
 SERVICES AWARE INTEROPERABILITY FRAMEWORK 1

 2

Note to Balloters: This is the first ballot of the canonical Services Aware Interoperability 3

Framework(SAIF) issued by the Architecture review Board(Arb). 4

Balloters will be expected to respond by document name and line number. 5

 6

Chair Charlie Mead National Cancer Institute (NCI), Center for

Biomedical Informatics and Information

Technology (CBIIT).”

Co-Chair Ron Parker Canada Health Infoway

Editors

Introduction Stephen Hufnagel DoD Military Health System (MHS)

Enterprise Conformance and

Compliance Framework (ECCF)

Charlie Mead National Cancer Institute (NCI), Center for

Biomedical Informatics and Information

Technology (CBIIT).”

Behavioral Framework (BF) John Koisch

Zoran Milosevic,

PhD

Guidewire Architecture

nehta National e-Health Transition Authority

Governance Framework (GF) Jane Curry Health Information Strategies Inc.

Information Framework (IF) Cecil Lynch Ontoreason

 7

The ArB wishes to acknowledge the contributions of the following ArB members: 8

Andy Bond nehta National e-Health Transition Authority

Grahame Grieve Kestrel Computing

Anthony Julian Mayo Clinic

Patrick Loyd Gordon point Informatics LTD.

Wendell Ocasio Agilex Technologies

Abdul-Malki Shakir Shakir Consulting

 9

Contents 10

SERVICES AWARE INTEROPERABILITY FRAMEWORK .. 1 11

1 Introduction .. 4 12

1.1 Executive Summary ... 4 13

1.2 SAIF Implementation .. 6 14

 Enterprise Dimension (ED) .. 7 15

2 Enterprise Conformance and Compliance Framework ... 9 16

2.1 Overview: The purpose of the ECCF ... 9 17

III. ECCF Terms-of-Art: Navigation and Relationships in the ECCF Specification Stack 20 18

3 Information Framework .. 23 19

3.1 Overview ... 23 20

3.2 Goals ... 23 21

3.2.1 Information framework essentials .. 24 22

3.2.2 Domain analysis model ... 27 23

3.2.3 Reference Information Model .. 28 24

3.2.4 Domain information model... 28 25

3.2.5 Serializable information model ... 28 26

3.2.6 Localized information model .. 29 27

3.3 Types - classes, attributes, data types, semantic type – ... 29 28

3.4 Vocabulary – ... 30 29

3.4.1 Vocabulary Binding ... 31 30

3.4.2 Logical perspective binding ... 31 31

3.4.3 Implementable perspective .. 32 32

3.5 Validation forms for information models ... 32 33

3.5.1 Schema .. 33 34

3.5.2 Templates .. 33 35

3.5.3 Unstructured Information ... 33 36

4 Behavioral Framework .. 34 37

4.1 Overview: The Purpose of the BF ... 34 38

4.2 Key Grammars - Leveraging ISO RM-ODP standards ... 34 39

4.3 Motivation – ODP and Health IT ... 35 40

4.4 BF Foundational Concepts .. 36 41

Object – 36 42

Behavior (of an object).. 37 43

Interaction ... 37 44

State - 37 45

Interface 37 46

Policy 37 47

Service 37 48

Contract 37 49

Establishing Behavior .. 38 50

Enabled Behavior .. 38 51

Terminating Behavior .. 38 52

Information ... 38 53

4.5 BF Enterprise Language ... 39 54

4.6 Logical and Implementable Perspectives .. 41 55

4.7 BF Computational language .. 42 56

4.7.1 Conceptual Perspective .. 42 57

4.7.2 Logical Perspective .. 43 58

4.7.3 Implementable Perspective .. 47 59

4.8 Implementing the BF –Specifications and Correspondences ... 48 60

4.9 Primitive Binding Illustration .. 51 61

4.9.1 Correspondences .. 52 62

4.10 References .. 53 63

5 Governance Framework .. 54 64

 65

66

1 Introduction 67

1.1 Executive Summary 68

The Service-Aware Interoperability Framework (SAIF) goal is to assure Working 69

Interoperability1; the biggest impediment to working interoperability is implicit assumptions. 70

 SAIF’s technical objective is to create and manage easy-to-use, coherent2 and traceable 71

Interoperability Specifications (ISs) regardless of the message, document or service 72

interoperability-paradigm. The SAIF focus is on managing and specifying artifacts that explicitly 73

express the interoperability characteristics of software components. SAIF’s approach is to 74

organize and manage architectural complexity with a set of constructs, best practices, 75

processes, procedures and categorizations. SAIF’s scope is the interoperability space between 76

business objects, components, capabilities, applications, systems and enterprises. Specifically, 77

SAIF manages the interworking among distributed systems that may involve information 78

exchanges, interactions and state changes. SAIF is not Enterprise Architecture3; but instead can 79

be used to augment an EA approach with specific interoperability content and constructs. 80

 81

 82

 83

TBD 21-26 Mar 2011, 84

This Concept Map will be done 85

After seeing four framework sections and maps 86

 87

 88

 89

 90

 91

Figure 1: SAIF Concept Map 92
 93

SAIF combines four sub-frameworks for defining and managing comparable interoperability 94

specifications. 95

 The Information Framework (IF) defines information and terminology models, metadata, 96

value sets and schemas that specify the static semantics of interactions. This includes 97

patterns for structured and unstructured data, documents, messages and services, quality 98

measures and transformations. The IF scope includes the needs of direct clinical care, 99

1
 Working Interoperability is an instance of two “trading partners” –- human beings, organizations, or systems, successfully exchanging data

or information, or coordinating behavior to accomplish a defined task, or both.
2
 Coherent implies clear, complete, concise, correct and consistent.

3
 An enterprise architecture (EA) is a rigorous description of the structure of an enterprise. EA describes the terminology, the composition of

subsystems, and their relationships with the external environment, and the guiding principles for the design and evolution of an enterprise. This
description is comprehensive, including enterprise goals, business functions, business process, roles, organizational structures, business
information, software applications and computer systems.

supportive4 and information infrastructure areas. The information and terminology models, 100

metadata, vocabularies and value sets specify the static semantics for expressing concepts, 101

relationships (including cardinalities), constraints, rules, and operations needed to specify 102

data, data type bindings, vocabulary and value set bindings. 103

 The Behavioral Framework (BF) defines constructs that specify the dynamic semantics of 104

interactions in an interoperability specification. The BF focus is the accountability required to 105

achieve working interoperability. Accountability is a description of “who does what when.” 106

Accountability manifests itself as implicit or explicit contracts at business object, component, 107

application, system and enterprise boundaries. BF accountability is described by the 108

relationships among various stakeholders and system components, applications and their 109

system roles. These relationships involve information exchanges and state changes within 110

use case scenarios. 111

Jointly, the IF and BF allow the interoperability specification of business objects, components 112

and their services, capabilities, applications, systems and their respective roles, responsibilities 113

and information exchanges. 114

 The Governance Framework (GF) purpose is to manage risk by relating decisions and 115

policies, to the IF and BF within the ECCF. The GF scope includes Precepts5 (e.g., 116

objectives, policies, standards, and guidelines), Entities (e.g., people, organizations and 117

systems), Processes and Metrics. The GF defines expectations, grants power and 118

resources, verifies performance and manages configuration baselines. Governance consists 119

of either a separate process or parts of management or leadership processes; a governing 120

board or council may be established to execute or oversee these processes. 121

 The Enterprise Conformance and Compliance Framework (ECCF) goal is to ensure 122

Working Interoperability (WI) among various healthcare organizations. The ECCF purpose is 123

to manage the relationship between architectural artifacts and implementations of those 124

artifacts to insure compatibility6 among healthcare systems. The objective of a fully qualified 125

ECCF is to be a coherent and traceable interoperability specification, which is easy-to-use. 126

The ECCF can be an assessment framework, which supports configuration management 127

baselines, development status, audit compliance and risk assessments throughout a 128

business-capability lifecycle. The ECCF can be used to specify information exchange 129

interoperability and conformance statements for documents, messages and services. An 130

ECCF provides a template, called a Specification Stack (SS) that allows you to specify 131

business object, component, capability, application and system interoperability. An ECCF is 132

organized as a matrix of Dimension columns (Enterprise, Information, Computational, 133

Engineering and Technical) and Perspective rows (Conceptual, Logical and Implementable). 134

The ECCF is the centerpiece of SAIF. It supports both technical interoperability (IF and BF) and 135

the GF management of interoperability. The SAIF ECCF provides external stakeholders with a 136

coherent picture of exactly what is required to interoperate with an organization’s software 137

4
 Support includes research, analysis, workload, workflow, business process, performance, etc.

5 A Precept (from the præcipere, to teach) is a commandment, instruction, or order intended as an authoritative rule of action.
6
 Compatibility is a relationship between two or more conformance statements involving two or more specification stack instances. The

relationship identifies whether two or more implementations certified to be conformant to the specification stack instances can achieve WI
without further transformations. If so, the two SS instances and associated implementations are called compatible.

components. A given component's specification is SAIF-compliant if it is compliant with an 138

organization’s SAIF implementation guide. The ECCF IG should require "just enough" 139

compatibility to enable the desired level of interoperability7 for appropriate SS type. 140

 141

1.2 SAIF Implementation 142

Any organization choosing to implement SAIF should assemble its own SAIF Implementation 143

Guide (IG). An organization’s SAIF IG should interpret and localize the canonical constructs 144

defined in this HL7 SAIF book. 145

 146

SAIF defines the grammars8 and patterns9 common to all ECCF Interoperability Specification 147

Stack (SS) instances. Each organization should document how to instantiate and guide the 148

population of its interoperability SSs. Note that just as an enterprise may have systems-of-149

systems, an interoperability SS may reference and be built from component SSs. Additionally, 150

for different SS types10, an IG may require different SS architectural artifact profiles11. This 151

means that an SS for a complete solution may reference SSs for more primitive building blocks, 152

where each interoperability SS type may contain or reference different numbers and different 153

types of artifacts. 154

 155

Table 1 is a sample template, which shows a super set of common architectural-artifacts within 156

an ECCF SS. As appropriate, within each cell, you might 157

1) place or reference and discuss appropriate architectural artifacts and specifications, 158

2) define conformance statements, which are testable-representations of the specifications, 159

3) assert, as true or false, that one-or-more conformance statements are met 160

4) manage traceability within columns and consistency across rows. 161

5) do Topic Maps among viewpoints and architectural artifacts to define traceability 162

6) do RACI Charts for each viewpoint to define stakeholder roles and responsibilities 163

7) identify and mitigate risks. 164

 165

SS maturity implies that an SS instance is coherent and traceable within-and-across the SS. SS 166

maturity does not require complete coverage of all cells in the SS; rather, coverage should be 167

“fit-for-purpose”. Examining relevant SS instances provides a scalable approach to assessing 168

the risk or degree of difficulty and specific amount of effort required to enable trading partners to 169

attain Working Interoperability. 170

7
 Levels of Interoperability [Center for Information Technology Leadership]

1. Viewable (e.g., paper based)
2. Machine Transportable (e.g., electronic form, such as PDF)
3. Machine readable structured messages with unstructured content
4. Machine interpretable structured messages with standardized content

8 Grammar is the set of rules that deal with syntax and semantics of interoperability specifications.
9 Pattern is the SS cell placement of architectural artifact types.
10 SS types include business objects, components, capabilities, systems, enterprises
11 SS profiles define the fit-for-purpose architectural artifacts that are distributed across the ECCF matrix of Dimensions (columns) and through
the ECCF Perspectives (rows) for different SS types.

