read_phrase>

 | "LET" "(" <data_var_list> ")" "BE" "READ"

 "AS" <identifier> <read_phrase>

 | "(" <data_var_list> ")" ":=" "ARGUMENT"

 | "LET" "(" <data_var_list> ")" "BE" "ARGUMENT"

<data_var_list> ::=

 <identifier>

 | <identifier> "," <data_var_list>

<data_assign_phrase> ::= "READ" <read_phrase>

 | "MLM" <term>

 | "MLM" <term> "FROM" "INSTITUTION" <string>

 | "MLM" "MLM_SELF"

 | "INTERFACE" <mapping_factor>

 | "EVENT" <mapping_factor>

 | "MESSAGE" <mapping_factor>

 | "MESSAGE" "AS" <identifier> <mapping_factor>

 | "MESSAGE" "AS" <identifier>

 | "DESTINATION" <mapping_factor>

 | "DESTINATION" "AS" <identifier> <mapping_factor>

 | "DESTINATION" "AS" <identifier>

 | "ARGUMENT"

| "OBJECT" <object_definition>

| <call_phrase>

| <new_object_phrase>

 | <expr>

<read_phrase> ::=

 <read_where>

 | <of_read_func_op> <read_where>

 | <of_read_func_op> "OF" <read_where>

 | <from_of_func_op> <read_where>

 | <from_of_func_op> "OF" <read_where>

 | <from_of_func_op> <expr_factor> "FROM" <read_whe re>

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 131

Revision date: 2011-03-25 Print date: 5/17/2011

<read_where> ::=

 <mapping_factor>

 | <mapping_factor> "WHERE" <it> <occur> <temporal_ comp_op>

 | <mapping_factor> "WHERE" <it> <occur> "NOT" <tem poral_comp_op>

 | <mapping_factor> "WHERE" <it> <occur> <range_com p_op>

 | <mapping_factor> "WHERE" <it> <occur> "NOT" <ran ge_comp_op>

 | "(" <read_where> ")"

<mapping_factor> ::=

 "{" <data_mapping> "}"

<object_definition> ::=

 "[" <object_attribute_list> "]"

<object_attribute_list> ::=

 <identifier>

 | <identifier> "," <object_attribute_list>

<new_object_phrase> ::=

 "NEW" <identifier>

| "NEW" <identifier> "WITH" <expr>

| "NEW" <identifier> "WITH" "[" <object_init_list> "]"

| "NEW" <identifier> "WITH" <expr> "WITH" "[" <obje ct_init_list> "]"

Arden Syntax for Medical Logic Systems

Page 132 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

<object_init_list> ::=

 <object_init_element>

 | <object_init_list> "," <object_init_element>

<object_init_element> ::=

 <identifier> ":=" <expr>

/****** evoke block ******/

<evoke_block> ::=

 <evoke_statement>

 | <evoke_block> ";" <evoke_statement>

<evoke_statement> ::=

 /* empty */

 | <event_or>

 | <evoke_time>

 | <delayed_evoke>

 | <qualified_evoke_cycle>

 | "CALL" /* deprecated – kept for backward compa tibility */

<event_list> ::=

 <event_or>

 | <event_list> "," <event_or>

<event_or> ::=

 <event_or> "OR" <event_any>

 | <event_any>

<event_any> ::=

 "ANY" "(" <event_list> ")"

 | "ANY" "OF" "(" <event_list> ")"

 | "ANY" <identifier>

 | "ANY" "OF" <identifier>

 | <event_factor>

<event_factor> ::=e

 "(" <event_or> ")"

 | <identifier>

<delayed_evoke>::=

 <evoke_time_expr_or> "AFTER" <event_time>

 |<evoke_time_expr_or>

 |<evoke_duration> "AFTER" <evoke_time_or>

<event_time> ::=

 "TIME" <event_any>

 | "TIME" "OF" <event_any>

<evoke_time_or>::=

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 133

Revision date: 2011-03-25 Print date: 5/17/2011

 <evoke_time>

 | <evoke_time> "OR" <evoke_time_or>

<evoke_time_expr_or> ::=

 <evoke_time_expr>

| <evoke_time_expr> "OR" <evoke_time_expr_or>

<evoke_time_expr>::=

 <evoke_duration>

 | <evoke_time>

<evoke_time> ::=

 <iso_date_time>

 | <iso_date>

 | <relative_evoke_time_expr>

<evoke_duration> ::=

 <number> <duration_op>

<relative_evoke_time_expr>::=

 "TODAY" "ATTIME" <time_of_day>

 | "TOMORROW" "ATTIME" <time_of_day>

 | <weekday_literal> "ATTIME" <time_of_day>

<weekday_literal> ::=

 "SUNDAY"

 | "MONDAY"

 | "TUESDAY"

 | "WEDNESDAY"

 | "THURSDAY"

 | "FRIDAY"

 | "SATURDAY"

<qualified_evoke_cycle> ::=

 <simple_evoke_cycle>

 | <simple_evoke_cycle> "UNTIL" <expr>

<simple_evoke_cycle> ::=

Arden Syntax for Medical Logic Systems

Page 134 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

 "EVERY" <evoke_duration> "FOR" <evoke_duration> "STARTING"

<starting_delay>

<starting_delay>::=

 <event_time>

 | <delayed_evoke>

/****** action block ******/

<action_block> ::=

 <action_statement>

 | <action_block> ";" <action_statement>

<action_statement> ::=

 /* empty */

 | "IF" <action_if_then_else2>

 | "FOR" <identifier> "IN" <expr> "DO" <action_bloc k> ";" "ENDDO"

 | "WHILE" <expr> "DO" <action_block> ";" "ENDDO"

 | <action_switch>

 | "BREAKLOOP"

 | <call_phrase>

 | <call_phrase> "DELAY" <expr>

 | "WRITE" <expr>

 | "WRITE" <expr> "AT" <identifier>

 | "RETURN" <expr>

 | <identifier_becomes> <expr>

 | <time_becomes> <expr>

| <identifier_becomes> <new_object_phrase>

<action_if_then_else2> ::=

 <expr> "THEN" <action_block> ";" <action_elseif>

<action_elseif> ::=

 "ENDIF"

 | "ELSE" <action_block> ";" "ENDIF"

 | "ELSEIF" <action_if_then_else2>

<action_switch> ::=

 "SWITCH" <identifier> ":"

 <action_switch_cases>

 "ENDSWITCH" ";"

<action_switch_cases> ::=

 /* empty */

 | "CASE" <expr_factor> <action_block> <action_swit ch_cases>

 | "DEFAULT" <expr_factor> <action_block>

/****** lexical constructs ******/

/* Unless otherwise specificed, characters are the printable ASCII */

/* characters (ASCII 33 through and including 126) , (See 5.2) */

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 135

Revision date: 2011-03-25 Print date: 5/17/2011

/* The space, carriage return, line feed, horizont al tab, vertical tab, */

/* and form feed are collectively referred to as w hite space. */

/* See also Section 7.1.10. */

<plainstring> ::=

 /* any string of characters enclosed in double q uotes (" ASCII 22) */

 /* with nested "" */

 /* (character set limitations do not apply here) */

 /* one possible regular expression to match Ard en Syntax strings: */

 /* /"([^"]|/"/")*/" */

<identifier> ::=

 /* up to 80 characters total (no reserved words al lowed) */

 <letter> <identifier_rest>

<identifier_rest> ::= /* no spaces are permitted between elements */

 /* empty */

 | <letter> <identifier>

 | <digit> <identifier>

 | "_" <identifier>

<text> ::=

 /* any string of characters without ";;" */

<format_text> ::=

 /* any string of characters */

<number> ::= /* no spaces are permitted betwee n elements */

 <digits> <exponent>

 | <digits> "." <exponent>

 | <digits> "." <digits> <exponent>

 | "." <digits> <exponent>

<exponent> ::= /* no spaces are permitted betwe en elements */

 /* null */

 | <e> <sign> <digits>

<e> ::=

 "E"

 | "e"

<sign> ::=

 /* null */

 | "+"

 | "-"

<digits> ::= /* no spaces are permitted betwee n elements */

 <digit>

 | <digit> <digits>

Arden Syntax for Medical Logic Systems

Page 136 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

<digit> ::=

 "0"

 | "1"

 | "2"

 | "3"

 | "4"

 | "5"

 | "6"

 | "7"

 | "8"

 | "9"

<letter> ::=

 "a" | "b" | "c" | "d"

 | "e" | "f" | "g" | "h"

 | "i" | "j" | "k" | "l"

 | "m" | "n" | "o" | "p"

 | "q" | "r" | "s" | "t"

 | "u" | "v" | "w" | "x"

 | "y" | "z"

 | "A" | "B" | "C" | "D"

 | "E" | "F" | "G" | "H"

 | "I" | "J" | "K" | "L"

 | "M" | "N" | "O" | "P"

 | "Q" | "R" | "S" | "T"

 | "U" | "V" | "W" | "X"

 | "Y" | "Z"

<iso_date> ::= /* no spaces are permitted betwe en elements */

 <digit> <digit> <digit> <digit> "-" <digit> <digit > "-" <digit> <digit>

<iso_date_time> ::= /* no spaces are permitted b etween elements */

 <digit> <digit> <digit> <digit> "-" <digit> <digit > "-" <digit> <digit>

<t>

 <digit> <digit> ":" <digit> <digit> ":" <digit> <d igit>

 <fractional_seconds>

 <time_zone>

<time_of_day> ::= /* no spaces are permitted bet ween elements */

<digit> <digit> ":" <digit> <digit>

<seconds>

<time_zone>

<seconds> ::= /* no spaces are permitted betwe en elements */

 ":" <digit> <digit> <fractional_seconds>

 | /* empty */

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 137

Revision date: 2011-03-25 Print date: 5/17/2011

<t> ::=

 "T"

 | "t"

<fractional_seconds> ::= /* no spaces are permitt ed between elements */

 "." <digits>

 | /* empty */

<time_zone> ::= /* no spaces are permitted betw een elements */

 /* null */

 | <zulu>

 | "+" <digit> <digit> ":" <digit> <digit>

 | "-" <digit> <digit> ":" <digit> <digit>

<zulu> ::=

 "Z"

 | "z"

<term> ::=

 /* any string of characters enclosed in single quo tes (‘ , ASCII 44)

without ";;" */

<data_mapping> ::=

 /* any balanced string of characters enclosed in c urly brackets { } */

 /* (ASCII 123 and 125, respectively) without ";;" the data mapping */

 /* does not include the curly bracket characters */

<multi_line_comment> ::=

 /* any string of characters enclosed between pairs of "/*" and"*/" */

 /* (character set limitations do not apply here) */

<single_line_comment> ::=

 /* any string of characters located between "//" a nd */

 /* an end-of-line markner (CR, LF, or CR/LF pair) */

 /* (character set limitations do not apply here) */

<iso639-1> ::=

 /* 2-letter character code as defined by standard ISO 639-1 */

Arden Syntax for Medical Logic Systems

Page 138 © 2011 Health Level Seven, Inc.. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

A2 RESERVED WORDS
Listed here in alphabetic order are all the reserved words. None of these words may be used as variable names.

Abs

action

add

after

ago

alert

all

and

any

arccos

arcsin

arctan

arden

are

aretrue

argument

as

at

attribute

author

average

avg

be

before

Boolean

breakloop

by

call

case

ceiling

characters

citations

conclude

cos

cosine

count

clone

currenttime

data

data_driven

data-driven

date

day

days

decrease

default

delay

destination

do

duration

earliest

elements

else

elseif

enddo

endif

end

eq

equal

event

eventtime

every

evoke

exist

exists

exp

expired

explanation

extract

false

filename

find

first

floor

following

for

formatted

friday

from

ge

greater

gt

hour

hours

if

in

include

increase

index

institution

int

interface

interval

is

istrue

it

keywords

knowledge

language

last

latest

le

least

left

length

less

let

library

links

list

localized

log

log10

logic

lowercase

lt

maintenance

matches

max

maximum

median

merge

message

min

minimum

minute

minutes

mlm

mlmname

mlm_self

month

months

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 139

Revision date: 2011-03-25 Print date: 5/17/2011

monday

months

most

names

ne

nearest

new

no

not

now

null

number

object

occur

occurred

occurs

of

or

past

pattern

percent

preceding

present

priority

production

purpose

read

refute

remove

replace

research

resources

return

reverse

right

round

same

saturday

second

seconds

seqto

sin

sine

slope

sort

specialist

sqrt

starting

stddev

string

substring

sublist

sum

sunday

support

surrounding

switch

tan

tangent

testing

than

the

then

they

thursday

time

title

to

today

tomorrow

triggertime

trim

true

truncate

tuesday

type

unique

until

uppercase

urgency

using

validation

variance

version

was

wednesday

week

weeks

were

where

while

with

within

write

year

years

The following identifiers are reserved for future use:

union intersect excluding citation select

A3 SPECIAL SYMBOLS
Listed here are all the special symbols.

|| := , = >=

> <= < { (

[- <> % +

})] ; #

/ * ** ;; :

/* */ // ‘ "

Arden Syntax for Medical Logic Systems

Page 140 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

A4 OPERATOR PRECEDENCE AND ASSOCIATIVITY
A4.1

The operators for the structured slots are shown here grouped by precedence. Groups are separated by
horizontal lines. Within groups, operators have equal precedence. Groups are arranged from lowest to
highest precedence.