 171

Table 1 Notional Super Set of Architectural Artifacts within an ECCF SS 172

An IG specifies which types of architectural artifacts are required by an organization, program, 173

project, etc. Obviously, an enterprise SS will have different artifacts than a component or 174

business object. In Table 1, a notional super set of architectural artifacts are distributed across 175

the ECCF Dimensions (columns) and through the ECCF Perspectives (rows). “Fit-for-purpose” 176

criteria should be used to determine the appropriate architectural artifacts for a particular SS 177

type. Artifacts are first placed in the most intuitively obvious SS cell and then are organized to 178

facilitate horizontal consistency and vertical traceability. A “mature” or “fully-qualified” 179

interoperability SS need not be densely populated; but, it shall contain a coherent, traceable and 180

easy-to-use set of architectural artifacts. For instance, the Enterprise Dimension is primarily 181

bound to the Conceptual Perspective and the Engineering and Technical Dimensions are 182

primarily bound to the Implementable Perspectives; their other Perspectives may be sparsely 183

populated. Key to understanding SAIF is`the relationship of the IF, BF and GF to the SAIF 184

Dimensions and the relationships among the Dimensions needed to achieve coherency, 185

traceability and ultimately working interoperability. The viewpoints of Table 1 are categorized 186

along the following criteria: 187

 Enterprise Dimension (ED) defines the business and reference context and is 188

concerned with the purpose and behaviors of the subject SS type as it relates to the 189

organization’s business objectives and the business processes. This dimension answers the 190

question “why” and refers to policy. Note that the ED is closely related to the overall 191

Conceptual perspective. In particular, you should provide appropriate linkages among the 192

ED Perspective viewpoints and Conceptual Perspective of the Information and Computation 193

Dimensions. 194

 The ED Conceptual Perspective viewpoint is primarily useful to project sponsors, 195
project managers, program directors, IT directors and requirements analysts. 196

 The ED Logical Perspective viewpoint is primarily useful to project managers and 197
business process experts. 198

 The ED Implementable Perspective viewpoint is primarily useful to implementation 199
managers, compliance staff and auditors. 200

 Information Dimension (ID) is defined by one-or-more domain analysis models and is 201

concerned with the nature of the information handled by systems and constraints on the use 202

and interpretation of that information. This dimension answers the question “what” and 203

refers to information content. 204

 The ID Conceptual Perspective viewpoint is primarily useful to Clinicians and 205
Clinical Analysts. 206

 The ID Logical Perspective viewpoint is the ID core. It is primarily useful to clinical 207
Informaticists and Architects. 208

 The ID Implementable Perspective viewpoint is primarily useful to information 209
modelers, implementers, compliance staff and auditors. 210

 Computational Dimension (CD) is concerned with the functional decomposition of the 211

system into a set of components that exhibit specific behaviors and interact at interfaces. 212

This dimension answers the question “how” and deals with behavior. 213

 The CD Conceptual Perspective viewpoint is primarily useful to business analysts 214
and functional analysts. 215

 The CD Logical Perspective viewpoint is the CD core viewpoint and is primarily 216
useful to System Engineers, architects and Business Process Modelers. 217

 The CD Implementable Perspective viewpoint is primarily useful to system 218
integrators and solution implementers. 219

 Engineering Dimension (ED) is defined by existing platform capabilities and is 220

concerned with the mechanisms and functions required to support the interactions of the 221

computational components. This viewpoint answers the question “where” and refers to the 222

software (SW) implementation environments. Note that the engineering viewpoint is closely 223

related to the overall Implementable Perspective. The use of reusable components and 224

services or an Enterprise Service Bus (ESB) may naturally fit into this Dimension. 225

 The ED Conceptual Perspective viewpoint is primarily useful to Enterprise 226
Architects. 227

 The ED Logical Perspective viewpoint is primarily useful to Application Architects. 228
 The ED Implementable Perspective viewpoint contains the core ED content and is 229

primarily useful to Application Developers and Deployment Engineers. 230

 The Technology Dimension (TD) is concerned with the explicit choice of technologies 231

for the implementation of the system, and particularly for the communications among the 232

components. This viewpoint answers the question “where” and refers to the hardware (HW) 233

deployment environments. 234

 The TD Conceptual Perspective viewpoint is primarily useful to enterprise 235
architects. 236

 The ED Logical Perspective viewpoint is primarily useful to Solution Architects. 237
 The ED Implementable Perspective viewpoint is the ED core and is primarily useful 238

to deployment engineers. 239

240

2 Enterprise Conformance and Compliance Framework 241

2.1 Overview: The purpose of the ECCF 242

a. The Enterprise Conformance and Compliance Framework (ECCF) is formally defined as one of the 243

four “grammars” of the Service-Aware Interoperability Framework (SAIF), a set of grammars that 244

collectively can be used to explicitly define the various aspects of a given complex “component” – a 245

term that is intentionally left somewhat vague in terms of its scope, intent, implementation 246

strategies, etc. so as to include systems, sub-systems, software components, and “exchange 247

standards” such as HL7 messages or documents, CDISC interchange structures, etc. – when the 248

component is viewed in the context/from the perspective of interoperability with other 249

“components.” In addition – as has been thoroughly discussed by several organizations including 250

the European Union Division of Healthcare Interoperability and the Australia NeHTA (National 251

eHealth Transition Authority) – the concept of “interoperability” itself can be viewed from a number 252

of perspectives including cultural, organizational, informational, technical, etc. (See the general 253

discussion of Working Interoperability (WI) in the SAIF Overview section of this document.) In turn, 254

the term “interoperability” is also intentionally left relatively vague so as to cover several “types” (or 255

degrees-of-difficulty) of interoperability including both syntactic and semantic interoperability as 256

achieved in human-to-human, machine-to-human, human-to-machine, or machine-to-machine 257

interactions. Readers familiar with the challenges of achieving generalized computable semantic 258

interoperability (CSI) – i.e. semantic interoperability between machines without human intervention 259

– will recognize that the other “types” of interoperability mentioned above are less demanding than 260

CSI. As a consequence, the degree to which the potential for explicitness-of-expression that is 261

possible through the use of SAIF, may vary considerably according to the interoperability 262

requirements for the component-in-question, i.e. CSI-based WI vs other less rigorous types of 263

interoperability. 264

 265

The overarching goals and focus of SAIF are discussed elsewhere in this document. However, it is 266

worth mentioning in this chapter – whose focus is the grammar of the ECCF – how the grammars of 267

the Information, Behavior, and Governance frameworks are related to and manifest in the grammar 268

of the ECCF. The differences and relationships between the other three SAIF grammars and that of 269

the ECCF is best illustrated by examining a one-sentence definition of the ECCF: 270

 271

 The ECCF is a collector of artifacts that in combination explicitly – and potentially fully – describe 272

from a number of different perspectives the various informational/static and 273

behavioral/dynamic characteristics of the component that are relevant to the component in a 274

specific instance of Working Interoperability with another component. 275

From this single definition, one can draw the following conclusions regarding the relationships 276

between the ECCF grammar and the grammars of the Information, Behavioral, and Governance 277

Frameworks including the following: 278

 279

 The artifacts collected in a given ECCF artifact (the structure of which will be defined in a later 280

section of this document) contain descriptions of a given component’s informational/static and 281

behavioral/dynamic semantics/features/functions. 282

 Specifications regarding a component’s informational/static semantics et al are expressed using 283

the Information Framework grammar. 284

 Specifications regarding a component’s behavioral/dynamic semantics et al are expressed using 285

the Behavioral Framework grammar. 286

 The overall management of the life cycle of each artifacts – whose content and representation 287

must be defined in the context of a given organization’s SAIF Implementation Guide (SAIF IG) – 288

including the correctness and completeness of the artifact as well as the IG-specified RACI 289

relationships for the artifact – are defined by the Governance Framework grammar. 290

 291

b. The following Concept Map depicts the main concepts and relationships that collectively define and 292

represent the grammar of the ECCF. 293

294

 295

II. Describing complexity: Structure of the ECCF Specification Stack 296

The underlying “theory” or “motivation” for the ECCF grammar is somewhat in contrast to – or at 297

least distinguishable from – that behind the specification of the Information and Behavioral 298

Framework grammars, and – to a lesser degree – the Governance Framework grammar. In 299

particular, in each of other frameworks, the focus on the grammar is to enable developers or 300

consumers of particular components to more explicitly and expressively define certain aspects of 301

those components, each viewed as from an artifact-specific perspective. Thus, for example, the IF 302

grammar enables a developer to specify (or a consumer to learn about) various aspects of the 303

component’s informational/static semantics. A similar perspective focused on behavioral/dynamic 304

semantics is achieved through use of the BF grammar. Finally, through use of the GF grammar, 305

organizations implementing SAIF can define organization-specific Precepts, People/Roles, Processes, 306

and Metrics which enable the implementation of SAIF to be effectively and efficiently realized and 307

managed. 308

 309

In contrast to grammars associated with “building” various atomic items in a given SAIF 310

implementation, the ECCF is focused on defining a grammar that enables collections of artifacts 311

defined/specified using the IF, BF, and GF grammars to be collected so that – in combination rather 312

than in isolation – the artifacts can a developer or consumer of a given component to understand 313

explicitly the nature of the complexity of the component, as well to rationally evaluate and certify 314

the degree to which a given implementation instance of the specification defined by the collection 315

of artifacts is, in fact, realized by the implementation instance. 316

 317

The notion of a “collection of artifacts” as being both necessary and sufficient to fully and explicitly 318

describe a given component from the perspective of the component’s participation in a Working 319

Interoperability scenario is, in turn, based on the well-established principle that complex systems 320

are best described using a matrix which intersections multiple dimensions with multiple 321

perspectives. In the ECCF, the “grammar” is therefore defined as follows: 322

 323

 A specification and definition of the dimensions that will be used as– in the case of the ECCF 324