A4.2

Synonyms are listed on the same line, separated by º. The symbol [of] means that the word of is optional,
and does not affect the logic of the operator. The symbol [in] means that the work in is optional, and does
not affect the logic of the operator.

A4.3

The position of the arguments relative to the operator is indicated by the ellipsis The operator’s
associativity is shown in italics after each operator. Some operators have both a unary form (one argument)
and a binary form (two arguments); each form is listed separately.

 ... [...] (non-associative)

 , ... (non-associative)

 ... , ... (left associative)
 ... merge ... (left associative)
 ... merge ... using … (left-associative)

 sort ... (non-associative)
 sort ... using …(non-associative)

 add ... to ... (non-associative)
 add ... to ... at … (non-associative)
 remove ... from ... (non-associative)

 ... where ... (non-associative)

 ... or ... (left associative)

 ... and ... (left associative)

 not ... (non-associative)

 ... = ... º ... eq ... º ... is equal ... (non-associative)
 ... <> ... º ... ne ... º ... is not equal ... (non-associative)
 ... < ... º ... lt ... º ... is less than ... º ... is not greater than or equal ... (non-associative)
 ... <= ... º ... le ... º ... is less than or equal ... º ... is not greater than ... (non-associative)
 ... > ... º ... gt ... º ... is greater than ... º ... is not less than or equal ... (non-associative)
 ... >= ... º ... ge ... º ... is greater than or equal ... º ... is not less than ... (non-associative)
 ... is within ... to ... (non-associative)
 ... is not within ... to ... (non-associative)
 ... is within ... preceding ... (non-associative)
 ... is not within ... preceding ... (non-associative)
 ... is within ... following ... (non-associative) ... is not within ... following ... (non-associative)
 ... is within ... surrounding ... (non-associative)
 ... is not within ... surrounding ... (non-associative)

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 141

Revision date: 2011-03-25 Print date: 5/17/2011

 ... is within past ... (non-associative)
 ... is not within past ... (non-associative)
 ... is within same day as ... (non-associative)
 ... is not within same day as ... (non-associative)
 ... is before ... (non-associative)
 ... is not before ... (non-associative)
 ... is after ... (non-associative)
 ... is not after ... (non-associative)
 ... occur equal ... º … occur at … (non-associative)
 ... occur within ... to ... (non-associative)
 ... occur not within ... to ... (non-associative)
 ... occur within ... preceding ... (non-associative)
 ... occur not within ... preceding ... (non-associative)
 ... occur within ... following ... (non-associative)
 ... occur not within ... following ... (non-associative)
 ... occur within ... surrounding ... (non-associative)
 ... occur not within ... surrounding ... (non-associative)
 ... occur within past ... (non-associative)
 ... occur not within past ... (non-associative)
 ... occur within same day as ... (non-associative)
 ... occur not within same day as ... (non-associative)
 ... occur before ... (non-associative)
 ... occur not before ... (non-associative)
 ... occur after ... (non-associative)
 ... occur not after ... (non-associative)
 ... is in ... º … in … (non-associative)
 ... is not in ... º … not in … (non-associative)
 ... is present º ... is not null (non-associative)
 ... is not present º ... is null (non-associative)
 ... is Boolean (non-associative)
 ... is not Boolean (non-associative)
 ... is number (non-associative)
 ... is not number (non-associative)
 ... is time (non-associative)
 ... is not time (non-associative)
 ... is time of day (non-associative)
 ... is not time of day (non-associative)
 ... is duration (non-associative)
 ... is not duration (non-associative)
 ... is string (non-associative)
 ... is not string (non-associative)
 ... is list (non-associative)
 ... is not list (non-associative)

 ... is object (non-associative)
 ... is not object (non-associative)
 ... is <object-name> (non-associative)
 ... is not <object-name> (non-associative)

 ... || ... (left-associative)

 ... formatted with ... (non- associative)

 uppercase … (right associative)
 lowercase … (right associative)

Arden Syntax for Medical Logic Systems

Page 142 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

 trim … (right associative)
 trim left … (right associative)
 trim right … (right associative)
 substring … characters from … (right associative)
 substring … characters from … starting at … (right associative)
 localized … by … (right associative)

 localized … (non-associative)

 + ... (non-associative)
 - ... (non-associative)

 ... + ... (left-associative)
 ... - ... (left-associative)

 ... * ... (left associative)
 ... / ... (left associative)

 ... ** ... (non-associative)

 ... before ... (non-associative)
 ... after ... º … from … (non-associative)

 ... ago (non-associative)

 ... year º ... years (non-associative)
 ... month º ... months (non-associative)
 ... week º ... weeks (non-associative)
 ... day º ... days (non-associative)
 ... hour º ... hours (non-associative)
 ... minute º ... minutes (non-associative)
 ... second º ... seconds (non-associative)
 … matches pattern … (non-associative)

 find … [in] … (right-associative)
 find … [in] … starting at … (right-associative)

 count [of] ... (right associative)
 exist [of] ... (right associative)
 avg [of] ... º average [of] ... (right associative)
 median [of] ... (right associative)
 sum [of] ... (right associative)
 stddev [of] ... (right associative)
 variance [of] ... (right associative)
 any [of] ... (right associative)
 all [of] ... (right associative)
 no [of] ... (right associative)
 slope [of] ... (right associative)
 min ... from º minimum ... from ... (right associative)
 min [of] ... º minimum [of] ... (right associative)
 min ... from … using º minimum ... from ... using … (right-associative)
 min [of] ... using º minimum [of] ... using … (right-associative)
 max ... from ... º maximum ... from ... (right associative)
 max [of] ... º maximum [of] ... (right associative)
 max ... from ... using …º maximum ... from ... using … (right-associative)

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 143

Revision date: 2011-03-25 Print date: 5/17/2011

 max [of] ... using … º maximum [of] ... using (right-associative)
 index min ... from º index minimum ... from ... (right associative)
 index min [of] ... º index minimum [of] ... (right associative)
 index max ... from ... º index maximum ... from ... (right associative)
 index max [of] ... º index maximum [of] ... (right associative)
 last ... from ... (right associative)
 last [of] ... (right associative)
 first ... from ... (right associative)
 first [of] ... (right associative)
 latest ... from ... (right associative)
 latest ... from ... using (right-associative)
 sublist ... elements from ... (right-associative)
 sublist ... elements starting at … from ... (right-associative)
 latest [of] ... (right associative)
 latest [of] ... using …(right-associative)
 earliest ... from ... (right associative)
 earliest [of] ... (right associative)
 earliest ... from ... using … (right-associative)
 earliest [of] ... using …(right-associative)
 nearest ... from ... (right associative)
 index nearest ... from ... (right associative)
 index of ... within ... (right-associative)
 at least ... from ... (right-associative)
 at most ... from ... (right-associative)
 increase [of] ... (right associative)
 decrease [of] ... (right associative)
 percent increase [of] ... º % increase [of] ... (right associative)
 percent decrease [of] ... º % decrease [of] ... (right associative)
 interval [of] ... (right associative)
 time [of] ... (right associative) time of day [of] ... (right associative)
 day of week [of] ... (right associative)
 arccos [of] ... (right associative)
 arcsin [of] ... (right associative)
 arctan [of] ... (right associative)
 cos [of] ... º cosine [of] ... (right associative)
 sin [of] ... º sine [of] ... (right associative)
 tan [of] ... º tangent [of] ... (right associative)
 exp [of] ... (right associative)
 floor [of] ... (right associative)
 ceiling [of] ... (right associative)
 truncate [of] ... (right associative)
 round [of] ... (right associative)
 log [of] ... (right associative)
 log10 [of] ... (right associative)
 int [of] ... (right associative)
 abs [of] ... (right associative)
 sqrt [of] ... (right associative)
 extract year [of] ... (right associative)
 extract month [of] ... (right associative)
 extract day [of] ... (right associative)
 extract hour [of] ... (right associative)
 extract minute [of] ... (right associative)
 extract second [of] ... (right associative)
 replace year [of] ... with … (right-associative)
 replace month [of] ... with … (right-associative)

Arden Syntax for Medical Logic Systems

Page 144 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

 replace day [of] ... with … (right-associative)
 replace hour [of] ... with … (right-associative)
 replace minute [of] ... with … (right-associative)
 replace second [of] ... with …(right-associative)
 reverse [of] ... (right associative)
 extract characters [of] ... (right associate)
 string [of] ... (right associative)
 length [of] … (right associative)
 … . … (right associative)
 attribute … from … (right associative)
 extract attribute names … (right associative)
 clone … (right associative)

 … seqto … (non-associative)

 … as number (non-associative)
 … as time (non-associative)
 … as string (non-associative)

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 145

Revision date: 2011-03-25 Print date: 5/17/2011

A5 FORMAT SPECIFICATION (SEE 9.8.2)
A5.1 The following is a complete description of supported types within the format specification:

type Required character that determines whether the associated argument is interpreted as a
character, a string, or a number.

Table A5-1

Character Type Output Format

c number The number is assumed to represent a character code to be output as a character.

C number The number is assumed to represent a character code to be output as a character.

D number Signed decimal integer.

I number Signed decimal integer.

O number Unsigned octal integer.

U number Unsigned decimal integer.

x number Unsigned hexadecimal integer, using "abcdef."

X number Unsigned hexadecimal integer, using "ABCDEF."

e number Signed value having the form [–]d.dddd e [sign]ddd where d is a single decimal digit,
dddd is one or more decimal digits, ddd is exactly three decimal digits, and sign is + or –.

E number Identical to the e format, except that E, rather than e, introduces the exponent.

F double Signed value having the form [–]dddd.dddd, where dddd is one or more decimal digits.
The number of digits before the decimal point depends on the magnitude of the number,
and the number of digits after the decimal point depends on the requested precision.

g double Signed value printed in f or e format, whichever is more compact for the given value and
precision. The e format is used only when the exponent of the value is less than –4 or
greater than or equal to the precision argument. Trailing zeros are truncated, and the
decimal point appears only if one or more digits follow it.

G double Identical to the g format, except that E, rather than e, introduces the exponent (where
appropriate).

N Not supported. Not supported.

P Not supported. Not supported.

S string Specifies a character. Characters are printed until the precision value is reached.

T time A time is printed based on the user’s environment settings and the precision value.

A5.2 The optional fields, which appear before the type character, control other aspects of the
formatting, as follows:

flags Optional character or characters that control justification of output and printing of signs,
blanks, decimal points, and octal and hexadecimal prefixes. More than one flag can appear in
a format specification.

Arden Syntax for Medical Logic Systems

Page 146 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

Table A5-2

Flag Meaning Default

– Left align the result within the given field width. Right align.

+ Prefix the output value with a sign (+ or –) if the output value is of
a signed type.

Sign appears only for
negative signed values (–).

0 If width is prefixed with 0, zeros are added until the minimum
width is reached. If 0 and – appear, the 0 is ignored. If 0 is specified
with an integer format (I, u, x, X, o, d) the 0 is ignored.

No padding.

Space Prefix the output value with a space if the output value is signed
and positive; the space is ignored if both the space and + flags
appear.

No space appears.

When used with the o, x, or X format, the # flag prefixes any
nonzero output value with 0, 0x, or 0X, respectively.

No blank appears.

When used with the e, E, or f format, the # flag forces the output
value to contain a decimal point in all cases.

Decimal point appears only
if digits follow it.

 When used with the g or G format, the # flag forces the output
value to contain a decimal point in all cases and prevents the
truncation of trailing zeros.

Decimal point appears only
if digits follow it. Trailing
zeros are truncated.

Ignored when used with c, d, i, u, or s.

The second optional field of the format specification is the width specification. The width argument is a
nonnegative decimal integer controlling the minimum number of characters printed. If the number of
characters in the output value is less than the specified width, blanks are added to the left or the right of the
values – depending on whether the – flag (for left alignment) is specified – until the minimum width is
reached. If width is prefixed with 0, zeros are added until the minimum width is reached (not useful for left-
aligned numbers).

The width specification never causes a value to be truncated. If the number of characters in the output value
is greater than the specified width, or if width is not given, all characters of the value are printed (subject to
the precision specification).

If the width specification is an asterisk (*), an integer argument from the argument list supplies the value.
The width argument must precede the value being formatted in the argument list. A nonexistent or small
field width does not cause the truncation of a field; if the result of a conversion is wider than the field
width, the field expands to contain the conversion result.

Width Optional number that specifies the minimum number of characters output.

Precision Optional number that specifies the maximum number of characters printed for all or part of
the output field, or the minimum number of digits printed for integer values.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 147

Revision date: 2011-03-25 Print date: 5/17/2011

Table A5-3

Type Meaning Default

c, C The precision has no effect. Character is printed.

D, i, u,
o, x, X

The precision specifies the minimum number of digits
to be printed. If the number of digits in the argument is
less than precision, the output value is padded on the
left with zeros. The value is not truncated when the
number of digits exceeds precision.

Default precision is 1.

E, E The precision specifies the number of digits to be
printed after the decimal point. The last printed digit is
rounded.

Default precision is 6; if precision is 0,
or the period (.) appears without a
number following it, no decimal point
is printed.

F The precision value specifies the number of digits after
the decimal point. If a decimal point appears, at least
one digit appears before it. The value is rounded to the
appropriate number of digits.

Default precision is 6; if precision is 0,
or if the period (.) appears without a
number following it, no decimal point
is printed.

G, G The precision specifies the maximum number of
significant digits printed. The last printed digit is
rounded.

Six significant digits are printed, with
any trailing zeros truncated.

S The precision specifies the maximum number of
characters to be printed. Characters in excess of
precision are not printed.

Characters are printed until a null
character is encountered.

T The precision specifies how many of the date and time
fields are printed. The order and format of the fields are
implementation specific. Non-printed fields are
truncated (rounded down).

0: Year only

1: Year, Month

2: Date (Year, Month, Day)

3: Date, hour

4: Date, hour, minute

5: Date, hour, minute, second

All fields are printed.

Arden Syntax for Medical Logic Systems

Page 148 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

A6 OBJECTS IN ARDEN SYNTAX
A6.1 Rationale

Objects were introduced in Arden 2.5. These have been added as an enhancement to the Arden Syntax to
address user and vendor concerns about Arden limitations, and to dramatically increase the capabilities of
the syntax. This is an evolutionary step toward full support for receiving data in HL7 V3 messages.

Arden Syntax was originally designed to be very simple, and was limited to a single method of combining
data: the ordered list. To simplify list handling, and avoid complexities of things like lists containing lists,
the syntax specifies that lists contain only individual items. This has some significant limitations.

Repository data, which typically is represented logically as tables, is returned by the READ statement as a
set of columnar lists which are then assigned to separately named variables. After a READ, it can be
difficult to maintain the links between values which are naturally associated with each other. For example,
the last item of firstnames and the last item of lastnames may correspond, but what happens if a new item
is added to one of the lists, or one of the lists is reordered? The correspondence is lost.

As MLMs evolve, they typically gain features, size and complexity via successive refinement. Declaring
new variables for every temporary computation in an MLM clutters the MLM name space with names
which often have little meaning. MLM authors tend to start using lists as ad-hoc data structures, where the
first, second etc. items, rather than representing multiple instances of a piece of data, instead represent
several different types of data which are united by a common relationship. In most computer languages
these would be stored in a specialized data structure, with a declared name for each item. Items in a list can
only be referred to via their index (a number) which is not easy to read or understand.

Structured data is actually a simplifying concept. Introducing structured data types, while allowing complex
structures, tends to make any given usage simpler because of the ability to declare names and relationships.
The addition of Objects to the 2.5 standard acknowledges this, and this enhances the Arden Syntax in a
number of ways:

• Database queries can be returned as a list of rows, each of which contains named attributes and values.

• Object domain models, such as the HL7 models, may be adapted to Arden and referenced in a natural
way as objects by MLMs.

• Complex data structures, as needed, may be created and manipulated easily. Object attributes can
contain lists or other object instances, allowing arbitrary depth.

A design goal, in incorporating objects into Arden, was full backward compatibility, and to introduce as few
reserved words and as little new syntax as possible. New reserved words cause a compatibility problem
because existing MLMs may use those reserved words as variable names. We have only added two more
reserved words. Syntax changes are summarized:

• New reserved words: new, object

• New syntax (special characters): dot (.) for object reference, square braces ([]) to denote attributes in
an object declaration statement.

• New operators: dot (.) operator, is object, is not object , read as

A6.2 Object Details

The term object is used in the domain model sense, rather than as a programming language artifact. In
Arden an object is a structured data type, which has a name, and an ordered collection of attributes. Each of
these attributes may refer to any valid Arden data item, or be null. Each of these data items may have a
primary time associated with it, but the object itself does not have a primary time independent of its
attributes. For convenience, if all attributes of an object share a common primary time, the time of operator
will return that time when applied to the object.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 149

Revision date: 2011-03-25 Print date: 5/17/2011

A6.3 Object Identity

Objects in Arden have an identity, which is preserved when assigned or used as an argument to an operator,
added to lists or extracted from lists. Objects only are created when the new statement is called (from either
the data slot or logic slot) or via the read as statement in the data slot. An MLM may also reference objects
which are passed as arguments or returned from calls to other MLMs. Object identity is not maintained
when passed as an argument to an MLM call or a foreign interface, or returned from MLMs. That is, an
object is always copied when passed to or returned from an MLM (objects are passed by value to other
MLMs, not by reference).

Objects allow an MLM to create structured data, store it in a list, modify it while it still exists in the list,
and later reference it as part of the list. While this may sound complicated, it is an important feature. It
allows Arden syntax to remain fairly simple while still allowing the easy reference and manipulation of
query results.

// Assume a list of order objects, with attributes including status and

// message.

// This MLM wants to set the message based on the s tatus.

For order_obj in order_obj_list do

if order_obj.status = "Cancel" then

 order_obj.message = "This order has been cancel led.";

elseif order_obj.status = "Modify" then

 order_obj.message = "This order has been modifi ed.";

elseif order_obj.status = "Suspend" then

 order_obj.message = "This order has been suspen ded.";

endif;

enddo;

This code only works correctly because of object identity. The order_obj in the loop corresponds to the
order referenced in the list of order objects. Without object identity it would not be possible to do this type
of manipulation on lists of items.

At this time it is not possible to determine in Arden if two variables refer to the same object. That is, the
equality operator is not defined for objects, and there is no substitute method defined. This may be a
something to add in a future version.

A6.4 Objects In Expressions

If an object is passed to a standard Arden operator (equality operator, addition, etc) which does not
explicitly define behavior with objects, the result of the operation will be null. To effectively use an object
as an argument to these standard operators, you must reference a particular field within the object (using the
dot operator) so that the resulting type is not an object.

Arden Syntax for Medical Logic Systems

Page 150 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

A6.4 Creating Objects

The new statement can be used to create object instances, with all attributes initialized to null. Using
attribute assignment statements (Section 10.2.1.1) it is possible to set these fields explicitly after creating
the object. Sometimes however it is preferable to create an MLM which acts as a constructor, to create an
object and initialize attributes to the desired default values. Any time one of these objects needs to be
created, that MLM can be called. Here is an example of using an MLM as a constructor:

Create_field_mlm := MLM ‘create_form_field’;

Form_field := Call Create_field_mlm with name, valu e, status;

/* MLM ‘create_form_field’ segment */

Data:

 form_field_type :=

 Object [name, value, status];

 field := new form_field_type;

 field.name := argument 1;

 field.value := argument 2;

 field.status := argument 3;;

Evoke: /* called directly */ ;;

Logic: conclude true;;

Action: return field;;

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 151

Revision date: 2011-03-25 Print date: 5/17/2011

Appendices
 (Nonmandatory Information)

X1 STRUCTURED WRITE STATEMENT SUGGESTED SCHEMA
X1.1 Structured Message

The <structured.message> should be parsed and interpreted as an XML document. This message is
distinguished from other coded messages by the first line:

<?xml version="1.0"?>

X1.2 Usage Notes

Structured messages are created by concatenating string literals and variables in the same manner as other
strings. This means that if double quotes (") are to be used within the XML message, they must be
"escaped" by using two double quotes (""). Likewise if XML reserved symbols (e.g., <, >) are desired
within the structured write statement, CDATA escape tokens must be placed at the beginning and end of
the element.

X1.3 Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="structured.message">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="body" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="subject" type="xs:string" minOccurs="0"/>
 <xs:element name="context" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="conclusion" type="xs:string"/>
 <xs:element name="recommendation" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="instruction" type="xs:string"/>
 <xs:element name="choice.list" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="choice" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="id" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="type">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">

Arden Syntax for Medical Logic Systems

Page 152 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

 <xs:enumeration value="at.least"/>
 <xs:enumeration value="at.most"/>
 <xs:enumeration value="exactly"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="number" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="citation" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="position">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="support"/>
 <xs:enumeration value="refute"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="distribution.list" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="distribution" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="recipient" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="role" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="workflow" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="closure.select" type="xs:boolean" minOccurs="0"/>
 <xs:element name="forwarding.select" type="xs:boolean" minOccurs="0"/>
 <xs:element name="coverage.select" type="xs:boolean" minOccurs="0"/>
 <xs:element name="timers.select" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="timeout" maxOccurs="unbounded">

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 153

Revision date: 2011-03-25 Print date: 5/17/2011

 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="type">
 <xs:simpleType>
 <xs:restriction base="xs:NMTOKEN">
 <xs:enumeration value="submission.ack"/>
 <xs:enumeration value="delivery.ack"/>
 <xs:enumeration value="display.ack"/>
 <xs:enumeration value="closure.ack"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

X1.4 Description of elements and attributes

The elements and attributes utilized in the <structured.message> are described below:

X1.4.1 <structured.message>

This element is the root element of the XML-based structured MLM output message. The element
represents all the information that can be defined by the MLM author in the structured message. The
element contains one or more <body> sub-elements, followed by an optional <distribution.list> sub-
element.

X1.4.2 <body>

This element encompasses the main textual portion of the MLM message output. The element contains an
optional <subject> sub-element, followed by zero or more <context> sub-elements, followed by a
<conclusion> sub-element, followed by zero or more <recommendation> sub-elements, followed by zero
or more <citation> sub-elements.

X1.4.3 <subject>

This element is the subject of the MLM message output. The element indicates the nature of the MLM
output (e.g. "Panic Lab Result".) The element contains character data.

Arden Syntax for Medical Logic Systems

Page 154 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

X1.4.4 <context>

This element is contextual information relevant to the MLM conclusion or the associated patient, including
previous lab results, existing allergies, etc. The element contains character data.

X1.4.5 <conclusion>

This element is the main conclusion statement of the MLM after the condition specified in the MLM logic
slot is evaluated as true (e.g. "Glucose level has significantly dropped".) The element contains character
data.

X1.4.6 <recommendation>

This element encompasses the MLM author’s recommended response to the detected condition in the
MLM logic slot. The element contains an <instruction> sub-element, followed by an optional <choice.list>
sub-element.

X1.4.7 <instruction>

This element is a recommended action item possibly with instruction to select one of the subsequent
options (e.g. "Select a treatment".) The element contains character data.

X1.4.8 <choice.list>

This element encompasses the selectable options appropriate for the instruction. The element contains one
or more <choice> sub-elements. The element has two attributes named type and number. These attributes
allow the MLM author to indicate the nature and number of the selections of the subsequent option choices.
The value of the type attribute must be the string "at.least", "at.most", or "exactly." The value of the
number attribute can be any string of characters (excluding reserved characters "<", ">", "&"—unless the
XML CDATA escape notation is used); it ishowever is expected to be a natural number. If the attribute
values are not supplied, interpretation of these values is left to the discretion of the message consumer.

X1.4.9 <choice>

This element is an action option. The element contains character data. The element typically identifies a
single option (e.g. "50% dextrose intravenous"), but can also be utilized to identify an aggregation of
options (e.g. "All of the above") or no options (e.g. "None of the above".) The element has an attribute
named id. The attribute is a unique identifier assigned to the action option that can be subsequently used to
reference a selected choice. The value of the attribute can be any string of characters (excluding reserved
characters "<", ">", "&"—unless XML CDATA escape notation is used). If the id value is not supplied,
interpretation of the value is left to the discretion of the message consumer.

X1.4.10 <citation>

This element is reference information for the algorithm provided in the MLM logic slot as described in
Section 6.2.4. The element contains character data. The element has an attribute named position. The value
of the attribute must be either the string "support" (indicating a citation that verifies the algorithm in the
logic slot) or "refute" (indicating a citation that refutes the algorithm in the logic slot.) If the position value
is not supplied, interpretation of the value is left to the discretion of the message consumer.

X1.4.11 <distribution.list>

This element consists of the MLM author preferences for disseminating the message. Multiple distributions
can be utilized concurrently, each with its own recipient list and distribution workflow. The element
contains one or more <distribution> sub-elements.

X1.4.12 <distribution>

This element consists of information about the dissemination of the message. The distribution includes the
message recipients and the associated workflow that is to be used in disseminating the message to these
recipients. The element contains one or more <recipient> sub-elements, followed by an optional
<workflow> sub-element.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 155

Revision date: 2011-03-25 Print date: 5/17/2011

X1.4.13 <recipient>

This element identifies a message recipient. The element contains character data. The element has an
attribute named type. The value of the attribute must be the string "person", "role", "group", or
"unspecified." "Person" designates that the specified recipient is a person. "Group" designates that the
specified recipient is a group. This group must be subsequently resolved into its individual member
persons. "Role" designates that the specified recipient is a role. This role must be subsequently resolved to
determine which of the persons provisioned in the role is "filling" the role. "Unspecified" designates that
the appropriate message recipient is unknown to the MLM author. In this case the contents of this element
should be ignored. The dynamic nature of patient-provider relationships and coverage schedules in medical
institutions may prevent the MLM author from specifying the recipient. "Unspecified" indicates that the
appropriate recipient will be subsequently identified by an external system with knowledge of appropriate
patient coverage. In the absence of a value for the type attribute the default value of "person" is used.

X1.4.14 <workflow>

This element consists of the MLM author specified workflow to be employed in delivering the message to
the recipients of the distribution, including the various acknowledgment timers associated with the
distribution. The element contains an optional <closure.select> sub-element, followed by an optional
<forwarding.select> sub-element, followed by an optional <coverage.select> sub-element, followed by an
optional <timers.select> sub-element.