– the columns of a “Specification Stack instance,” i.e. the matrix used to collect the artifacts 325

that together define the WI-relevant characteristics of the component. 326

 A specification and definition of the perspective that will be used as– in the case of the ECCF 327

– the rows of a “Specification Stack instance,” i.e. the matrix used to collect the artifacts that 328

together define the WI-relevant characteristics of the component. 329

 An explicit definition of how a given Specification Stack instance – i.e. the collection of 330

artifacts that together define the WI-relevant characteristics of the component-in-question 331

– can be used in the context of certifying or otherwise validating the degree to which a given 332

implementation instance in fact satisfies the specification. 333

 Explicit definitions – and the importance of explicitness cannot be over-emphasized as “the 334

enemy of Working Interoperability is unspecified, implicit assumptions realized 335

inconsistently in implementations – of other terms or concepts that define the rules for 336

navigating the cells of a given Specification Stack instance, i.e. that define the relationships 337

between cells as well as between artifacts within a given cell. NOTE: the concepts defined 338

here are not unique to relationships between specific instances of artifacts (those 339

relationships are explicitly defined in a given organization’s SAIF IG). Rather, ECCF 340

navigational/relationship terms are concerned with general “meta-relationships” between 341

classes of artifacts as will be explained in the “Terms of ECCF Art” discussion below. 342

 343

a. The Dimensions (column names) of an ECCF Specification Stack 344

The Dimensions of the ECCF are taken from the ISO standard Reference Model for Open 345

Distributed Process IRM-ODP, ISO/IEC IS 10746 | ITU-T X.900). In particular, the column 346

names are the RM-ODP Viewpoints. Before providing a definition of each Viewpoint, it is 347

important to emphasize that SAIF is not ODP nor is ODP SAIF. Each has a particular focus, 348

perspective, and set of goals. In particular, RM-ODP provides a comprehensive framework 349

for defining, designing, developing, and deploying large-scale, distributed software 350

architectures. The scope, focus, and goals of SAIF are centered around Working 351

Interoperability. Clearly, the problems and challenges of achieving WI do occur in the 352

context of large-scale, distributed enterprise architectures. As such, SAIF can be viewed as a 353

complementary adjunct to ODP (or, for that matter, any enterprise architecture framework, 354

e.g. TOGAF, Zachman2, etc.). 355

 356

The matrix that is the result of the intersection of Dimensions and Perspectives is called an 357

ECCF Specification Stack (SS). Each SS instance has a particular scope, i.e. component, 358

system, sub-system, specification that is defined via the collection of artifacts lying within 359

the boundary of a single SS instance. The SS’s scope is referred to as the Specification Stack 360

Subject. For each cell in a Specification Stack instance, t is important to note that the cell 361

can contain multiple artifacts which may or may not contain artifact-to-artifact 362

links/relationships, and which may be hierarchical in terms of their levels of detail of 363

abstraction. 364

 365

i. Enterprise Viewpoint: This dimension focuses on defining salient aspects of the 366

“organizational context” – in the WI context, more aptly named “the intra- or inter-367

organizational deployment/interoperability context – in which the specification-in-question 368

is being defined. In particular, the Enterprise Viewpoint dimension should explicitly define – 369

for each of the three Perspectives – aspects of the interoperability context that emerge 370

from an understanding of business objectives and business rules including relevant pre- and 371

post-conditions for interoperability scenarios. Due to the basic nature of the Enterprise 372

Viewpoint dimension, most information at the Logical and Implementable Perspectives will 373

have its source/origin in the Conceptual Perspective, i.e. very little “new” information is 374

added at the Logical and Implementable Perspectives, Perspectives that are most 375

productively contributed to via the Information and Computational Viewpoints 376

(Dimensions). 377

 378

ii. Information Viewpoint: This dimension focuses on the informational/static semantics that 379

are the responsibility of the component as those semantics relate to an instance of WI. As 380

noted above, these semantics are expressed using various, relevant aspects of the 381

Information Framework grammar and include constructs – discussed in greater detail in the 382

IF chapter of this document – such as information and data models, data types, value sets, 383

etc. It is important to note that the use of the IF is not scoped to the Information Viewpoint, 384

i.e. the IF is used to specify any aspect of informational/static semantics that appear in any 385

artifact throughout the ECCF and is not limited to expression of only those artifacts that a 386

given SAIF IG defines as being located in the Information Viewpoint column of the 387

Specification Stack. 388

 389

iii. Computational Viewpoint (also referred to as the Behavioral Viewpoint in the context of 390

SAIF): This dimension focuses on defining the various behavioral/dynamic semantics of a 391

particular component relative to a WI scenario. As noted above, these semantics are 392

expressed using various, relevant aspects of the Behavioral Framework grammar and 393

include constructs – discussed in greater detail in the BF chapter of this document – such as 394

contract and interface specifications, accountability profiles, etc. It is important to note that 395

the use of the BF is not scoped to the Computational Viewpoint, i.e. the BF is used to specify 396

any aspect of behavioral/dynamic semantics that appear in any artifact throughout the ECCF 397

and is not limited to expression of only those artifacts that a given SAIF IG defines as being 398

located in the Computational Viewpoint column of the Specification Stack. In addition, it 399

should be noted that the BF (as does the IF and ECCF, although to a lesser degree) makes 400

extensive use of the ODP Enterprise Language, a set of well-defined concepts and constructs 401

that are used to define various topics-of-interest in the ODP Viewpoints/ECCF SS 402

Dimensions. 403

 404

iv. Engineering Viewpoint (also referred to as the Deployment Viewpoint in the context of 405

SAIF): This dimension focuses on defining the possible deployment topologies involved in 406

any of the possible WI scenarios into which the component would be placed. The ODP 407

specification contains considerable detail with respect to a construct referred to as 408

transparencies. It is beyond the scope of the SAIF canonical definition of the ECCF to discuss 409

these constructs. However, there are certain SAIF IGs that could benefit substantially from 410

inclusion in certain of the transparency constructs in their organization-specific IGs. 411

 412

v. Technology Viewpoint: This dimension focuses on defining various implementable 413

standards (hardware or software as relevant) which will ultimately support the specification. 414

It may reference other SS cells to appropriately contextualize cell-specific artifacts. Further 415

explanation/discussion of the application of the Technology Viewpoint dimension is more 416

appropriately constrained to SAIF IGs including discussions regarding topics such as 417

technology-specific deployment or configuration guides, technology selection criteria, and 418

maintenance/migration plans. It should also be noted that Conformance Statements are 419

not embedded in the Technology Viewpoint dimension as often as they are in the other 420

dimensions. 421

 422

b. The Perspectives (row names) of an ECCF Specification Stack 423

The perspectives of ECCF were chosen to be as general as possible (i.e. coarsely granulated 424

as opposed to – for example – the more finely-granulated Perspectives of Zachman2), as to 425

map in a general manner to the roles of Domain Expert and Analyst, Architect, and 426

Developer. In particular, the artifacts that populate a given row of a SS instance should be 427

developed in the context of a RACI (Responsible for developing, Accountability for 428

development, Communicate the development to, and Interested in being Informed about) 429

chart for each artifact. The specific artifacts developed and the details of the RACI chart that 430

contextualizes them will be different for each organization implementing SAIF as defined in 431

their organization-specific SAIF IT. (For a further discussion of the relationship between roles 432

and ECCF Perspectives, see the discussion in b.iv.) As such, the definitions of the three SAIF 433

Perspectives are as follows: 434

 435

i. Conceptual Perspective: The artifacts in the Conceptual Perspective are those that are of 436

interest to – and directly consumable/readable by – Domain/Subject Matter Experts 437

(DEs/SMEs). As such, the artifacts are most commonly focused on the “Problem-Space” 438

rather than the “Solution Space,” and contain – distributed across the five columns of the 439

Specification Stack – unambiguous descriptions of the various dimensions of the 440

component/system that is the scope of the Specification Stack. The Conceptual Perspective 441

is normally developed by “outward-facing analysts,” i.e. analysts with reasonable domain 442

knowledge who are capable of facilitating dialogues with DEs/SMEs, as well as taking the 443

results of such dialogues and representing the content in structured – but still 444

understandable to DEs/SMEs – artifacts, e.g. clearly-stated business rules, concept maps, 445

simple UML class or activity diagrams, etc. A fully-specified Conceptual Perspective should 446

be simultaneously readable/vettable by DEs/SMEs as well as rigorous enough to serve as 447

input into the development of the Logical Perspective. (NOTE: Previous discussions of the 448

SAIF ECCF have used the MDA-based term “Computationally-Independent Model (CIM). For 449

a variety of reasons – most important of which is that SAIF does not formally use MDA in 450

any way in its grammars – the term CIM is now deprecated.) 451

 452

ii. Logical Perspective: Artifacts in the Logical Perspective represent traceable translations of 453

Conceptual-level artifacts into a form/format usable by and useful to architects and 454

“inward-facing analysts.” Note that there is no firm or fixed line that definitively and 455

unambiguously determines where the Conceptual Perspective ends and the Logical 456

Perspective begins. (The same is true for the lack of definitive demarcation boundaries 457

between the Logical and Implementable Perspectives.) Rather, for a given SAIF IG, the most 458

important aspects of defining and locating SAIF artifacts at a given Perspective are the 459

combination of role-based awareness based on artifact creation and consumption, in 460

combination with IG-specific consistent placement of artifacts across multiple SS instances. 461

(NOTE: Previous discussions of the SAIF ECCF have used the MDA-based term “Platform-462

Independent Model (PIM). For a variety of reasons – most important of which is that SAIF 463

does not formally use MDA in any way in its grammars – the term PIM is now deprecated.) 464

 465

iii. Implementable Perspective: The Implementable Perspective is normally the domain and 466

purvey of developers, often in concert with dialogues with designers and/or architects. 467

Note that the artifacts in this Perspective are not, per se¸ actual implementations, but rather 468

implementable, i.e. contain all of the necessary technical bindings – e.g. data types, value 469

sets, class libraries, interface specifications, etc. – that will enable one or more instances of 470

the specification to be realized by one or more development teams. . (NOTE: Previous 471

discussions of the SAIF ECCF have used the MDA-based term “Platform-specific Model 472

(PSM). For a variety of reasons – most important of which is that SAIF does not formally use 473

MDA in any way in its grammars – the term PSM is now deprecated.) 474

 475

iv. Perspectives and Roles: (Following is a more concrete discussion of the somewhat “soft” 476

delineations between the three ECCF SS Perspectives. Specifically, the example uses the 477

Information Viewpoint/Dimension and the Translational Medicine Continuum “from bedside 478

to bench and back” as its reference point. However, specific mention of the “Information 479

Dimension” of the artifacts for a given Perspective should be seen as exemplar and not 480

exclusive to that Dimension. However, although it is theoretically possible to specify artifacts 481

for any of the fifteen cells of an ECCF SS instance, the notion of all-inclusive, trans-482

Perspective artifact generation across all five SS Dimensions is most often seen more often 483

for the Informational and Computational/Behavioral Dimensions than in any of the other 484

three SS dimensions.) The material is taken from the NCI CBIIT SAIF Implementation Guide. 485

A detailed discussion of the canonical grammar of the Information Framework can be found 486

elsewhere in the SAIF Book.) 487

 488

The Information Viewpoint/Dimension is concerned with collecting the various artifacts – 489

represented in various types of models including Concept Maps, UML class and instance 490

diagrams, etc. – the informational/static semantics-of-interest from the perspective of a 491

specific component involved in various WI scenarios. In particular, experience has shown 492

that a broad range of stakeholders in the healthcare, clinical research, and life sciences 493

domains have consider knowledge of and interest in informational/static semantics, and 494

that explicit representation of these semantics are of considerable importance if one is to 495

achieve computable semantic interoperability (CSI) in a loosely-coupled, widely distributed 496

community. It is useful to divide the diverse group of stakeholders based on roles, and, in 497

fact, the SS Perspectives should be viewed as “collectors of roles.” 498

 499

The Conceptual Perspective (formerly referred to as the CIM row of the SS in previous 500

discussions of the ECCF) collects the definitional concepts and relationships of Domain 501

Experts/Subject Matter Experts, e.g. clinicians, trialists, and researchers using the language 502

of those involved. Artifacts in the Conceptual Perspective are developed as the result of 503

interactions between these stakeholder types and “outward-facing” business analysts. The 504

Conceptual Perspective of the Information Dimension therefore contains artifacts such as 505

the static semantic views of a Domain Information Model (scoped to the use of that model 506

by the component that is the Specification Stack Subject), value set domains, etc. 507

 508

The Logical Perspective (formerly to as the PIM row of the SS) focuses on the logical 509

representation of the artifacts defined in the Conceptual Perspective’s Information 510

Dimension for consumption by information architects. (NOTE: Additional concepts and 511

constructs not present in the Conceptual Perspective will also be added by Information 512

Architects as needed in order to fully define a logical information architecture with sufficient 513

rigor to enable its consumption, transformation, and elaboration by the group of 514

stakeholders that provide the specification’s Implementable Perspective. 515

 516

Artifacts in the Implementable Perspective (formerly referred to as the PSM row of the SS) 517

are focused on transformations of the logical (information-based) artifacts so that they can 518

be bound to specific implementation technologies such as XML, java classes, etc. 519

 520

c. Specification Stack Subject: Each instance of a Specification Stack is scoped to a particular 521

“subject.” The use of the term “component” in Section I of this chapter provided the intentionally 522

non-specific definition of this concept. The SS Subject makes – for a given SS instance – the 523

definition specific for a given component instance, e.g. a service, interoperability specification, sub-524

system, system, etc. It is important to note that a SS instance can therefore have any scope that is 525

relevant and that needs to have its complexity more explicitly defined in terms of a collection of 526

artifacts that are themselves sorted/categorized around the cross-product of ECCF-defined 527

Dimensions and Perspectives. 528

 529

d. Conformance: Quoting from [ISO/IEC 10746-2]: "Conformance relates an implementation to a 530

standard. Any proposition that is true of the specification must be true in its implementation." 531

 532

 The fundamental focus of the ECCF grammar is to provide a way for specification developers and 533

their consumers to explicitly understand the collection of various aspects of a given component that 534

impact the component’s use in a WI scenario. Specifically, it is the goal of the ECCF grammar to 535

provide a grammar that enables an implementation instance of the specification to be evaluated as 536

to its conformance to the specification. The notion of providing a framework in which 537

implementation instances can be tested/evaluated as conformant to a given specification is defined 538

in the ECCF using the ODP-derived notions of Conformance Statements contained within the 539

artifacts within a given SS instance that collectively define a given component, and pair-wise 540

Conformance Assertions that are made by an implementation instance against a given specification. 541

(NOTE: Although the notion of Conformance is technically a concept that could properly be 542

discussed in the section “Terms of Art: Navigation and Relationships in an ECCF Specification Stack,” 543

it is included here because Conformance Statements and Conformance Assertions should be viewed 544

as part of the structure of the ECCF that is thus a manifestation of the ECCF grammar.) 545

 546

i. Conformance Statements: Quoting from [ISO/IEC 10746-2]: "A conformance statement is 547

a statement that identifies conformance points of a specification and states the behavior 548

which must be satisfied at these points. Conformance statements will only occur in standards 549

which are intended to constrain some feature of a real implementation, so that there exists, 550

in principle, the possibility of testing." 551

As adapted from ODP/ISO and applied in the SAIF context, Conformance Statements are 552

Boolean statements made in the context of a given specification artifact, i.e. “requirements 553

that the artifact explicitly expresses in a manner that makes them testable/verifiable as a 554

Boolean statement.” The conformance of a given implementation instance to a particular 555

specification is thus able verified based on the truth value of a pair-wise Conformance 556

Assertion (see below) made by an implementation instance against a given artifact-resident 557

Conformance Statement within a given specification. It is important to note that the 558

requirement that each Conformance Statement be testable/verifiable, i.e. that each 559

Conformance Statement be a Boolean statement does not require that the statement be 560

testable by automated means. In particular, it is often the case that Conformance 561

Statements made from the Conceptual Perspective – and particularly those made in the 562

Enterprise dimension – may only be verifiable as True through human examination of a 563

given implementation instance. Thus, the critical defining feature of a valid ECCF 564

Conformance Statement is its Boolean testability and not its particular mode of verification. 565

ii. Conformance Assertions: As indicated in the previous section on Conformance Statements, 566

Conformance Assertions are made by a given implementation instance and are linked pair-567

wise to a Conformance Statement made in the context of a given artifact as part of a 568

component specification with a given ECCF Specification Subject, i.e. within an artifact 569

collected within a single ECCF Specification Stack instance. The pair-wise association of 570

specification-resident Conformance Statements with implementation-instance-resident 571

Conformance Assertions enables the creation of testing harness/user verification 572

frameworks which thus enable a given implementation instance to be “certified” (aka 573

“tested”) as “conformant to a given specification.” (see Conformance Testing discussion) 574

 575

iii. Conformance Testing: - Quoting from [ISO/IEC 10746-2]: “A Reference Point (RP) is a point 576

in the specification which a specifier nominates to be a candidate Conformance Point, i.e. a 577

place where behavior may need to be observed to determine conformance. A specifier may 578

define many RPs in the specification but it may be that only a subset of these can be used for 579

testing in specific scenario - and these are referred to as conformance points. (NOTE: In the 580

SAIF context, the notion of an RP can be stated as “the statement(s) in a given ECCF SS 581

artifact that that is referred to as an ECCF Conformance Statement.”) 582

ODP defines four broad categories of reference points: 583

 Perceptual: an RP where there is some interaction between the system and the 584

physical world, e.g. human-computer interface. 585

 Programmatic: an RP where a programatic interface can be established to allow 586

access to a function. 587

 Interworking : an RP where there is a physical communication channel through 588

which information exchange can be monitored. 589

 Interchange - an RP where an external physical storage medium can be introduced 590

into the system, e.g. in cases where information can be recorded on one system and 591

then physically transferred, directly or indirectly, to be used on another system) 592

 593

 From the preceding discussion of Conformance Statements and Conformance Assertions, it 594

should be clear that Conformance Testing, i.e. the process whereby a given implementation 595

instance is evaluated to determine which of its various Conformance Assertions are, in fact, valid 596

implementations of a given specification’s Conformance Statements, is: 597

 a granular construct ,i.e. is determined at the level of individual Conformance 598

Assertions made by the implementation instance and not a global characteristic of a 599

given implementation instance (unless, of course, the specification contains only a 600

single global Conformance Statement against which the implementation instance 601

can claim conformance); and 602

 exists in a 1-to-many relationship between specifications and implementations, i.e. 603

there is a 1-to-many relationship between a given ECCF Specification Stack instance 604

– i.e. the collection of artifacts that together explicitly describe a given component 605

and its requirements, expressed in terms of both behavioral/dynamic and 606

informational/static semantics and associated Conformance Statements – and the 607

collection of implementation instances that can claim conformance to the 608

specification. 609

 NOTE: The term “conformance” can be somewhat confusing as it can be used as a 610

noun – e.g. “an implementation is in conformance with (or, alternatively, 611

“conformant to”) a given set of Conformance Statements made by a given 612

specification – a verb – e.g. a given implementation instance’s conformance is being 613

evaluated – or as an adjective to describe a particular kind of examination of a given 614

instance – e.g. the implementation is undergoing “conformance testing.” The latter 615

concept is also termed “evaluation” or “certification of conformance.” The ECCF 616

grammar defines the term conformance as either a noun or adjective (the two 617

usages of the term are essentially synonymous as they describe a given 618

implementation relative to a given specification. 619

 620

e. Defining Specification Artifacts: Content, Representation, Specification Stack Location: As 621

indicated above, the canonical representation of SAIF does not specify the content, representation, 622

or location of individual artifacts. Artifact specification is, instead, done in the context of a given 623

organization’s SAIF IG. (Note that several SAIF IGs have been/are being developed by HL7, the 624

Department of Defense, Canada Health Infoway, Australia NeHTA (National eHealth Transition 625

Authority), and the Center for Biomedical Informatics and Information Technology (CBIIT) of the NCI 626

and are generally available for review and study.) In general, however, it can be said that the most 627

important aspect of artifact specification is its content, followed by it representation. Its location in 628

a given SS instance is really only of major importance with respect to the consistency of the location 629

of a given artifact (or, more correctly, artifact type) across multiple SS instances. It should also be 630

noted that a given artifact may occur in more than one SS cell, a reflection of the fact that the 631

Dimensions and Perspectives of the SS matrix are not normalized (as would be the case, for 632

examples, if the SS were instantiated using the Zachman2 matrix of Dimensions x Perspectives). 633

From the perspective of WI, normalization and cell-specific location are not, in fact, as important as 634

explicitness and consistency. 635

 636

III. ECCF Terms-of-Art: Navigation and Relationships in the ECCF 637

Specification Stack 638

There are a number of “terms-of-art” which define specific processes, constructs, and navigational 639

relationships between artifacts contained in an ECCF Specification Stack. Although the operational 640

details of each of these terms are not fully realized in the canonical definition of the ECCF, the specific 641

meanings of the terms are part of the formal definition of the ECCF grammar, of equal importance to 642

the structural definitions discussed in the previous section. The definitions for a number of the ECCF 643

terms-of-art are either taken directly from, or used with appropriate modifications for the SAIF context, 644

the ODP specification, an attribution that is noted when apropos in the following definitional list. 645