X1.4.15 <closure.select>

Closure is the indication of completion of the workflow by the recipient(s) associated with the message
delivery. This element does not contain anything, however the element has an attribute named required.
The attribute specifies that the MLM author requires closure for all deliveries originating from this
distribution. The value of the attribute must be either the string "true" or "false." In the absence of a value
for the required attribute the default value of "true" is used.

X1.4.16 <forwarding.select>

Forwarding is the redirection of a message delivery to another recipient. This element does not contain
anything, however the element has an attribute named enabled. The attribute specifies that the MLM author
allows deliveries originating from this distribution to be forwarded to other recipients. The value of the
attribute must be either the string "true" or "false." In the absence of a value for the enabled attribute the
default value of "true" is used.

X1.4.17 <coverage.select>

Coverage indicates that a message will be delivered to an alternate recipient if the specified distribution
recipient is not available. This element does not contain anything, however the element has an attribute
named enabled. The attribute specifies that the MLM author requires alternate recipients be identified if the
distribution recipients are unavailable. The value of the attribute must be either the string "true" or "false."
In the absence of a value for the enabled attribute the default value of "true" is used.

X1.4.18 <timers.select>

This element specifies the timeout values utilized in the management of the delivery process. The element
contains one or more <timeout> sub-elements.

X1.4.19 <timeout>

This element is the time utilized as a timeout for an aspect of the delivery process. The element contains
character data. The element has an attribute named type. The attribute indicates the timeout type. The value
of the attribute must be the string "submission.ack" (acknowledgement of message submission from the
delivery network), "delivery.ack" (acknowledgement of message delivery from the delivery device),
"display.ack" (acknowledgement of message presentation from the delivery device) or "closure.ack"
(acknowledgement of workflow completion.) If the type value is not supplied, interpretation of the value is
left to the discretion of the message consumer.

Arden Syntax for Medical Logic Systems

Page 156 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

X1.5 Example

<?xml version="1.0"?>

<!DOCTYPE structured.message SYSTEM " StructuredMes sage.dtd">

<structured.message>

 <body>

 <subject>Critical Lab Result</subject>

 <context>Mary Smith had a blood sugar of 120 two weeks ago.</context>

 <conclusion>Mary Smith's blood sugar is critical at 435 mg/dl.
</conclusion>

 <citation>See Pharmacy and Therapeutics committee standard criteria for
abnormal lab studies.</citation>

 </body>

 <distribution.list>

 <distribution>

 <recipient role="personal physician">Dr. John Jo nes</recipient>

 <workflow>

 <closure.select required="true"/>

 <forwarding.select enabled="true"/>

 <coverage.select enabled="false"/>

 <timers.select>

 <timeout type="closure.ack"/>

 </timers.select>

 </workflow>

 </distribution>

 </distribution.list>

</structured.message>

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 157

Revision date: 2011-03-25 Print date: 5/17/2011

X2 XML SCHEMA FOR MLMS
The following sections detail a sample schema that may be used to represent MLMs in XML. Later version of
Arden Syntax may include alternate, non-textual representations of medical logic modules as part of the
normative standard. This informative appendix illustrates one possible coded form.

The XML schema included in this appendix represents a high-level decomposition of a textual MLM into XML
elements that the Arden Syntax SIG could justify as being useful for MLM management functions such as
indexing, searching, and retrieval of specific MLMs from a knowledge base library in XML-centric information
systems or databases.. Although some Arden Syntax SIG members argued for greater detail, the consensus of
the SIG was that additional decomposition could not be justified within the scope of the current Arden Syntax.

X2.1 Graphic Representation of Schema

Figure X2.1 Graphic Representation of XML Schema for Arden Syntax MLMs

Arden Syntax for Medical Logic Systems

Page 158 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

X2.2 Textual Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:complexType name="Citation">
 <xs:sequence>
 <xs:element name="Citation_Number" type="xs:positiveInteger" minOccurs="0"/>
 <xs:element name="Citation_Type" minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="support"/>
 <xs:enumeration value="refute"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Citation_Text" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Link">
 <xs:sequence>
 <xs:element name="Link_Type" type="xs:string" minOccurs="0"/>
 <xs:element name="Link_Description" type="xs:string" minOccurs="0"/>
 <xs:element name="Link_Text" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Arden_MLM_File">
 <xs:annotation>
 <xs:documentation>File Containing one or more MLMs</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="MLM" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Maintenance">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Title">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:whiteSpace value="preserve"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="MLMName">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="80"/>
 <xs:whiteSpace value="collapse"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Arden_Version">
 <xs:simpleType>

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 159

Revision date: 2011-03-25 Print date: 5/17/2011

 <xs:restriction base="xs:string">
 <xs:enumeration value="Version 2.0"/>
 <xs:enumeration value="Version 2.1"/>
 <xs:enumeration value="Version 2.5"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Version">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:maxLength value="80"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Institution">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Author">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Person" type="Person" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Specialist" type="Person"/>
 <xs:element name="Date">
 <xs:simpleType>
 <xs:union memberTypes="xs:dateTime xs:date"/>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Validation">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Production"/>
 <xs:enumeration value="Research"/>
 <xs:enumeration value="Testing"/>
 <xs:enumeration value="Expired"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Library">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Purpose">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Explanation">

Arden Syntax for Medical Logic Systems

Page 160 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

 <xs:simpleType>
 <xs:restriction base="xs:string">
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Keywords">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Keyword" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Citations" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Citation" type="Citation" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Links" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Link" type="Link" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="Knowledge">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Type">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value=""/>
 <xs:enumeration value="data-driven"/>
 <xs:enumeration value="data_driven"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Data" type="xs:string"/>
 <xs:element name="Priority" default="50" minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:decimal">
 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="99"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="Evoke" type="xs:string"/>
 <xs:element name="Logic" type="xs:string"/>
 <xs:element name="Action" type="xs:string"/>
 <xs:element name="Urgency" default="50" minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:decimal">

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 161

Revision date: 2011-03-25 Print date: 5/17/2011

 <xs:minInclusive value="0"/>
 <xs:maxInclusive value="99"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="Person">
 <xs:annotation>
 <xs:documentation>Name and degree of the person with optional email address -- Use / derive from standard RIM
-derived XML schema for person. Must include e-mail address.</xs:documentation>
 </xs:annotation>
 </xs:complexType>
</xs:schema>

X2.3 Description of Elements

X2.3.1 element Arden_MLM_File

children MLM

annotation documentation File Containing one or more MLMs

The <Arden_MLM_File> element is the root element. The <Arden_MLM_File> element may
contain one or more of element <MLM>, each of which would be a specific Arden MLM

X2.3.2 element Arden_MLM_File/MLM

children Maintenance Library Knowledge

Each <MLM> element would contain a single sequence of elements namely one <Maintenance>
containing elements describing slots in maintenance category, one <Library> containing elements
describing slots in the library category, and one <Knowledge> containing elements describing
slots in the Knowledge category of the MLM.

X2.3.2.1 element Arden_MLM_File/MLM/Maintenance

children Title MLMName Arden_Version Version Institution Author Specialist Date Validation

The <Maintenance> element contains a definite sequence of elements defining the sequence
of slots of Maintenance category of an Arden MLM. The <Maintenance> element contains a
definite sequence of elements as described in the contents below.

Arden Syntax for Medical Logic Systems

Page 162 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

X2.3.2.1.1 element Arden_MLM_File/MLM/Maintenance/Title

type restriction of xs:string

facets whiteSpace preserve

pattern

The <Title> element corresponds to the Title slot of an Arden MLM and describes the title of the
MLM. <Title> is a required element. CDATA tags may need to be placed around the text within
the Title element if XML-reserved symbols (e.g., < >) are used within the text.

X2.3.2.2.2element Arden_MLM_File/MLM/Maintenance/MLMName

type restriction of xs:string

facets minLength 1

maxLength 80

whiteSpace collapse

pattern

The <MLMName> is an element corresponding to MLMName slot of an Arden MLM. It contains
the Name of the MLM and has similar characteristics as defined for a MLMName slot, i.e. length
between 1 and 80 characters and without any white spaces. <MLMName> is a required element.

X2.3.2.2.3 element Arden_MLM_File/MLM/Maintenance/Arden_Version

type restriction of xs:string

facets pattern

enumeration Version 2.0

enumeration Version 2.1

enumeration Version 2.5

The <Arden_Version> element corresponds to the ‘Arden Version’ slot of an Arden MLM.
<Arden_Version> gives the version of Arden Syntax Standard in which that particular MLM is
written. <Arden_Version> is a required element.

X2.3.2.2.4 element Arden_MLM_File/MLM/Maintenance/Version

type restriction of xs:string

facets maxLength 80

pattern

The <Version> element corresponds to the ‘Version’ slot of an Arden MLM. <Version> element tells
the version of the particular Arden MLM. It is suggested that version should start at 1.0, increasing by
0.1 for minor revision and by 1.0 for major revision. <Version> is a required element.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 163

Revision date: 2011-03-25 Print date: 5/17/2011

X2.3.2.2.5 element Arden_MLM_File/MLM/Maintenance/Institution

type restriction of xs:string

facets pattern

The <Institution> element corresponds to ‘Institution’ slot of an Arden MLM. <Institution>
contains name of the institution in which the MLM is being used. <Institution> is a required
element.

X2.3.2.2.6 element Arden_MLM_File/MLM/Maintenance/Author

children Person

The <Author> element corresponds to ‘Author’ slot of an Arden MLM. <Author> contains one or
more <Person> elements that enumerate the name(s) of the MLM authors. <Author> is a required
element.

X2.3.2.2.6.1 element Arden_MLM_File/MLM/Maintenance/Author/Person

type Person

The <Person> element contains the name of one MLM author. <Person> is a required element.

X2.3.2.2.7 element Arden_MLM_File/MLM/Maintenance/Specialist

type Person

The <Specialist> element corresponds to ‘Specialist’ slot of an Arden MLM. <Specialist>
contains information about the person responsible for maintenance and implementation of the
Arden MLM in a particular element. <Specialist> is a required element

X2.3.2.2.8 element Arden_MLM_File/MLM/Maintenance/Date

type union of (xs:dateTime, xs:date)

The <Date> element corresponds to ‘Date’ slot of an Arden MLM. <Date> contains the date on
which the MLM was last modified. <Date> is a required element

X2.3.2.2.9 element Arden_MLM_File/MLM/Maintenance/Validation

type restriction of xs:string

facets pattern

enumeration Production

enumeration Research

enumeration Testing

enumeration Expired

The <Validation> element corresponds to ‘Validation’ slot of an Arden MLM. <Validation>
contains the string indicating validation status of the Arden MLM. <Validation> is a required
element.

X2.3.3.3 element Arden_MLM_File/MLM/Library

children Purpose Explanation Keywords Citations Links

The <Library> element corresponds to the <Library> category of an Arden MLM. <Library>
contains elements pertaining to slots in a library category in a particular sequence as described in
the contents below. <Library> is a required element.

Arden Syntax for Medical Logic Systems

Page 164 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

X2.3.3.3.1 element Arden_MLM_File/MLM/Library/Purpose

type restriction of xs:string

facets pattern

The <Purpose> element corresponds to the ‘Purpose’ slot of an Arden MLM. <Purpose> contains
information as to the purpose of the Arden MLM. <Purpose> is a required element.

X2.3.3.3.2 element Arden_MLM_File/MLM/Library/Explanation

type restriction of xs:string

facets pattern

The <Explanation> element corresponds to the ‘Explanation’ slot of an Arden MLM.
<Explanation> contains the explanation as to the logic of the Arden MLM. The explanation can
be used to show user as to why the MLM came to a decision. <Explanation> is a required
element.

X2.3.3.3.3 element Arden_MLM_File/MLM/Library/Keywords

Children Keyword

The <Keywords> element corresponds to the ‘Keywords’ slot of an Arden MLM. <Keywords>
contains zero or more <Keyword> elements each representing a single keyword. <Keywords> is a
required element.

X2.3.3.3.3.1 element Arden_MLM_File/MLM/Library/Keywords/Keyword

Type xs:string

Each <Keyword> element corresponds to one of the keywords from the semi-colon delimited list
in a textual MLM.

X2.3.3.3.4 element Arden_MLM_File/MLM/Library/Citations

children Citation

The <Citations> element corresponds to the ‘Citations’ slot of an Arden MLM. <Citations>
contains zero or more <Citation> elements. <Citations> is an optional element.

X2.3.3.3.4.1 element Arden_MLM_File/MLM/Library/Citations/Citation

type Citation

children Citation_Number Citation_Type Citation_Text

Each <Citation> element contains the information describing a single citation to the literature.
The Citation complex type is described below.

X2.3.3.3.5 element Arden_MLM_File/MLM/Library/Links

children Link

The <Links> element corresponds to the ‘Links’ slot of an Arden MLM. <Links> contains zero or
more <Link> elements. <Links> is an optional element.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 165

Revision date: 2011-03-25 Print date: 5/17/2011

X2.3.3.3.5.1 element Arden_MLM_File/MLM/Library/Links/Link

type Link

children Link_Type Link_Description Link_Text

The <Link> element contains an individual link. The Link complex type is described below.