 646

a. Conformance: (see discussion in ECCF Structure section above). The most salient aspect of 647

Conformance is that it links a given implementation instance to a given specification instance 648

through a relationship defined by the verified truth of the implementation instance’s Conformance 649

Assertions as made against the specification’s Conformance Statements. (NOTE: Conformance can 650

be viewed as a specialized instance of the larger concept of Correspondence in the sense that there 651

is a formal relationship between a specification’s Conformance Statements and an implementation 652

instance’s pair-wise Conformance Assertions. Conformance is a form of Correspondence. 653

 654

b. Compliance: Quoting from [ISO/IEC 10746-2]: “Requirements for the necessary consistency of one 655

member of the family of specifications or standards with another are established during the 656

standardization process. Adherence to these requirements is called compliance.” 657

In the context of SAIF, Compliance is used to refer to logical consistency/correspondence between a 658

source artifact and a target artifact with the target having undergone a transformation (usually a 659

restriction), i.e. given an existing source artifact (e.g. a specification, standard, etc.) and a target 660

artifact that resulted from applying a known transformation to the source, the target is in 661

Compliance with the source if the transformation is considered “legal” by the source artifact’s 662

originator. Compliance can therefore be established between artifacts in a single SS cell or, 663

alternatively, across multiple SS cells. When a Compliance relationship crosses cell boundaries, it 664

can do so either horizontally or vertically (diagonal Compliance is also possible although less 665

common then vertical or horizontal Compliance relationships.) Thus, localization is considered a 666

form of Compliance. 667

NOTE: Unlike Conformance, Compliance is seldom overtly tested since non-compliant 668

transformations producing non-compliant artifacts usually cause other issues which can be 669

discovered in either Correspondence monitoring or Conformance testing. 670

 671

c. Certification/Conformance Testing: (see discussion in ECCF Structure section above). It is important 672

that the process of Conformance Testing not be confused with the results of that testing, i.e. a 673

certification of Conformance (or lack thereof) based on the ability of a given implementation 674

instance to satisfy one or more of the Conformance Assertions made by the implementation 675

instance against the statement’s pair-wise Conformance Statement in the specification. 676

 677

d. Correspondence/Consistency: Quoting from [ISO/IEC 10746-2]: "Viewpoint correspondence is a 678

statement that some terms or other linguistic constructs in a specification from one ODP viewpoint 679

are associated with (e.g. describe the same entities as) terms or constructs in a specification from a 680

second ODP viewpoint. The forms of association that can be expressed will depend on the 681

specification technique used." 682

In the SAIF ECCF, Correspondence can be used synonymously with the term consistency as both are, 683

in turn, focused on the notion of logical coherence of a given Specification Stack instance, i.e. an SS 684

instance that is “unified” in its expression of a given component’s various Dimensions and 685

Perspectives. Thus, a “logically coherent” specification demonstrates a high degree of 686

correspondence between its various components, a somewhat hard-to-define but relatively easy (to 687

the trained eye) to perceive “expressive traceability.” In summary, the notion of Correspondence 688

underscores the fact that the Dimensions of a Specification Stack are not orthogonal, but rather 689

express different aspects of a single component, system, sub-system, specification, etc. 690

 691

It is also worth noting that both Conformance and Compliance can be viewed as “types” of 692

Correspondence/Consistency as each of these ECCF Terms-of-Art refers to a form of logical 693

coherence across a given specification and its collected artifacts (and, in the case of Conformance, 694

its implementation instances as well). From the definition of Compliance (above), one can also see 695

that Correspondence is a particular/specialized form of Compliance applied across Specification 696

Stack Dimensions. 697

 698

e. Traceability: In everyday parlance, traceability refers to the ability to link an instance with a 699

concept, e.g. a requirement with an implementation-resident functionality. In the context of SAIF, 700

traceability has a somewhat more formal meaning: Traceability defines the relationship that links an 701

attribute or other defining feature of a particular artifact defined in a particular Dimension and at a 702

particular Perspective – including but not limited to semantics or Conformance Statements. NOTE: 703

Traceability is vertical relationship spanning all Perspectives and including any implementation 704

instances associated with a given specification. As such, Traceability includes both Conformance 705

and Compliance relationships. 706

 707

f. Provenance: Documentation that identifies the “reverse traceability” of an existing artifact from its 708

current state to its origination, including whatever attribution and/or context is associated with its 709

various lifecycle changes. As such, provenance is, among other things, the source for documenting 710

the various constraints/localizations that a given item undergoes as it moves from (for example) a 711

Conceptual to a Logical to an Implementable SS artifact. 712

 713

g. Localization: A specialization of Compliance whereby some aspect of an artifact’s semantics – 714

informational/static or behavioral/dynamic – or other defining attribute is restricted compared to its 715

original occurrence. Localization commonly occurs as a concept passes from the Conceptual 716

Perspective to the Logical Perspective, the Logical Perspective to the Implementable Perspective, 717

and/or the Implementable Perspective to an implementation instance. 718

 719

h. Compatibility: Given a specification, two implementation instances are said to be Compatible if-720

and-only-if they can successfully engage – without further modification of their implementation 721

specifics – in any WI scenario that can be expected to be supported based on the reference 722

specification that is implemented by the involved instances. In other words, two implementation 723

instances are said to be Compatible if they do not “localize” by specifying contractor/non-724

interoperable constraints. 725

726

3 Information Framework 727

3.1 Overview 728

 The information framework chapter defines – at a canonical level – the artifact types and inter-729

relationships of the Informational Viewpoint from the three SAIF Perspectives. 730

The concept map below shows the artifact topics that will be discussed in this chapter and the 731

relationships between these artifacts. 732

 733

3.2 Goals 734

The goal of the information framework is to describe how the static information of importance to a 735

given domain and the experts within that domain is captured and refined through a traceable process to 736

yield an implemented or implementable information artifact. This implementable information artifact, 737

when developed using the artifacts defined in this framework, delivers the static semantics that 738

contribute to the definition of computable semantic interoperability between systems. The information 739

definitions contained in these artifacts are repeatable, yielding consistency across the range of 740

information modeling tasks encountered within an organization. 741

Audience and Prerequisites 742

The audience for this discussion includes the participating domain experts, analysts, architects, 743

developers, quality assurance practitioners, and implementers. All of these roles are typical participants 744

of any software development effort. 745

 746

 Prerequisites for fully understanding the concepts in this document include the basic familiarity with 747

the following: 748

 SAIF Enterprise Conformance and Compliance Framework (ECCF) 749

 The four pillars of Computable Semantic Interoperability (CSI) 750

 The concepts of refinement, constraint and localization, 751

 System design, Enterprise Architecture, development, and experience with the Unified Modeling 752
Language (UML) 753

 Familiarity with core principles and applications of Service-Oriented Architecture (SOA) 754
 755

3.2.1 Information framework essentials 756

 757

The following descriptions are taken primarily from the NEHTA Information Framework document and 758

are particularly relevant to this information framework chapter. 759

This section identifies a number of fundamental information principles that form the basis for the IIF. 760
This covers: 761

 Separation of Information and Knowledge; 762

 Separation of representation form and interpretation of Information; 763

 Separation of Information and Data; 764

 Separation of formal concept representation and Clinical linguistics. 765

 Traceability from information concepts to organisational/technical concepts and patterns. 766

The first principle states that information and knowledge are distinct, although related concepts. We use 767
the ISO standard [ODP-RM] as a basis of our definition of information, i.e. 768

Information is any kind of knowledge that is exchangeable amongst users, about things, facts, 769
concepts and so on, in a Universe of Discourse. 770

In general, information can be considered to be raw data that has a number of properties: 771

(1) has been verified to be accurate and timely 772

(2) is specific and organized for a purpose, 773

(3) is presented within a context that gives it meaning and relevance, and which 774

(4) leads to increase in understanding and decrease in uncertainty. The value of information lies 775

solely in its ability to affect a behavior, decision, or outcome. 776

We take knowledge to mean an 'awareness or familiarity gained by experience, of a person, fact or 777
thing', (Oxford Dictionary). Note that knowledge has an anthropomorphic nature and that its essence is 778
about understanding of real world phenomena, which can be done through experience, e.g. through 779

perception, learning through passing of information by others, or through a mental process. Not all 780
knowledge is exchangeable, for example tacit knowledge. 781

The second principle states that information has a representation form. This is what makes information 782
communicable. However, it is the interpretation of this representation (meaning) that is relevant in the 783
first place [ODP-RM]. This is because the interpretation can generate some new knowledge. For 784
example, through a medical observation process, a clinician captures key details about a patient, and 785
records them using some representation form, typically written text (either in paper or electronic 786
media). This capture forms information about the patient and the main purpose is to do some 787
interpretation of what was recorded, i.e. patient diagnosis. This can be done by the very clinician who 788
did the observation (based on his existing clinical knowledge) or after passing this information to other 789
specialists for further observation and/or interpretation. It is through this chain of events that new 790
knowledge (about health state of the patient) is generated. 791

The third principle further refines the second principle above, regarding the Representation Form of 792
information and defining Data [ODP-RM], i.e.: 793

Data is the representation form of information dealt with by information systems or users thereof. 794

The definition above implies that there are two perspectives, a human perspective and an information 795

system perspective and it is helpful to think about to sub definitions for data. 796

Human interpretation: Information in raw or unorganized form (such as alphabets, numbers, or 797

symbols) that refer to, or represent, conditions, ideas, or objects. Data is limitless and present 798

everywhere in the universe. 799

 Machine interpretation: Symbols or signals that are input, stored, and processed by a 800

computer, for output as usable information. 801

This latter definition is of critical importance and is something that is often forgotten as we think about 802

semantic interoperability. This is because we are used to gathering the context of our data in human 803

terms and fail to realize that the nuance of the context that we provide must be completely reproduced 804

in a form that a machine can understand. In order to reproduce the human context we must be explicit 805

in the data structures that we use and the information models in which we place those data structures 806

so that the reconstruction of that human context (as close as possible) can occur at the other end of the 807

electronic packet and be understood by the machine as well as by a human interpreter. 808

Data is the plural of datum, and datum is the elemental building block of information. The typical 809

medical definition of data is a single observation about patient, such as the result of a temperature 810

measurement, a height or weight, or a blood pressure measurement. If we think about these examples 811

for just a moment we realize that blood pressure is clearly more than one datum because a blood 812

pressure observation is made up of both a systolic and diastolic variable. If we think harder about these 813

data, we realized that each of them is a composite structure made up of at a minimum a numeric value 814

and some unit of measure. This is important because we realize that very little that we do is constrained 815

to datum. In fact, we can argue that given a numeric value and some associated unit of measure that we 816

in fact have information. This combination of the numeric value and its units of measure form an 817

information structure that would be expressed in a complex datatype. 818

Although in general, information systems can be any system which collects and stores information, in e-819
health, the aim is to represent data in an electronic form for subsequent electronic processing. An 820
example is terminology inference as in terminology classifications. 821

 822

The fourth principle is based on [Rector]. It states that, although formal concepts should be informed by 823
clinical linguistics, they should be treated differently, because their users and their purpose are 824
different. Formal concepts systems, such as various terminology systems (using different formalisms), 825
have the purpose of machine-based processing and inferences of formal concepts, while clinical 826
linguistics, has the purpose of expressing or understanding natural language concepts (i.e. words, 827
lexicons, grammars) for the use of clinicians. 828

The fifth principle states that all information components represent entities from the real world as 829
modelled in the organisational perspective; furthermore some information components will be used by 830
technical components implementing business logic. 831

 832

The diagram below shows the continuum of data transformation to knowledge that is accomplished by 833
and dependent upon the organization of data in information models and contextual descriptions 834
provided by standardized terminology applied to the data concepts. 835

 836

 837

 838

The following sections describe the artifacts of interest in the Information Framework. These artifacts 839

are not specific to any particular information modeling paradigm but are required by any modeling 840

paradigm to describe the static semantics of the computable semantic interoperability between two or 841

more systems. 842

 Domain analysis models 843

 Reference information models 844

 Domain information models 845

 Serializable information models 846

 Localized information models 847

 Types - classes, attributes, data types, semantic type 848

 Vocabulary (including value sets and value set bindings to attributes) 849

 850

Information models are normally built using a top-down approach or a bottom-up approach depending 851

upon the modeling paradigm used to set context around data elements. There are exceptions to this 852

bottom-up or top-down approach however for information modeling. For example, the ISO-11179 Part 3 853

metadata specification is a "middle-in" approach where a class forms the data element and attributes of 854

that class are data element concepts. The data element is given context by association with an object 855

class. 856

The SAIF approach to modeling the static information of a services aware specification stack is a top-857

down approach. In the SAIF world, a conceptual domain analysis model constrains the association of 858

classes to eventual data element concepts that will be bound at the implementable perspective to 859

valueSets . 860

 861

3.2.2 Domain analysis model 862

A domain analysis model is a conceptualization of an area-of-interest expressed in a language that is 863

familiar to the groups who normally work in that domain. The domain analysis model is an abstraction of 864

the information model that captures the business of a particular domain. A domain analysis model may 865

be represented at various levels of granularity and can have multiple layers with refinement occurring 866

from a highly conceptual representation such as a concept map to a more formal representation in UML. 867

We should note that a DAM contains both informational/static and behavioral/dynamic semantics, but 868

that in the context of this chapter, we are only concerned with the informational/static semantics, i.e. 869

only a “piece” of a fully-specified DAM. 870

A domain analysis model becomes part of the formal information model through its mappings to the 871

semantics of a reference information model. 872

3.2.3 Reference Information Model 873

A reference information model is a critical component of any information development process. It
874

represents an model of all possible information in a domain through the representation of abstract
875

classes of information. It is the root of all formal information models and structures developed and
876

allows for the mapping of both formal and informal information models (such as domain analysis model
877

classes and attributes) to a common reference point.
878

From an information model traceability perspective, it is the root of the model tree. The use of a
879

reference information model allows a model-driven methodology in which a network of inter-related
880

models is developed.
881

The reference information model provides a static view of the information needs a broad sector of the
882

real world. It includes class and state-machine diagrams and is accompanied by use case models,
883

interaction models, data type models, terminology models, and other types of models to provide a
884

complete view of the information requirements for that sector. The classes, attributes, state-machines,
885

and relationships in a reference information model are used to derive domain-specific information
886

models that are then transformed through a series of constraining refinement processes to eventually
887

yield a static model of the information content of a specific implementable model for data exchange or
888

persistence.
889

The abstract nature of a reference information model allows for local extension through the refinement
890

of the abstract classes of the reference information model to meet specific information needs of a
891

micro-domain which may or may not be reusable in other domains.
892

If a reference information model is sufficiently abstract at its root classes and can be extended through
893

vocabulary definitions of class contents then it can be made applicable to any conceivable healthcare
894

system information interchange scenario. In fact, if the reference information model is abstracted to a
895

coarse level of entities and the relationships of those entities through roles to the actions that they
896

somehow participate in then it can be conceptually applicable to any information domain or sector. One
897

can think of a reference information model as an “upper ontology” that describes the static semantics of
898

all possible real world information.
899

3.2.4 Domain information model 900

This is the first level of constraint below the reference information model. This model is created by 901

mapping a domain analysis model to the reference information model, data types and terminology 902

concepts to meet the requirements of a particular problem domain. A domain information model may 903

have multiple entry points because it reflects all of the concepts of a particular domain analysis model. 904

As such, a domain information model is not a directly implementable model, and is a fairly general 905

statement of a domain with fairly general vocabulary bindings. 906

3.2.5 Serializable information model 907

A serializable information model represents a second level of constraint, based on specific use cases. 908

Serializable information models must have single entry points and navigation paths that allow them to 909

be traversed and unambiguously serialized for a specific implementation target (XML, Java, etc.). A 910

serializable information model is focused on a specific operation or capability rather than an entire 911

subject area or topic. Serializable information models are either derived from a domain information 912

model directly, or from another serializable information model. 913

Since the serializable information model covers a relatively narrow information type, some of these 914

models will be reusable across multiple information models. An example of this might be the 915

demographics related to a person or an information model that describes the administration of a 916

medication to a patient. 917

3.2.6 Localized information model 918

Localized information models are a constraint model that has a single entry point. However localized 919

information models differ from serializable information models in that local information models may be 920

incomplete models for any particular topic area. An incomplete model is one that addresses constraints 921

for only a sub-set of the elements that are contained in the serializable model or domain information 922

model from which it is derived. 923

 924

Common examples of localized information models would include constraints on a person entity or 925

organization entity that would satisfy the needs for querying an entity registry. These types of localized 926

information models are common as parameters of service interfaces that perform infrastructure 927

functionality. 928

3.3 Types - classes, attributes, data types, semantic type – 929

 Class - A Class is a representation of objects that reflects their structure and behavior 930

within the system. It is a template from which actual running instances are created. A 931

Class can have attributes (data) and in refined models, these attributes are bound to 932

datatypes and may have vocabulary constraints for those attribute types that are coded 933

elements. Classes can inherit characteristics from parent Classes and delegate 934

characteristics to other Classes. Class models describe the logical structure of the 935

system and are the building blocks from which components are built. 936

 Attributes - Attributes are features of a class that represent the properties of that class. 937

Attributes may be of several different types, defined by the data type to which that 938

attribute is bound. When that data type is of a coded type, the attribute will be bound 939

to a vocabulary element. 940

 Data type - a data type is a data format specification that describes a specific type or 941

range of values that can be associated with the attribute to which that data type is 942

bound. Data types may be complex or primitive. An example of a complex data type 943

would be the ISO-healthcare data types while a primitive data type example would be 944

the XML data types. 945

 Semantic type - A Semantic type as defined by a Concept Domain such as orderable labs 946

or pathogenic organisms. A common source of semantic types in healthcare are those 947

defined in the Unified Medical Language System from the National Library of Medicine. 948

3.4 Vocabulary – 949

 Concept - A Concept is a unitary mental representation of a real or abstract thing – an 950

atomic unit of thought. It should be unique in a given Code System. A concept may have 951

synonyms in terms of representation and it may be a single term, or may be constructed of 952

more than one term. 953

 Code - A Code is a concept representation published by the author of a Code System as part 954

of the Code System, is an entity of that Code System, is the preferred unique identifier for 955

that concept in that Code System. Codes are sometimes meaningless identifiers, and 956

sometimes they are mnemonics that imply the represented concept to a human reader. 957

 Code system – A Code System is a managed collection of concept identifiers, usually codes, 958

but sometimes more complex sets of rules and references, optionally including additional 959

representations (which may or may not be identifiers of the concepts). Code Systems are 960

often described as collections of uniquely identifiable concepts with associated 961

representations, designations, associations, and meanings. 962

 Concept domain – A Concept Domain is a named category of like concepts (a semantic type) 963

that is specified as the vocabulary set allowed for the filler of an attribute in a static model 964

or property in a data type, whose data types are coded or potentially coded. Concept 965

Domains exist to constrain the intent of the coded element while deferring the binding of 966

the element to a specific set of codes until later in the model development process when 967

value sets can be constructed based on the specific implementation. 968

 Value set - A Value Set represents a uniquely identifiable set of valid concept identifiers, 969

where any concept identifier in a coded element can be tested to determine whether it is a 970

member of the Value Set at a specific point in time. A concept identifier in a Value Set may 971

be a single concept code or a post-coordinated expression of a combination of codes. 972

 973

 974

Vocabulary Relations 975
 976

3.4.1 Vocabulary Binding 977

3.4.2 Logical perspective binding 978

 979

Information models in the Logical perspective are bound to vocabulary by one of three ways. 980

 The concept domain identified in the Conceptual perspective may be reused without further 981

refinement. 982

 A sub-domain of the domain information model concept domain may be defined (a refinement) 983

which may be declared a value set. 984

 A specific code that is fixed for the coded attribute in question. 985

A concept domain is a named category of like concepts of the same semantic type (all lab result 986

observations, all medications, etc.). A value set represents a uniquely identifiable set of valid concept 987

representations, which may be taken from one or more code systems. 988

It is only at the Implementable perspective that value set binding can reliably occur since 989

implementation considerations define the terminology required at the interface in almost all cases. 990