X2.3.3.4 element Arden_MLM_File/MLM/Knowledge

children Type Data Priority Evoke Logic Action Urgency

The <Knowledge> element corresponds to the ‘Knowledge’ slot of an Arden MLM. The
<Knowledge> element contains a sequence of elements corresponding to the slots in Knowledge
category, as described in the contents below. <Knowledge> is a required element.

X2.3.3.4.1 element Arden_MLM_File/MLM/Knowledge/Type

Type restriction of xs:string

Facets pattern

enumeration data-driven

enumeration data_driven

The <Type> element corresponds to the ‘Type’ slot of an Arden MLM. The <Type> element
contains the type indicating the type of Arden MLM. Currently, only one type is defined, i.e.
data-driven or data_driven. <Type> is a required element.

X2.3.3.4.2 element Arden_MLM_File/MLM/Knowledge/Data

Type xs:string

The <Data> element corresponds to the ‘Data’ slot of an Arden MLM. The <Data> element
contains the data variables used in the Arden MLM and their mapping to the local database of the
institution. <Data> is a required element. CDATA tags should be placed around the text in this
element to avoid problems with XML reserved characters (e.g. <, >) occurring within the text.

X2.3.3.4.3 element Arden_MLM_File/MLM/Knowledge/Priority

Type restriction of xs:decimal

Facets minInclusive 0

maxInclusive 99

The <Priority> element corresponds to the ‘Priority’ slot of an Arden MLM. The <Priority>
element contains a number between 0 to 99 indicating the priority of execution of the MLM with 0
indicating least priority and 99 indicating highest priority. The priority is to be used when more
than one MLM is fired by a particular event. <Priority> is an optional element.

X2.3.3.4.4 element Arden_MLM_File/MLM/Knowledge/Evoke

Type xs:string

The <Evoke> element corresponds to the ‘Evoke’ slot of an Arden MLM. The <Evoke> element
specifies the condition under which the MLM would be evoked or called. Evoke is a required
element. CDATA tags should be placed around the text in this element to avoid problems with
XML reserved characters (e.g. <, >) occurring within the text.

Arden Syntax for Medical Logic Systems

Page 166 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

X2.3.3.4.5 element Arden_MLM_File/MLM/Knowledge/Logic

Type xs:string

The <Logic> element corresponds to the ‘Logic’ slot of an Arden MLM. The <Logic> element
contains main decision making logic of the Arden MLM written using Arden Syntax. It can
conclude true or false only. <Logic> is a required element. CDATA tags should be placed around
the text in this element to avoid problems with XML reserved characters (e.g. <, >) occurring
within the text.

X2.3.3.4.6 element Arden_MLM_File/MLM/Knowledge/Action

Type xs:string

The <Action> element corresponds to the ‘Action’ slot of an Arden MLM. The <Action> element
specifies the action to be taken if the Logic concludes true. <Action> is a required element. CDATA
tags should be placed around the text in this element to avoid problems with XML reserved characters
(e.g. <, >) occurring within the text.

X2.3.3.4.7 element Arden_MLM_File/MLM/Knowledge/Urgency

Type restriction of xs:decimal

Facets minInclusive 0

maxInclusive 99

The <Urgency> element corresponds to the ‘Urgency’ slot of an Arden MLM. The <Urgency>
element contains the number indicating the urgency of execution of action of the MLM. The number
can be between 0 (least urgent) to 99 (highest level urgent). <Urgency> should be used to decide the
order of execution of various actions when more than one MLMs, are executed at the same time.
<Urgency> is an optional element.

X2.4 Defined Complex Types

X2.4.1 complexType Citation

Children Citation_Number Citation_Type Citation_Text

used by element Arden_MLM_File/MLM/Library/Citations/Citation

The Citation complexType represents the individual citations as described in 6.2.4

X2.4.1.1 element Citation/Citation_Number

Type xs:positiveInteger

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 167

Revision date: 2011-03-25 Print date: 5/17/2011

X2.4.1.2 element Citation/Citation_Type

Type restriction of xs:string

Facets enumeration support

enumeration refute

X2.4.1.3 element Citation/Citation_Text

Type xs:string

X2.4.2 complexType Link

Children Link_Type Link_Description Link_Text

used by element Arden_MLM_File/MLM/Library/Links/Link

The Link complexType represents the individual links as described in 6.2.5

X2.4.2.1 element Link/Link_Type

Type xs:string

X2.4.2.2 element Link/Link_Description

Type xs:string

X2.4.2.3 element Link/Link_Text

Type xs:string

X2.4.3 complexType Person

used by elements Arden_MLM_File/MLM/Maintenance/Author/Person Arden_MLM_File/MLM/Maintenance/Specialist

Annotation documentation Name and degree of the person with optional email address -- Use / derive from standard RIM -derived XML
schema for person. Must include e-mail address.

The Person complex type is a stub definition to the XML ITS representation of the
Entity>LivingSubject>Person class from the HL7 V3 RIM.

Arden Syntax for Medical Logic Systems

Page 168 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

X2.5 Example MLM
<Arden_MLM_File xmlns:xsi="http://www.w3.org/2001/X MLSchema-instance"
xsi:noNamespaceSchemaLocation="Arden Syntax 2.5 Sch ema 20040804.xsd">
 <MLM>
 <Maintenance>
 <Title>Dosing for gentamicin in renal failure </Title>
 <MLMName>gentamicin_dosing</MLMName>
 <Arden_Version>Version 2.5</Arden_Version>
 <Version>1.0</Version>
 <Institution>Columbia-Presbyterian Medical Ce nter</Institution>
 <Author>
 <Person>
 <Entity.Attrs>
 <name>
 </delimiter>
 <family>Hripcsak</family>
 <given>George</given>
 <prefix/>
 <suffix/>
 </name>
 <telecom value="mailto:george.hripcsak@ columbia.edu"
 </Entity.Attrs>
 <Person.Attrs>
 <educationLevelCode>MD</educationLevelC ode>
 </Person.Attrs>
 </Person>
 </Author>
 <Specialist/>
 <Date>1991-03-18</Date>
 <Validation>Testing</Validation>
 </Maintenance>
 <Library>
 <Purpose>
 Suggest an appropriate gentamicin dose in t he setting of renal
 insufficiency. (This MLM demonstrates a man agement suggestion.)
 </Purpose>
 <Explanation>
 Patients with renal insufficiency require t he same loading dose of
 gentamicin as those with normal renal funct ion, but they require a reduced
 daily dose. The creatinine clearance is cal culated by serum creatinine,
 age, and weight. If it is less than 30 ml/m in, then an appropriate dose is
 calculated based on the clearance. If the o rdered dose differs from the
 calculated dose by more than 20 %, then an alert is generated.
 </Explanation>
 <Keywords>
 <Keyword>gentamicin</Keyword>
 <Keyword>dosing</Keyword>
 </Keywords>
 </Library>
 <Knowledge>
 <Type>data-driven</Type>
 <Data>
 <![CDATA[
 /* an order for gentamicin evokes this MLM */
 gentamicin_order := event {medication_order where class = gentamicin} ;
 /* gentamicin doses */
 (loading_dose,periodic_dose,periodic_interva l) := read last
 {medication_order initial dose, periodic d ose, interval} ;
 /* serum creatinine mg/dl */
 serum_creatinine := read last {serum_creatin ine}
 where it occurred within the past 1 week ;

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 169

Revision date: 2011-03-25 Print date: 5/17/2011

 /* birthdate */
 birthdate := read last {birthdate} ;
 /* weight kg */
 weight := read last {weight} where it occurr ed within the past 3 months ;
]]>
 </Data>
 <Priority>50</Priority>
 <Evoke>gentamicin_order;</Evoke>
 <Logic>
 <![CDATA[
 age := (now - birthdate)/1 year ;
 creatinine_clearance := (140 - age) * (wei ght)/ (72 * serum_creatinine) ;
 /* the algorithm can be adjusted to handle higher clearances */
 if creatinine_clearance < 30 then
 calc_loading_dose := 1.7 * weight ;
 calc_daily_dose := 3 * (0.05 + creatinine _clearance / 100) ;
 ordered_daily_dose := periodic_dose * p eriodic_interval/(1 day) ;
 /* check whether order is appropriate */
 if (abs(loading_dose - calc_loading_dose) /calc_loading_dose > 0.2)
 or
 (abs(ordered_daily_dose - calc_daily_d ose)/calc_daily_dose > 0.2)then
 conclude true ;
 endif ;
 endif ;
]]>
 </Logic>
 <Action>
 <![CDATA[
 write "Due to renal insufficiency, the dos e of gentamicin " ||
 "should be adjusted. The patient's c alculated " ||
 "creatinine clearance is " || creati nine_clearance ||
 " ml/min. A single loading dose of " ||
 calc_loading_dose || " mg should be given, followed by " ||
 calc_daily_dose || " mg daily. Note that dialysis may " ||
 "necessitate additional loading dose s."
]]>
 </Action>
 <Urgency>50</Urgency>
 </Knowledge>
 </MLM>
</Arden_MLM_File>

Arden Syntax for Medical Logic Systems

Page 170 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

X3 LANGUAGE AND COUNTRY CODES FOR HL7 INTERNATIONAL
AFFILIATE COUNTRIES

X3.1

This appendix lists language and country codes as defined by ISO 639.1 and ISO 3166 for countries with
HL7 Affiliates. Languages and country codes are arranged in alphabetic order by their English-language
name. For additional language and country codes consult the appropriate ISO language / country registrars
via ISO (www.iso.ch).

X3.2 Language codes

Language Code Language Code
Assamese as
Basque eu
Bengali bn
Catalan; Valencian ca
Chinese zh
Croatian hr
Czech cs
Danish da
Dutch; Flemish nl
English en
Faroese fo
Finnish fi
French fr
Gaelic; Scottish Gaelic gd
Galician gl
German de
Greek, Modern (1453-) el
Greenlandic; Kalaallisut kl
Gujarati gu
Hindi hi
Irish ga
Italian it
Japanese ja

Kannada kn
Kashmiri ks
Korean ko
Kurdish ku
Malayalam ml
Maori mi
Marathi mr
Oriya or
Portuguese pt
Punjabi; Panjabi pa
Russian ru
Sanskrit sa
Sindhi sd
Slovak sk
Slovenian sl
Spanish; Castilian es
Swedish sv
Tamil ta
Telugu te
Turkish tr
Urdu ur
Welsh cy

X3.3 Country codes

Country Code Country Code
Argentina Ar
Australia Au
Brazil Br
China Cn
Croatia (Local Name: Hrvatska) Hr
Czech Republic Cz
Denmark Dk
Finland Fi
France Fr
Germany De
Greece Gr
India In
Ireland Ie

Italy It
Korea, Republic Of Kr
Mexico Mx
Netherlands Nl
New Zealand Nz
Spain Es
Sweden Se
Switzerland Ch
Taiwan Tw
Turkey Tr
United Kingdom Gb
United States Us

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 171

Revision date: 2011-03-25 Print date: 5/17/2011

X4 SAMPLE MLMS
The following are sample MLMs to be used only to demonstrate the syntax. They have not been tested, and they
have not been used in clinical care.

X4.1 Data Interpretation MLM
maintenance:

 title: Fractional excretion of sodium;;

 mlmname: fractional_na;;

 arden: Version 2;;

 version: 1.00;;

 institution: Columbia-Presbyterian Medical Center; ;

 author: George Hripcsak, M.D.
 (hripcsak@cucis.cis.columbia.edu);;

 specialist: ;;

 date: 1991-03-13;;

 validation: testing;;

library:

 purpose:
 Calculate the fractional excretion of sodium when ever urine
 electrolytes are stored. (This MLM demonstrates d ata
 interpretation across independent laboratory resu lts.);;

 explanation:
 The fractional excretion of sodium is calculated from the urine
 sodium and creatinine and the most recent serum s odium and
 creatinine (where they occurred within the past 2 4 hours). A
 value less than 1.0 % is considered low.;;

 keywords: fractional excretion; serum sodium; azot emia;;

 citations:
 1. Steiner RW. Interpreting the fractional excret ion of sodium.
 Am J Med 1984;77:699-702.;;

knowledge:

 type: data-driven;;

 data:
 let (urine_na, urine_creat) be read last
 ({urine electrolytes where evoking}
 where they occurred within the past 24 hours) ;
 let (serum_na, serum_creat) be read last
 ({serum electrolytes where they are not null}
 where they occurred within the past 24 hours) ;
 let urine_electrolyte_storage be event
 {storage of urine electrolytes}
 ;;

 evoke:
 urine_electrolyte_storage;;

 logic:
 /* calculate fractional excretion of sodium */
 let fractional_na be 100 * (urine_na / urine_crea t)/
 (serum_na / serum_creat) ;
 /* if the frational Na is invalid (e.g., if the * /
 /* urine or serum sample is QNS) then stop here * /
 if fractional_na is null then
 conclude false ;
 endif ;
 /* check whether the fractional Na is low */
 let low_fractional_na be fractional_na < 1.0 ;
 /* send the message */
 conclude true ;
 ;;