An example to demonstrate the Logical perspective vocabulary binding versus Implementable 991

perspective binding is borrowed from the NCI caCIS project. The value attribute in class that carries the 992

results of a pathology analysis of a specimen may take on a different set of possible values depending 993

on the type of tumor identified in any individual specimen. One could create an exhaustive value set 994

consisting of histopathologic types for all known cancer types. However because at the Logical 995

perspective we would not be able to predict what applications might call the service, the value set 996

would indeed have to be exhaustive to accommodate any user. 997

An alternative is to create a concept domain at the Logical perspective of “histopathological type’ which 998

can be further refined in the Implementable perspective once an interface binding to a specific cancer 999

type is needed. At that point a value set for BreastCancerHistopathologicType can be created to meet 1000

the interface requirement at deployment. 1001

Because we have a terminology concept of Nested Value Sets, i.e. value sets that are sub parts of a 1002

larger “base” value set, it is difficult to separate the definition of a “base” value set from a concept 1003

domain at all times. Certainly in the example above we could have defined the histopathologic base 1004

value set and had as the set of nested value sets, the collection of all cancer type histopathologic type 1005

value sets. 1006

3.4.3 Implementable perspective 1007

 1008

Vocabulary is constrained in the Implementable perspective by the conversion of vocabulary domains 1009

identified in the Logical perspective to specific value sets. An example of this is depicted in the table 1010

below. 1011

Logical Vocabulary Domain Implementable Schema Value Set

HistopathologicType

BreastCancerHistopathologicType

LungCancerHistopathologicType

ProstateCancerHistopathologicType

 1012

As seen in this example, each cancer type has its own value set because there are many different 1013

histopathologic types that are cancer type specific. The individual value sets cannot be determined at 1014

the Logical perspective because they are implementation specific. For instance, if an application were 1015

deployed in a Gynecologic Oncology practice site that invokes the pathology result service, the cancer 1016

types would be restricted to those of the female reproductive system and for a Urologic Oncology 1017

practice site, only cancer types of the urogenital tract and prostate would be appropriate. 1018

There is specific metadata for each coded concept that must be supplied in order to understand 1019

persisted data over time relative to specific temporal points. In general this can be accomplished 1020

through versioning of value sets using a timestamp and by providing identifiers that are permanent for a 1021

particular value set. Finally, one must have a value set definition that allows for the resolution of the 1022

value set consistently over time from a terminology service. 1023

3.5 Validation forms for information models 1024

 1025

3.5.1 Schema 1026

The scheme is a representational information form expressing the metadata about a particular 1027

information model in order to do validation of instance data of that particular information model type. 1028

The most common form of schema used in healthcare where the payload is communicate via XML is the 1029

XML schema definition from the W3C. 1030

3.5.2 Templates 1031

Templates may be used to constrain a particular information model and to provide the necessary rules 1032

to consistently interpret the information model. Templates provide a pattern for information models 1033

that are intended to be reused. 1034

Templates can take on a number of different usage forms. Examples of templates include archetypes of 1035

the openEHR specification and templates applied to the HL7 Clinical Document Architecture structured 1036

documents. A more granular form of the template is the detailed clinical model. 1037

3.5.3 Unstructured Information 1038

 1039

While the purpose of this Information Framework document is to describe the static semantics of 1040

structured information models to allow the participation in computable semantic interoperability, much 1041

of the data that exists in healthcare practice is unstructured. It is therefore pertinent to discuss not only 1042

the coded elements of information models but also those literals that exist in the form of sentences 1043

persisted in the databases and captured in the screens of many healthcare application today. 1044

The word sentence is used here refers to a complex concept that is unencoded and not to the 1045

grammatical definition of the sentence. 1046

These sentence based literals are typically expressed as text strings in healthcare information models. 1047

There are mechanisms to aid in the understanding of these text strings using natural language 1048

processing techniques for tokenizing the sentences which can then be encoded standard terminologies. 1049

There are also iso-specifications to provide standard information models for the expression of these 1050

sentence literals. The ISO 24707 Common Logic specification provides a grammar to formalize an 1051

information model for sentence interpretation and several syntaxes for expressing that information 1052

model to allow interoperability between many first-order and partial first order logic languages. The 1053

detailed discussion of this specification is out of scope for this document but more information can be 1054

found at http://metadata-standards.org/24707/index.html. 1055

 1056

 1057

 1058

 1059

4 Behavioral Framework 1060

4.1 Overview: The Purpose of the BF 1061

The purpose of the HL7 Behavioral Framework is to describe the behavioral aspects of systems that 1062

participate in Health Information Technology (Health IT). It covers the behavior of (often distributed) 1063

system components and the way humans and organizations interact with these components. These 1064

behaviors facilitate the creation, exchange, and use of information. 1065

The BF thus provides two sets of grammars – Enterprise and Computational. Each grammar consists of a 1066

set of concepts and structuring rules that apply to these concepts. Where concepts are defined, the 1067

strict definition is displayed in a normal font, while additional notes or material is displayed in italics. 1068

The concept map below describes the essential elements in the BF and their essential relationships. 1069

 1070

Figure 2: BF Concept Map. Key concepts are in dark blue. 1071

4.2 Key Grammars - Leveraging ISO RM-ODP standards 1072

The Enterprise Grammar focuses on the business context in which Health IT systems are to operate, 1073

covering aspects of the collaborative arrangements between parties involved in healthcare while using 1074

Health IT systems. This helps to address concerns of clinical, business, and regulatory stakeholders. Most 1075

importantly, from the standpoint of the Behavioral Framework, this grammar sets the stage to couple 1076

these stakeholders to the electronic systems that support them. 1077

These concerns are within the scope of the ODP Enterprise Viewpoint. The BF Enterprise Viewpoint uses 1078

a relevant subset of the ISO ODP Enterprise Language standard that has been refined to accommodate 1079

specific requirements of Health IT. 1080

The ODP Enterprise Language was chosen because of its expressiveness to describe key organizational 1081

and policy concepts, in a way close to the human expression of these concepts. It is important to note 1082

here that the emphasis is not on supporting the description of social concepts such as acts, roles and 1083

entities for the purpose of recording information in the system, as it is in HL7 RIM, but more broadly to 1084

describe and interpret these concepts for the purpose of building enterprise systems that are fit for 1085

purpose. Nevertheless, the Enterprise Grammar is expressive enough to capture concepts within Health 1086

IT such as clinical, administrative, and regulatory practices and policies. 1087

The BF Computational Grammar is based on a subset of the ODP Computational Viewpoint concepts, 1088

positioned in the context of certain SOA styles of expression. It is primarily of concern to architects and 1089

designers of distributed software and its components. The ODP Computational language was chosen 1090

because of its technology independence and precise semantics, allowing support within a solution-1091

focused, conformance-driven framework like the ECCF. The language is also broader in scope than 1092

traditional SOA or system architecture approaches, allowing HL7 to support different interaction 1093

paradigms and architecture styles such as event-driven architecture, multimedia streams, or for the HL7 1094

interoperability paradigms, i.e., services, messages, or documents. 1095

The Computational Grammar is focused on the technology-neutral description of systems as they 1096

interoperate, that is, the services they offer, the way they can be connected to provide more complex 1097

capabilities, and the way they align with Health IT policies and practices (from the ODP Enterprise 1098

Viewpoint). 1099

In any specification, these two grammars provide the ability to express two separate but related sets of 1100

concepts. The BF, thus provides a subset of the grammars to be used within the context of the ECCF, 1101

which in turn provides a unified and conformance focused specification for a particular application 1102

domain, e.g., referrals, discharge, or care plans. In addition, the concepts from the BF also relate to the 1103

concepts from the information framework, and where necessary, to the engineering and technology 1104

viewpoints. Within ODP, such cross-grammar alignments are called correspondences. 1105

4.3 Motivation – ODP and Health IT 1106

In general, Health IT systems often span multiple administrative boundaries. Of necessity, they adopt 1107

different technology choices, reflecting the specific requirements and build / buy choices of their 1108

stakeholders. To respond to this reality, the BF adopted the requirement that there needs to be an 1109

approach to facilitate building and standardizing cross-organizational interoperability. This approach 1110

reflects generic health standards, policies, and processes, while also accommodating specific 1111

organizational and business policies of local healthcare providers. 1112

This is a complex environment and the adoption of a mature international standard, such as RM-ODP 1113

(itself developed as a reference model for building interoperable systems), allows the establishment of a 1114

common language for delivering working interoperability. This comprises both a common conversation 1115

point for people involved in designing and specifying systems, as well as a framework for specifying 1116

interoperability contracts between components of the systems involved in exchanging and interpreting 1117

healthcare and research information. 1118

The BF is the central place where RM-ODP grammars are adopted within the SAIF. As another approach, 1119

the Information Framework adopts the established languages and approaches developed over years in 1120

the sphere of health informatics, including the body of knowledge developed in HL7. The Governance 1121

Framework in turn is focused on the expression of necessary governance mechanisms needed to serve 1122

as an additional assurance so that the processes, policies, and standards for interoperability are 1123

implemented and respected – including the adoption and implementation of the concepts and patterns 1124

from the BF. This separation into different modeling languages (including correspondence languages) 1125

supports a model-driven way of specifying, modeling, and manipulating systems. 1126

The power of the ODP standards is further increased through the use of the recent ISO standard, UML 1127

profile for ODP, making it possible to exploit widely used software tools centered around UML - in the 1128

specification and implementation of the Health IT systems. 1129

4.4 BF Foundational Concepts 1130

Both the ODP Enterprise and Computational Viewpoints make use of a small set of foundational ODP 1131

modeling concepts that are refined for the purpose of providing the Enterprise and Computational 1132

Languages. The existence of this set of generic concepts (found below) provides a consistent language 1133

across various stakeholders that allows them to express particular additional detail of their concern, 1134

while remaining consistent in meaning and representation. For example, the concept of “service,” with 1135

its refinement and interpretation from the business and system design is given a formal, foundational 1136

definition that eliminates much confusion around the use of the word as a “buzzword”. This approach is 1137

also carried through in the BF. 1138

This section outlines a selected set of the foundation concepts from RM-ODP that are chosen for the 1139

purpose of the BF. They are described according with their strict definitions stated in the RM-ODP 1140

Foundation standard, along with some explanatory notes (shown in italics). These are a selected subset 1141

of ODP foundation concepts that will be further refined in the Enterprise and Behavioral Languages 1142

described in the next sections. For a detailed definition and explanation of these concepts refer to RM-1143

ODP, Part 2. 1144

Object – a model of an entity (entity is defined as any concrete or abstract thing of interest). An 1145