Arden Syntax for Medical Logic Systems

Page 172 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

 action:
 if low_fractional_na then
 write "The calculated fractional excretion of so dium is low ("
 || fractional_na || "). If the patient is az otemic, " ||
 "this number may indicate: volume depletion, " ||
 "hepatic failure, congestive heart failure, a cute " ||
 "glomerulonephritis, oliguric myoglobinuric o r " ||
 "hemoglobinuric renal failure, oliguric contr ast " ||
 "nephrotoxicity, polyuric renal failure with severe " ||
 "burns, renal transplant rejection, 10 % of c ases " ||
 "with non-oliguric acute tubular necrosis, an d " ||
 "several other forms of renal injury.";
 else
 write "The calculated fractional excretion of so dium is " ||
 "not low (" || fractional_na || "). If the pa tient " ||
 "is azotemic, this may indicate: acute renal " ||
 "parenchymal injury, volume depletion coexist ing " ||
 "with diurectic use or pre-existing chronic r enal " ||
 "disease, and up to 10 % of cases of uncompli cated " ||
 "volume depletion.";
 endif;
 ;;

end:

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 173

Revision date: 2011-03-25 Print date: 5/17/2011

X4.2 Research Study Screening MLM
maintenance:

 title: Screen for hypercalcemia for Dr. B.'s study ;;

 mlmname: hypercalcemia_for_b;;

 arden: Version 2;;

 version: 2.02;;

 institution: Columbia-Presbyterian Medical Center; ;

 author: George Hripcsak, M.D.;;

 specialist: ;;

 date: 1990-12-04;;

 validation: research;;

library:

 purpose:
 Screen for hypercalcemia for Dr. B.'s study. (Thi s MLM demonstrates
 screening patients for clinical trials.);;

 explanation:
 The storage of a serum calcium value evokes this MLM. If a serum
 albumin is available from the same blood sample a s the calcium,
 then the corrected calcium is calculated, and pat ients with actual
 or corrected calcium greater than or equal 11.5 a re accepted; if
 such a serum albumin is not available, then patie nts with actual
 calcium greater than or equal 11.0 are accepted. Patients with
 serum creatinine greater than 6.0 are excluded fr om the study.;;

 keywords: hypercalcemia;;

 citations: ;;

knowledge:

 type: data-driven;;

 data:
 /* the storage of a calcium value evokes this MLM */
 storage_of_calcium := event {‘06210519’,’06210669 ’} ;
 /* total calcium in mg/dL */
 calcium := read last {‘06210519’,’06210669’;’CALC IUM’} ;
 /* albumin in g/dL */
 evoking_albumin := read last {‘06210669’;’ALBUMIN ’ where evoking} ;
 /* albumin in g/dL; not necessarily from same tes t as Ca */
 last_albumin := read last ({‘06210669’;’ALBUMIN’}
 where it occurred within the past 2 weeks) ;
 /* creatinine in mg/dL; not necessarily from same test as Ca */
 creatinine := read last ({‘06210669’,’06210545’,’ 06000545’;’CREAT’}
 where it occurred within the past 2 weeks) ;
 ;;

 evoke:
 storage_of_calcium;;

Arden Syntax for Medical Logic Systems

Page 174 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

 logic:
 /* make sure the Ca is present (vs. hemolyzed, .. .) */
 IF calcium is not present THEN
 conclude false ;
 ENDIF ;
 /* if creatinine is present and greater than 6, t hen stop now */
 IF creatinine is present THEN
 IF creatinine is greater than 6.0 THEN
 conclude false ;
 ENDIF ;
 ENDIF ;
 /* is an albumin present for the same sample as t he calcium */
 IF evoking_albumin is present THEN
 /* calculate the corrected calcium */
 IF evoking_albumin is less than 4.0 THEN
 corrected_calcium := calcium + (4.0-evoking_alb umin)*0.8 ;
 ELSE
 /* corrected is never less than actual */
 corrected_calcium := calcium ;
 ENDIF ;
 /* test for total or corrected calcium >= 11.5 * /
 IF calcium >= 11.5 OR corrected_calcium >= 11.5 THEN
 message := "calcium = " || calcium ||
 " on " || time of calcium ||
 " (corrected calcium = " ||
 corrected_calcium || ")" ;
 message := message||"; albumin = "||evoking_alb umin ;
 IF creatinine is present THEN
 message := message||
 "; last creatinine = "||creatinine ;
 message := message||
 "; (total or corrected calcium " ||
 "was at least 11.5)" ;
 conclude true ;
 ELSE
 conclude false ;
 ENDIF ;
 ENDIF
 /* no evoking albumin was present */
 ELSE
 /* check for true calcium >= 11.0 */
 IF calcium >= 11.0 THEN
 message := "calcium = "||calcium||" on "||time of calcium ;
 IF last_albumin is present THEN
 message := message||"; last albumin "||
 "(not from same blood sample as calcium) = " ||
 last_albumin ;
 IF creatinine is present THEN
 message := message|| "; last creatinine = "
 ||creatinine ;
 message := message||
 "; (total calcium was at least 11.0; "||
 "corrected calcium was not calculated)" ;
 conclude true ;
 ELSE
 conclude false ;
 ENDIF ;
 ENDIF ;
 ENDIF ;
 ENDIF ;
 ;;

 action: write "hypercalcemia study: " || message;;

 urgency: 50;;

end:

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 175

Revision date: 2011-03-25 Print date: 5/17/2011

X4.3 Contraindication Alert MLM
maintenance:

 title: Check for penicillin allergy;;

 mlmname: pen_allergy;;

 arden: ASTM-E1460-1995;;

 version: 1.00;;

 institution: Columbia-Presbyterian Medical Center; ;

 author: George Hripcsak, M.D.;;

 specialist: ;;

 date: 1991-03-18;;

 validation: testing;;

library:

 purpose:
 When a penicillin is prescribed, check for an all ergy. (This MLM
 demonstrates checking for contraindications.);;

 explanation:
 This MLM is evoked when a penicillin medication i s ordered. An
 alert is generated because the patient has an all ergy to penicillin
 recorded.;;

 keywords: penicillin; allergy;;

 citations: ;;

knowledge:

 type: data-driven;;

 data:
 /* an order for a penicillin evokes this MLM */
 penicillin_order := event {medication_order where
 class = penicillin};
 /* find allergies */
 penicillin_allergy := read last {allergy where
 agent_class = penicillin};
 ;;

 evoke:
 penicillin_order;;

 logic:
 if exist(penicillin_allergy)then
 conclude true;
 endif;
 ;;

 action:
 write "Caution, the patient has the following all ergy to penicillin documented:"
 || penicillin_allergy;;

 urgency: 50;;

end:

Arden Syntax for Medical Logic Systems

Page 176 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

X4.4 Management Suggestion MLM
maintenance:

 title: Dosing for gentamicin in renal failure;;

 mlmname: gentamicin_dosing;;

 arden: Version 2.1;;

 version: 1.00;;

 institution: Columbia-Presbyterian Medical Center; ;

 author: George Hripcsak, M.D.;;

 specialist: ;;

 date: 1991-03-18;;

 validation: testing;;

library:

 purpose:
 Suggest an appropriate gentamicin dose in the set ting of renal
 insufficiency. (This MLM demonstrates a managemen t suggestion.);;

 explanation:
 Patients with renal insufficiency require the sam e loading dose of
 gentamicin as those with normal renal function, b ut they require a
 reduced daily dose. The creatinine clearance is c alculated by serum
 creatinine, age, and weight. If it is less than 3 0 ml/min, then an
 appropriate dose is calculated based on the clear ance. If the
 ordered dose differs from the calculated dose by more than 20 %,
 then an alert is generated.;;

 keywords: gentamicin; dosing;;

 citations: ;;

knowledge:

 type: data-driven;;

 data:
 /* an order for gentamicin evokes this MLM */
 gentamicin_order := event {medication_order where
 class = gentamicin} ;
 /* gentamicin doses */
 (loading_dose,periodic_dose,periodic_interval) :=
 read last {medication_order initial dose,
 periodic dose, interval} ;
 /* serum creatinine mg/dl */
 serum_creatinine := read last ({serum_creatinine}
 where it occurred within the past 1 week) ;
 /* birthdate */
 birthdate := read last {birthdate} ;
 /* weight kg */
 weight := read last ({weight}
 where it occurred within the past 3 months) ;
 ;;
evoke:
 gentamicin_order;;
logic:
 age := (now - birthdate)/1 year ;
 creatinine_clearance := (140 - age) * (weight)/
 (72 * serum_creatinine) ;
 /* the algorithm can be adjusted to handle higher clearances */
 if creatinine_clearance < 30 then
 calc_loading_dose := 1.7 * weight ;
 calc_daily_dose := 3 * (0.05 + creatinine_cleara nce / 100) ;
 ordered_daily_dose := periodic_dose *
 periodic_interval/(1 day) ;
 /* check whether order is appropriate */
 if (abs(loading_dose - calc_loading_dose)/
 calc_loading_dose > 0.2)
 or
 (abs(ordered_daily_dose - calc_daily_dose)/
 calc_daily_dose > 0.2)then
 conclude true ;
 endif ;
 endif ;
 ;;

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 177

Revision date: 2011-03-25 Print date: 5/17/2011

 action:
 write "Due to renal insufficiency, the dose of ge ntamicin " ||
 "should be adjusted. The patient's calculated " ||
 "creatinine clearance is " || creatinine_cleara nce ||
 " ml/min. A single loading dose of " ||
 calc_loading_dose || " mg should be given, foll owed by " ||
 calc_daily_dose || " mg daily. Note that dialys is may " ||
 "necessitate additional loading doses."
 ;;

 urgency: 50;;

end:

Arden Syntax for Medical Logic Systems

Page 178 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

X4.5 Monitoring MLM
maintenance:

 title: Monitor renal function while taking gentami cin;;

 mlmname: gentamicin_monitoring;;

 arden: Version 2;;

 version: 1.00;;

 institution: Columbia-Presbyterian Medical Center; ;

 author: George Hripcsak, M.D.;;

 specialist: ;;

 date: 1991-03-19;;

 validation: testing;;

library:

 purpose:
 Monitor the patient's renal function when the pat ient is taking
 gentamicin. (This MLM demonstrates periodic monit oring.);;

 explanation:
 This MLM runs every five days after the patient i s placed on
 gentamicin until the medication is stopped. If th e serum creatinine
 has not been checked recently, then an alert is g enerated
 requesting follow-up. If the serum creatinine has been checked, is
 greater than 2.0, and has risen by more than 20 % , then an alert is
 generated warning that the patient may be develop ing renal
 insufficiency due to gentamicin.;;

 keywords: gentamicin; renal function;;

 citations: ;;

knowledge:

 type: data-driven;;

 data:
 /* an order for gentamicin evokes this MLM */
 gentamicin_order := event {medication_order where
 class = gentamicin};
 /* check whether gentamicin has been discontinued */
 gentamicin_discontinued :=
 read exist({medication_cancellation where class = gentamicin}
 where it occurs after eventtime);
 /* baseline serum creatinine mg/dl */
 baseline_creatinine := read last ({serum_creatini ne}
 where it occurred before eventtime);
 /* followup serum creatinine mg/dl */
 recent_creatinine := read last ({serum_creatinine }
 where it occurred within the past 3 days);
 ;;

 evoke:
 every 5 days for 10 years starting 5 days after t ime of
 gentamicin_order until gentamicin_discontinued;;

 logic:
 if recent_creatinine is not present then
 no_recent_creatinine := true;
 conclude true;
 else
 no_recent_creatinine := false;
 if % increase of (serum_creatinine,
 recent_creatinine) > 20 /* % */
 and recent_creatinine > 2.0 then
 conclude true;
 endif;
 endif;
 ;;

action:
 if no_recent_creatinine then
 write "Suggest obtaining a serum creatinine to f ollow up " ||
 "on renal function in the setting of gentamici n.";
 else
 write "Recent serum creatinine (" || recent_cre atinine ||
 " mg/dl) has increased, possibly due to renal " ||
 "insufficiency related to gentamicin use.";
 endif;
 ;;

 urgency: 50;;

end:

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 179

Revision date: 2011-03-25 Print date: 5/17/2011

X4.6 Management Suggestion MLM
maintenance:

 title: Granulocytopenia and Trimethoprim/Sulfameth oxazole;;

 mlmname: anctms;;

 arden: Version 2;;

 version: 2.00;;

 institution: Columbia-Presbyterian Medical Center; ;

 author: George Hripcsak, M.D.;;

 specialist: ;;

 date: 1991-05-28;;

 validation: testing;; library:

 purpose:
 Detect granulocytopenia possibly due to
 trimethoprim/sulfamethoxazole;;

 explanation:
 This MLM detects patients that are currently taki ng
 trimethoprim/sulfamethoxazole whose absolute neut rophile count is
 less than 1000 and falling.;;

 keywords:
 granulocytopenia; agranulocytosis; trimethoprim; sulfamethoxazole;;

 citations:
 1. Anti-infective drug use in relation to the ris k of
 agranulocytosis and aplastic anemia. A report from the
 International Agranulocytosis and Aplastic Ane mia Study.
 Archives of Internal Medicine, May 1989, 149(5):1036-40.;;

 links:
 'CTIM .34.56.78';
 'MeSH agranulocytosis/ci and sulfamethoxazole/ae' ;;

knowledge:

 type: data-driven;;

 data:
 /* capitalized text within curly brackets would b e replaced with */
 /* an institution's own query */
 let anc_storage be event {STORAGE OF ABSOLUTE_NEU TROPHILE_COUNT};
 let anc be read last 2 from ({ABSOLUTE_NEUTROPHIL E_COUNT}
 where they occurred within the past 1 week);
 let pt_is_taking_tms be read exist
 {TRIMETHOPRIM_SULFAMETHOXAZOLE_ORDER};
 ;;

evoke: anc_storage;;

 logic:
 if pt_is_taking_tms
 and the last anc is less than 1000
 and the last anc is less than the first anc
 /* is anc falling? */
 then
 conclude true;
 else
 conclude false;
 endif;;

 action:
 write "Caution: patient's relative granulocytope nia may be " ||
 "exacerbated by trimethoprim/sulfamethoxazole." ;

end:

Arden Syntax for Medical Logic Systems

Page 180 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

X4.7 MLM Translated from CARE
maintenance:

 title: Cardiology MLM from CARE, p. 85;;

 mlmname: care_cardiology_mlm;;

 arden: Version 2;;

 version: 1.00;;

 institution: Regenstrief Institute;;

 author: Clement J. McDonald, M.D.; George Hripcsak , M.D.;;

 specialist: ;;

 data: 1991-05-28;;

 validation: testing;;

library:

 purpose:
 Recommend higher beta-blocker dosage if it is cur rently low and the
 patient is having excessive angina or premature v entricular
 beats.;;

 explanation:
 If the patient is not bradycardic and is taking l ess than 360 mg of
 propanolol or less than 200 mg of metoprolol, the n if the patient
 is having more than 4 episodes of angina per mont h or more than 5
 premature ventricular beats per minute, recommend a higher dose.;;

 keywords:
 beta-blocker, angina; premature ventricular beats ; bradycardia;;

 citations:
 1. McDonald CJ. Action-oriented decisions in ambu latory medicine.
 Chicago: Year Book Medical Publishers, 1981, p . 85.
 2. Prichard NC, Gillam PM. Assessment of proprano lol in angina
 pectoris: clinical dose response curve and eff ect on
 electrocardiogram at rest and on exercise. Br Heart J,
 33:473-480 (1971).
 3. Jackson G, Atkinson L, Oram S. Reassessment of failed beta-
 blocker treatment in angina pectoris by peak e xercise heart rate
 measurements. Br Med J, 3:616-619 (1975).
 ;;

knowledge:

 type: data-driven;;

 data:
 let last_clinic_visit be read last {CLINIC_VISIT} ;
 let (beta_meds,beta_doses,beta_statuses) be read
 {MEDICATION,DOSE,STATUS
 where the beta_statuses are ‘current’
 and beta_meds are a kind of ‘beta_blocker’};
 let low_dose_beta_use be false;
 /* if patient is on one beta blocker, check if it is low dose */
 if the count of beta_meds = 1 then
 if (the last beta_meds = ‘propanolol'
 and
 last beta_doses < 360)
 or (the last beta_meds = ‘metoprolol'
 and
 the last beta_doses <= 200) then
 let low_dose_beta_use be true;
 endif;
 endif;
 let cutoff_time be the maximum of
 ((1 month ago),(time of last_clinic_visit),
 (time of last beta_meds));
 /* a system-specific query to angina frequency, P VC frequency, */
 /* and pulse rate would replace capitalized ter ms */
 let angina_frequency be read last ({ANGINA_FREQUE NCY}
 where it occurred after cutoff_time);
 let premature_beat_frequency be read last
 ({PREMATURE_BEAT_FREQUENCY}
 where it occurred after cutoff_time);
 let last_pulse_rate be read last {PULSE_RATE};
 ;;

evoke: /* this MLM is called directly */;;

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 181

Revision date: 2011-03-25 Print date: 5/17/2011

logic:
 if last_pulse_rate is greater than 60 and
 low_dose_beta_use then
 if angina_frequency is greater than 4 then
 let message be
 "Increased dose of beta blockers may be "||
 "needed to control angina.";
 conclude true;
 else
 if premature_beat_frequency is greater than 5 t hen
 let message be
 "Increased dose of beta blockers may "||
 "be needed to control PVC's.";
 conclude true;
 endif;
 endif;
 endif;
 conclude false;
 ;;

action:
 write message;;

end:

Arden Syntax for Medical Logic Systems

Page 182 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

X4.8 MLM Using While Loop
maintenance:

 title: Allergy_test_with_while_loop;;

 filename: test_for_allergies_while_loop;;

 version: 0.00;;

 institution: ;;

 author: ;;

 specialist: ;;

 date: 1997-11-06;;

 validation: testing;;

library:

 purpose:
 Illustrates the use of a WHILE-LOOP that processe s an entire list
 ;;

 explanation:
 ;;

 keywords:
 ;;

knowledge:

 type: data-driven;;

 data:
 /* Receives four arguments from the calling MLM: */
 (med_orders,
 med_allergens,
 patient_allergies,
 patient_reactions) := ARGUMENT;
 ;;

 evoke:
 ;;

 logic:
 /* Initializes variables */
 a_list:= ();
 m_list:= ();
 r_list:= ();
 num:= 1;
 /* Checks each allergen in the medications to det ermine */
 /* if the patient is allergic to it */
 while num <= (count med_allergen) do
 allergen:= last(first num from med_allergens);
 allergy_found:= (patient_allergies = allergen);
 reaction:= patient_reactions where allergy_found ;
 medication:= med_orders where (med_allergens = a llergen);

 /* Adds the allergen, medication, and reaction t o */
 /* variables that will be returned to the callin g MLM */
 If any allergy_found then
 a_list:= a_list, allergen;
 m_list:= m_list, medication;
 r_list:= r_list, reaction;
 endif;
 /* Increments the counter that is used to stop th e while-loop */
 num:= num + 1 ;
 enddo;
 /* Concludes true if the patient is allergic to o ne of */
 /* the medications */
 If exist m_list
 then conclude true;
 endif;
 ;;

 action:
 /* Returns three lists to the calling MLM */
 return m_list, a_list, r_list;
 ;;

end:

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 183

Revision date: 2011-03-25 Print date: 5/17/2011

X5 SUMMARY OF CHANGES
X5.1 Summary of changes from the 1992 standard (Version 1) to Version 2:

• Clarification of many details of operator definitions.

• Arden syntax version slot required. (6.1.3)

• Citations must be numbered, and can be classified as supporting or refuting. (6.2.4)
• Specification of Links slot (6.2.5)

• Times can be constructed from durations via + operator (7.1.5.3)

• Triggertime is the time the MLM was triggered (8.4.5)

• Query retrieval order is not necessarily by primary time (8.9.2)

• Interface statement for using external functions (11.2.16)

• Single-line comments may be introduced with "//". (7.1.9)

• The filename slot has been renamed to mlmname. (6.1.2)

• Some new operators have been introduced:

� sort (9.2.4)

� reverse (9.12.21)

� format (9.8.2)

� earliest, latest (9.12.17, 9.12.16)

� floor, ceiling, truncate, round (9.16.11, 9.16.12, 9.16.13, 9.16.14)

� index (...[...]) (9.12.18)

� year, month, day, hour, minute, second field extraction (Error! Reference source not found.,
Error! Reference source not found., Error! Reference source not found., Error! Reference
source not found., Error! Reference source not found., Error! Reference source not found.)

� seqto (9.12.20)

� string, extract characters (9.8.3, 9.12.19)

• Operators which select from lists may be annotated to return indexes instead of the elements. (9.12.18)

• As number operator which converts strings and Booleans to numbers. (9.16.17)

• Some restrictions have been removed (e.g., double semi-colon inside strings).

• The call expression and statement can now pass multiple arguments; arguments may also be passed from an
action slot. (10.2.5, 11.2.5, 12.2.2, 12.2.5)

• Looping constructs have been added: for loop, while loop. (10.2.5.10, 10.2.6.1)

• The continue statement may have an unless added to it (this a readability aid).

• A new form of conditional execution, by allowing unless in a conclude statement.

• The read ... where ... no longer requires parentheses.

• A read query may specify a sort order (different from the default of chronological by primary time).

Arden Syntax for Medical Logic Systems

Page 184 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

X5.2 Summary of changes from Version 2 to Version 2.1:

• A structured message for the write statement, represented as a Document Type Definition to be encoded in
the Extensible Markup Language (XML), has been included. (X1.4.1 <structured.message>)

• The in operator is now a synonym for is in; similarly, not in is synonymous with is not in. (9.6.23)

• Occur/occurs/occurred at is now synonymous with occur/occurs/occurred equal. (9.7.11)

• The syntax from <time> is now synonymous with after <time>. (9.10.4)

• A period punctuation mark (".") now is permissible in the Mlmname slot. (6.1.2)

• New reserved word currenttime returns the system time at any point during an MLM's execution. (8.4.6)

• Six new string-handling operators are now available. These include length (9.8.5), uppercase (9.8.6),
lowercase (9.8.7), trim (9.8.8), find…in string (9.8.9), and substring…characters from (9.8.10).

• The where trigger statement has been removed.

• Added new code for Arden Syntax version slot—Version 2.1—to distinguish Version 2 and Version 2.1
compliant MLMs.

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 185

Revision date: 2011-03-25 Print date: 5/17/2011

X5.3 Summary of changes from Version 2.1 to Version 2.5:

The following relate to new Object capabilities:

Added new sections:

• 10.2.7, New statement.

• 11.2.1.9, Read As statement.

• 11.2.5.2 Message As statement

• 11.2.5.6 Destination As statement

• 11.2.13, Object statement.

• 10.2.1.1, Attribute assignment statement.

• 9.18, Dot notation (attribute reference)

• 9.19, Clone operator (attribute reference)

• 8.10, Object data type

• Annex A6, Objects in Arden: rationale, details, etc.

Section A4.3, new operators is object, is not object, is <object-name>, is not <object-name> were added.

The following updates relate to new recommendations for formatting structured citations and links

• 6.2.4, Citations slot now recommends ANSI/NISO OpenURL format for structured citations

• 6.2.5, Links slot now recommends ANSI/NISO OpenURL format for structured links

• Annex A1, XML schema for MLMs replaces DTD

The following updates relate to new recommendations for representing MLMs using XML

• Appendix X1, XML schema for structured write replaces DTD for structured write

• Appendix X2, XML schema for MLMs added

Annex A1 Backus-Naur Form updated to include new operators, statements, and correct errors from
previous versions

Updated B/N forms for:

• <data_assign_phrase>

• <expr_factor>

• <logic_assignment> (fixed a problem in 2.1 B/N form relating to calling MLMs
 that return multiple values)

• <identifier_becomes>

• <unary_comp_op>

• <data_assignment>

• <expr_function>

• <of_noread_func_op>

Arden Syntax for Medical Logic Systems

Page 186 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

These B/N Forms were added:

• <object_definition>

• <object_attribute_list>

• <new_object_phrase>

• <identifier_or_object_ref>

• <expr_attribute_from>

•

• Annex A2 Reserved Words updated to include new operators and statements

• Annex A4 Operator Precedence and Associativity updated to include new operators

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 187

Revision date: 2011-03-25 Print date: 5/17/2011

X5.4 Summary of Changes from Version 2.5 to 2.6

• 5.1 Character set allows UNICODE encoding within certain limitations

• 6.2.5 Changes to structured version of links slot.

• 6.4 Resource category defines text resources for specific languages

• 7.1.11 Time of day constants

• 8.11 Time-of-day data type

• 8.12 Day-of-week datatype

• 9.1.5 Time of day handling

• 9.6.21 Is [not] time of day

• 9.10.5 Time of day operator

• 9.10.6 Day of week operator

• 9.8.11 Localized operator (unary)

• 9.8.12 Localized operator (binary)

• 9.17.3 At

• 11.2.15 Extension of include statement to include resources

• X3 Selected language and country codes for use with resource category slots.

This version features new data types and operators to represent time-of-day and day-of-week. In addition, new
capabilities have been added to let an MLM report messages in a variety of languages. The modifications include:

Arden Syntax for Medical Logic Systems

Page 188 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

X5.5 Summary of Changes from Version 2.6 to 2.7

• 9.17.3 AT (time) changed to ATTIME to remove need for precedence rules to proper parse use of
 AT (time) in write statement with destination.

• 10.2.1.2 Enhanced Assignment Statement changed to support directly assigning to nested attributes
 of objects and specific elements in a list

• 10.2.4.10 Enhanced Assignment in Call Statement

• 10.2.7.1 New Statement with Named Initializer (objects)

• Evoke slot chapter reorganized and rewritten

• Changes to BNF to reflect updates to text of standard and fix typographical errors

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 189

Revision date: 2011-03-25 Print date: 5/17/2011

X5.6 Summary of Editorial Corrections of ANSI/HL7 Arden V2.7-2008 December 10, 2008

• TOC Updated numbering of chapter 11.2.10 to 11.2.18 in the table of contents

• 9.1.3 Added “Each operator must apply the here described list handling first (if applicable) before the
specific list handling as described in the respective operator description is applied.” to make the correct
application of list handling clearer.

• 9.1.3.4 Removed … matches pattern … because this does not belong into this chapter.

• 9.1.3.4 added missing … from … operator

• 9.3.1 Correction of first example since the stated operator … is within … after … does not exist, … is
within … following … must be used.

• 9.4.1 Type constraint updated because … or … is also applicable to lists.

• 9.7 Several “occured” changed to “occurred”.

• 9.8.1 Corrected %z to %s because there is no such operator %z.

• 9.8.4 2nd type constraint removed. <k:list of strings> means a list with k elements of “list of strings”,
which is a list of lists and not allowed in Arden Syntax.

• 9.9.7 Type constraint corrected to ensure that the right side of the … ** … operator is not a list.

• 9.12.19 Updated the type constraint for extract characters operator to ensure that the list of arguments is
of type string.

• 10.2.1.2 Operator corrected (element instead of index), corrected examples (“msg” instead of “message”,
“message” not allowed as variable name)

• 10.2.7 Definition of non-terminal <object-identifier> added.

• 11.2.5 Removed “[...] If the MLM is evoked instead of called, all the arguments are treated as null. [...]”
since this sentence is in contradiction with Chapter 10.2.4.6.

• 11.2.8 to 11.2.18 Updated numbering of chapters.

• A1 BNF expression for <read_where> updated with missing “<” and “>”.

• A1 BNF expression for <evoke_statement> updated with the missing non-terminal <delayed_evoke>

• A1 BNF expression for <delayed_evoke> updated with the missing quotation marks.

• A1 BNF expression for <relative_evoke_time_expr> updated, since this non-terminal was still using
“AT” instead of “ATTIME”

• A2 arccos instead of arcos

• A4 Operators added to precedence groups: 9.16.10, 9.16.14

• A4 arccos instead of arcos

• A5.1 Some letter must be lowercase instead of using them in uppercase twice.

Arden Syntax for Medical Logic Systems

Page 190 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

X5.7 Summary of Changes from Version 2.7 with Editorial Corrections to 2.8

• 3.2.1, Removed the “a point in absolute time” term

• 6.1.2, Added the minus sign, since the BNF (non-terminal <mlmname_text_rest>) allows this sign inside
of an MLM name

• 6.1.7, Changed slot type to “textual list” since the informal description claims the same format as the author
slot

• 6.1.8, Added short term, which makes clear that only the complete representation (given in the ISO) is
allowed

• 8.1, Added a sentence to make clear that null may have a primary time

• 8.4.1, Changed the granularity of time from infinitesimal to implementation specific (beyond milliseconds)

• 9.1.2.2, Additional data type “times” introduced, which subsumes time and time-of-day

• 9.1.2.2, Added “time-of-day” within the types: any-type, non-null, and ordered

• 9.1.3.1, Added the operators “… As Number”, “ … As String”, and “… As Time” to the general list
handling

• 9.1.3.4, Added the operators “Replace Year Of … With ”, “ Replace Month Of … With ”, “ Replace Day
Of … With ”, “ Replace Hour Of … With ”, “ Replace Minute Of … With ”, and “Replace Second Of …
With ” to the general list handling

• 9.1.3.6, Added the operators “Index Of … From …” , “ Add … To …” , “ At Least … From …”, and “At
Most … From …” to the general list handling

• 9.1.3.7, Added the “Remove … From …” operator to the general list handling

• 9.2.4, Added the “Using …” modifier as extension to the sort operator. This modifier will allow to sort lists
by any complex calculation

• 9.2.5, Added new operator “Add … To … [At …] ” for simple list manipulation by insertion of elements at
arbitrary positions

• 9.2.6, Added new operator “Remove … From …” for simple removing arbitrary elements from a list

• 9.6.7, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.6.8, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.6.9, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.6.10, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.6.12, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.6.13, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.6.14, Added 2 sentences to make the null handling of the “… Is [Not] In … ” operator clearer

• 9.7.2, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.7.3, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.7.4, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.7.5, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 191

Revision date: 2011-03-25 Print date: 5/17/2011

• 9.7.6, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.7.9, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.7.10, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.7.11, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.8.13, Added new operator “As String” to convert any data into a string

• 9.9.1, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.9.3, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.10.1, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.10.2, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.10.4, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.10.7, Moved operator “Extract Year” from chapter 9.11.2

• 9.10.8, Moved operator “Extract Month ” from chapter 9.11.4

• 9.10.9, Moved operator “Extract Day” from chapter 9.11.7

• 9.10.10, Moved operator “Extract Hour ” from chapter 9.11.9

• 9.10.10, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.10.11, Moved operator “Extract Minute ” from chapter 9.11.11

• 9.10.11, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.10.12, Moved operator “Extract Second” from chapter 9.11.13

• 9.10.12, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.10.13, Added new operator “Replace Year [Of] … With ” to set the year part of a given date

• 9.10.14, Added new operator “Replace Month [Of] … With ” to set the month part of a given date

• 9.10.15, Added new operator “Replace Day [Of] … With ” to set the day part of a given date

• 9.10.16, Added new operator “Replace Hour [Of] … With ” to set the hour part of a given date

• 9.10.17, Added new operator “Replace Minute [Of] … With ” to set the minute part of a given date

• 9.10.18, Added new operator “Replace Second [Of] … With” to set the second part of a given date

• 9.12.3, Added a sentence to make clear what the exists operator does if the parameter is a single item

• 9.12.4, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.12.5, Changed the operator type constraint from <n:time> to <n:times> to describe that time-of-day
values are also allowed

• 9.12.9, Added the ability to use the “using” modifier, too

• 9.12.10, Added the ability to use the “using” modifier, too

• 9.12.13, Added the optional keyword “IsTrue”

Arden Syntax for Medical Logic Systems

Page 192 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

• 9.12.14, Added the optional keyword “AreTrue ”

• 9.12.15, Added the optional keyword “IsTrue”

• 9.12.16, Added a sentence to make clear what happens if there is more than one element with the latest
primary time

• 9.12.16, Added the ability to use the “using” modifier, too

• 9.12.17, Added a sentence to make clear what happens if there is more than one element with the earliest
primary time

• 9.12.17, Added the ability to use the “using” modifier, too

• 9.12.20, Corrected an example (added brackets) since seqto operator has higher precedence than unary
minus

• 9.13.2, Corrected the operators type constraint, since the formal description only allows single times as first
parameter

• 9.13.4, Added new operator “Index Of … From …” to find the index of a specific list element

• 9.13.5, Added the “At Least … [IsTrue|AreTrue] From … ” operator to determine if a list contains at
least N elements which are true

• 9.13.6, Added the “At Most … [IsTrue|AreTrue] From … ” operator to determine if a list contains at most
N elements which are true

• 9.14.2, Added the ability to use the “using” modifier, too

• 9.14.3, Added the ability to use the “using” modifier, too

• 9.14.6, Added new operator “Sublist … Elements [Starting at …] From …” to extract sub-lists from
given data lists

• 9.14.7, Adjusted the second type constraint such that the operator can handle lists of time-of-day values
and added an example

• 9.14.8, Adjusted the second type constraint such that the operator can handle lists of time-of-day values
and added an example

• 9.14.11, Added the ability to use the “using” modifier, too

• 9.14.12, Added the ability to use the “using” modifier, too

• 9.16.10, Corrected the first two examples (added brackets) since int operator has higher precedence than
unary minus

• 9.16.12, Corrected the first two examples (added brackets) since ceiling operator has higher precedence
than unary minus

• 9.16.13, Corrected the first two examples (added brackets) since truncate operator has higher precedence
than unary minus

• 9.16.14, Corrected the last three examples (added brackets) since round operator has higher precedence
than unary minus

• 9.17.1, Added a sentence to make clear what happens if a non-time value is used for the assignment

• 9.17.4, Added new operator “As Time” to convert a string into a time data type

• 9.18.3, Changed the operators type constraint such that only one object can be passed

• 10.2.1, Changed the description such that it will be clear that a re-assignment is allowed nowhere outside of
the data slot

• 10.2.3, Added the “Switch-Case” statement for simple distinction of different states of a variable

• 10.2.3.1, Added a chapter to describe the “Simple Switch-Case” statement

• 10.2.3.2, Added a chapter to describe the “Switch-Case-Default” statement

• 10.2.6.1, Added the possibility to use the terminal “BreakLoop” for aborting a while loop

• 10.2.7.1, Added the possibility to use the terminal “BreakLoop” for aborting a for loop

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 193

Revision date: 2011-03-25 Print date: 5/17/2011

• 11.2.3.1, Added a sentence to describe the default Boolean value of a variable that represents an event

• 11.2.12, Added the “Switch-Case” statement to the data slot, too

• 11.2.14, Added a reference to the breakloop statement

• 11.2.15, Added a reference to the breakloop statement

• 11.2.19, Added MLM, event, and interface variable to the listing, since chapter 10.2.5.2 claims that they
are also included

• 12.2.4, Added the “Switch-Case” statement to the action slot, too

• 12.2.6, Added a reference to the breakloop statement

• 12.2.7, Added a reference to the breakloop statement

• A1 BNF, Added version 2.7 and 2.8 to the non-terminal and <arden_version>

• A1 BNF, added multiple non-terminals (<action_switch> , <logic_switch> , and <data_switch>) and
added them to the general statements for the data, action, and logic slot to allow switch statements in all of
these slots

• A1 BNF, Added the terminal “BREAKLOOP ” to the non-terminals <logic_statement> ,
<data_statement> , and <action_statement>

• A1 BNF, Adjusted non-terminals <identifier_becomes> and <identifier_or_object_ref > to allow the
enhanced assignment statements described in 10.2.1.2

• A1 BNF, Added using modifier to the non-terminal <expr_function> and to the non-terminal
<expr_sort>

• A1 BNF, Added the new operator “Add … To …” to the non-terminal <expr_sort> and inserted a new
non-terminal <expr_add_list>

• A1 BNF, Added the new operator “Remove … From …” as non-terminal <expr_remove_list>

• A1 BNF, Added an additional “… Formatted With …” line to the non-terminal <expr_string> to allow
complex format strings

• A1 BNF, Removed the terminals “Uppercase” and “Lowercase” from the non-terminal
<of_noread_func_op> and added them to the non-terminal <expr_string> as non-terminal <case_option >

• A1 BNF, Added non-terminal <expr_attime > to prevent infinite loops while parsing attime statements

• A1 BNF, Added alternative non-terminal to the BNF-expression <expr_duration>

• A1 BNF, Added the new operators “Replace <Timepart> Of … With …” to the non-terminal
<expr_funtion>

• A1 BNF, Added the at least and the at most operator as non-terminal <at_least_most_op> to the non-
terminal <expr_function>

• A1 BNF, Added the “Index Of … from … “ operator to the non-terminal <expr_function>

• A1 BNF, Added the sublist operator to the non-terminal <expr_function> by adding the non-terminal
<expr_sublist_from>

• A1 BNF, Added the optional keywords “IsTrue” and “AreTrue ” to the operators no, any and all in the
non-terminal <of_noread_func_op>

• A1 BNF, Added the new operator “… As Time” to the non-terminal <as_func_op>

• A1 BNF, Added the new operator “… As String” to the non-terminal <as_func_op>

• A1 BNF, Added an additional non-terminal <timepart>

• A1 BNF, Changed the non-terminal <delayed_evoke> to fit the informal description which does allow only
simple duration statements on the left side of constant time trigger statements

• A1, BNF, Change description of the <plainstring> non-terminal since both, the regular expression and the
informal description (7.1.6) does allow “;;” in a string

• A1 BNF, Added non-terminal <seconds> and adjusted the <time_of_day> non-terminal definition

Arden Syntax for Medical Logic Systems

Page 194 Health Level Seven © 2011. All rights reserved.

Revision date: 2011-03-25 Print date: 5/17/2011

• A2, Added the following words to the list of reserved words: add, aretrue, breakloop, case, elements,
istrue, least, most, remove, replace, sublist, switch, using

• A4, Added the element operator

• A4, Added the unary comma operator to the list of precedence

• A4, Added the “Add … To … [At …] ” operator

• A4, Added the “Remove … From …” operator

• A4, Removed binary “… Round …” operator, which is not defined in the specification

• A4, Added the “Sublist … elements [Starting At …] From …” operator in its two occurrences

• A4, Added the “Index Of … Within … ” operator

• A4, Added the “At Least …” operator

• A4, Added the “At Most …” operator

• A4, Added the “Replace <timepart> Of … With …” operators

• A4, Added “… Seqto …” operator as new group at the end of the list

• A4, Added new precedence group for “… As Number”, “ … As Time”, and “… As String”

• A4, Split some precedence groups since operators with different associativity should not be in the same
precedence group

• A4, Added the operators extended by the using modifier

Arden Syntax for Medical Logic Systems

© 2011 Health Level Seven, Inc.. All rights reserved. Page 195

Revision date: 2011-03-25 Print date: 5/17/2011

REFERENCES

 (1) HELP Frame Manual, 1991, LDS Hospital, 325 8th Ave., Salt Lake City, UT 84143.

 (2) McDonald, C. J., Action-Oriented Decisions in Ambulatory Medicine, Chicago: Year Book Medical Publishers,
1981.

(3) Wirth, N., "What Can We Do About the Unnecessary Diversity of Notation for Syntactic Definitions?"
Communications of the ACM, Vol 20, 1977, pp. 822-823.

(4) UMLS Knowledge Sources, Experimental Edition, Bethesda, MD: National Library of Medicine, September
1990.

 (5) International Committee of Medical Journal Editors, Special Report, "Uniform Requirements for Manuscripts
Submitted to Biomedical Journals," The New England Journal of Medicine, Vol 324, No. 6, 1991, pp. 424-428.