Object is characterized by Behavior and dually its state. Note that the concept of object is broader than 1146

the traditional notion of software objects or business objects used in building object oriented and 1147

enterprise system – it is a model of any entity. 1148

Behavior (of an object) - a collection of Actions with a set of constraints on when they may 1149

occur. Constraints may include sequentiality, concurrency, or real-time constraints. An Action is defined 1150

as something what happens. 1151

Interaction – a partition of Objects’ behavior consisting of a set of actions which takes place with the 1152

participation of the environment of the object. 1153

State - at a given instant in time, the condition of an Object that determines the set of all sequences 1154

of actions in which the Object can participate. 1155

Interface – an abstraction of the Behavior of an Object that consists of a subset of the Interactions of 1156

that Object together with a set of constraints on when they may occur. 1157

Policy - A constraint on a system specification foreseen at design time, but whose detail is 1158

determined subsequent to the original design, and capable of being modified from time to time in order 1159

to manage the system in changing circumstances. Policies can be applied in any viewpoint. Examples 1160

include an enterprise delegation policy, a computational persistence policy, or an engineering scheduling 1161

or quality support policy. In the enterprise viewpoint, Policies may be expressed in terms of obligations, 1162

permissions, or prohibitions. 1163

Service – an Object’s Behavior, triggered by an interaction that adds value for the service users by 1164

creating, modifying, or consuming information. The effects of invoking the Service become visible in the 1165

object’s environment. Note that the provision of a service involves a collaboration between its provider 1166

and user. This collaboration may involve a complex series of interactions. The value offered by the 1167

invocation of the Service is noted in the corresponding contract. By the same token, Services may invoke 1168

additional services/collaborations. 1169

Contract - An agreement governing part of the collective Behavior of a set of Objects. A Contract 1170

specifies Obligations, Permissions, and Prohibitions for the Objects involved. The specification of a 1171

contract may include: 1172

 specification of the different roles that objects involved in the contract may assume, and the 1173

interfaces associated with the roles; 1174

 Quality of Service constraints 1175

 indications of duration or periods of validity 1176

 indications of behavior which invalidates the contract 1177

 liveness and safety conditions. 1178

Contracts come in three varieties in the BF, reflecting the refinements of the generic, system-theoretic 1179

definition above, namely : 1180

 Community Contracts – specified using the Enterprise language 1181

 Service Contracts – specified using the Computational language 1182

 Environment Contracts – specifies Quality of Service Constraints for an Endpoint 1183

Contract life cycle is described using the following concepts define next. 1184

Establishing Behavior - Behavior by which a given contract is put in place, for example, through 1185

negotiation between parties to the contract, resulting in a contract, or a publication of a contract offer, 1186

of one object to its environment. 1187

Enabled Behavior – Behavior characterizing a set of objects which becomes possible as a result of 1188

Establishing Behavior. 1189

Terminating Behavior - Behavior that breaks down the liaison and repudiates the corresponding 1190

contractual context and the underlying contract. The figure below depicts different stages in the 1191

contract. This is followed by a figure illustrating the description of core contract modeling concepts. 1192

Information - Any kind of knowledge that is exchangeable amongst users , about things, facts, 1193

concepts and so on, in a universe of discourse. Although information will necessarily have some forms of 1194

representation to make it communicable, it is the interpretation of this representation (the meaning) 1195

that is relevant in the first place. 1196

The diagram below shows key BF foundation concepts mentioned in this section. Note that the diagram 1197

does not show all relationship between concepts, e.g., further elaboration on state and its link to 1198

behavior. This level of detail is beyond the scope of this book. 1199

 1200

 1201

Figure 3: Foundation RM-ODP Concepts that appear throughout the BF 1202

4.5 BF Enterprise Language 1203

The BF Enterprise language concepts are a subset of ODP Enterprise viewpoint concepts that capture 1204

ECCF specification elements in the Conceptual Perspective. It expresses the considerations necessary to 1205

understand the rules and policies that govern a collection of Enterprise Objects. 1206

Conceptual Perspective 1207

The key Enterprise Language concepts from the Conceptual Perspective are: 1208

Community – A configuration of enterprise objects formed to meet an objective. The objective is 1209

expressed in a contract, which expresses how this objective can be met by the roles in the community, 1210

the interactions required between them, assignment of roles to systems, and the policies governing the 1211

collective behavior. The concept of community is suitable to describe business contexts as it clearly 1212

delineates business policies that apply to the roles in the community and their interactions in business 1213

processes. The concept of community is suitable to describe business contexts as it clearly delineates 1214

business policies that apply to the roles in the community and their interactions in business processes. 1215

More information can be found in ODP Part 3. Communities are typically expressed in HL7 as 1216

storyboards. 1217

Enterprise Object - represents a refined view of the generic concept of Object where the focus is on 1218

enterprise view of objects. The enterprise objects have life independent from that of a community such 1219

that they can model IT systems, people, and organizations. 1220

Community Role – a placeholder for behavior in community that can be filled by an enterprise object 1221

that satisfies type specified in the community role. Community Roles are typically expressed in HL7 using 1222

Use Cases, or more broadly as functionality expressed in an EHR Functional Profile. 1223

Community Contract – specifies community behavior in terms of processes and interactions involving 1224
community roles as well as policies that apply to the community roles. For example, a Community 1225
contract can define Obligations of healthcare providers, e-health service organizations, and rights of 1226
patients, as well as conditions about efficiency, security, response times and confidentiality to be met 1227
when delivering e-health and healthcare services. 1228

Process - a collection of steps taking place in a prescribed manner and leading to an objective. Step is 1229

defined as an abstraction of an action, used in a process, that may leave unspecified objects that 1230

participate in that action [ODP-EL]. A process does not have to explicitly nominate the roles involved. 1231

Enterprise Policy – a rule that specifies constraints in the enterprise specification, in particular regarding 1232

one the roles in the community. Typical enterprise policies are obligations, permissions and prohibitions. 1233

Enterprise Service – a special kind of Behavior that involves Commissioning and Responsible Roles, to 1234

which Enterprise Policies apply. The effects of invoking the Enterprise Service become visible in the 1235

Community, and serve to work towards the Community’s Objective. They are the realization of the 1236

Accountability Pattern, in that they provide the Commissioning and Responsible Actions required in a 1237

Community that is partitioned between Roles. Enterprise Policy is typically expressed in HL7 as Receiver 1238

Responsibilities, or more broadly, in terms of policies expressed in an EHR Functional Profile. 1239

Obligation: A prescription that a particular behavior is required. An obligation is fulfilled by the 1240

occurrence of the prescribed behavior. 1241

Permission: A prescription that a particular behavior is allowed to occur. A permission is equivalent to 1242

there being no obligation for the behavior not to occur. 1243

Prohibition: A prescription that a particular behavior must not occur. A prohibition is equivalent to there 1244

being an obligation for the behavior not to occur. 1245

Party - An enterprise object modeling a natural person or any other entity considered to have some of 1246

the rights, powers, and duties of a natural person. Examples of parties include enterprise objects 1247

representing natural persons, legal entities, governments and their parts, and other associations or 1248

groups of natural persons. Parties are responsible for their actions and the actions of their agents. 1249

The diagram below depicts key elements of the BF Enterprise language. Note that the concepts 1250

presented fall in the Enterprise/Conceptual cell of the ECCF matrix, though their appearance in 1251

specifications may be expressed in models expressing ODP Viewpoint correspondences. 1252

 1253

Figure 4: Core concepts in the BF Enterprise Language 1254

4.6 Logical and Implementable Perspectives 1255

There are no Enterprise Language concepts at the Logical or Implementable Perspectives, though the 1256

considerations from the Enterprise Viewpoint guides the refinement for a specification within these 1257

languages. 1258

4.7 BF Computational language 1259

The BF Computational language concepts are a subset of ODP Computational viewpoint concepts. The 1260

BF Computational Grammar is mostly concentrated in the Logical perspective in the ECCF matrix, 1261

although several concepts in the Conceptual Perspective are identified to facilitate linkages with the BF 1262

Enterprise Language. This provides the ability to define a business context within which a Health IT 1263

system may be defined, designed, and built. 1264

The Computational Language at the Conceptual Perspective is designed to align with other artifacts 1265

emerging within the HL7 community such as Conceptual Information Models, Domain Information 1266

Models, Conceptual State Models, or the EHR Functional Model (and profiles). 1267

4.7.1 Conceptual Perspective 1268

The Computational language concepts from the Conceptual Perspective are: 1269

Computational Service – A service refinement from the ODP Computational Viewpoint, that is, behavior 1270

offered by a computational interface, constituting a service contract. In HL7, the Application Role takes 1271

on some aspects of the Computational Service. 1272

Functional Profile – an abstraction of behavior that aligns with sets of Role Behaviors. This concept is 1273

equivalent to an Interface. In HL7, the Application Role takes on some aspects of the Functional Profile. 1274

Operation – a computational representation of a Role’s invokable behavior. In HL7, the Application Role 1275

takes on some aspects of the Operation from the Conceptual Perspective. 1276

Conceptual Information Concept – a placeholder for the Conceptual Perspective’s information objects. 1277

Exception Condition – exists when an Operation fails to fulfill its Obligation 1278

Pre-Condition – a predicate that a specification requires to be true for an action to occur. 1279

Post-Condition – a predicate that a specification requires to be true immediately after the occurrence of 1280

an action. 1281

The diagram below details the Computational Language at the Conceptual Perspective. Note these some 1282

of these concepts serve as a form of correspondence between Enterprise-Computational and 1283

Computational-Information viewpoints. For example, Functional Profile is an explicit abstraction of 1284

behavior that is designed to align with elements from the Enterprise Viewpoint. 1285

 1286

Figure 5: Computational Language from the Conceptual Perspective 1287

4.7.2 Logical Perspective 1288

The Logical Perspective of the BF Computational Grammar capture key concepts needed for the design 1289

of components in the system that implement functionality required, such as those identified in the 1290

functional profile. It is developed to align with other artifacts emerging within the HL7 community such 1291

as Serializable Information Models, Logical State Machines, Abstract Data Types, and Stub Models 1292

(CMETs). 1293

The concepts in the Computational Language from the Logical Perspective are: 1294

Computational Object - view of an Object from Computational Viewpoint, giving particular focus on 1295

describing units of logical functionality and distribution in the system. 1296

Computational Interface – view of an Interface from Computational Viewpoint, giving particular focus 1297

on capturing an externally visible behavior of a computational object. A Computational Object can offer 1298

multiple Computational Interfaces. In HL7, the Application Role takes on some aspects of the 1299

Computational Interface. 1300

Computational Interaction – a view of an interaction from computational viewpoint, focusing on how a 1301

system can interact with its environment. Interactions can be of three types: Operations, Streams, or 1302

Flows. Note that the syntactic aspects of interactions are expressed in the signatures of the operations, 1303

streams, or signals that the interaction supports. All three interaction types are included in this model to 1304

support future standards. In HL7, the Interaction takes on some aspects of the Computational 1305

Interaction. 1306

Operation - an Interaction between a client object and a server object that is either an interrogation or 1307

an announcement. One example of interrogation is an RPC calls over the SOAP protocol. One example of 1308

an announcement is sending of a message in a messaging system, such as “HL7 Send [Message 1309

Payload]—No Acknowledgements”. In HL7, the Message End Point or the Application Role takes on some 1310

aspects of the Operation. 1311

Flow - An abstraction of a sequence of Interactions, resulting in conveyance of information from a 1312

producer object to a consumer object. This kind of interaction is typical to sending video and multi-1313

media information or can be used to model continuous flow of periodic sensor readings from certain 1314

sensors as in many clinical devices. 1315

Signal - An atomic shared action resulting in one-way communication from an initiating object to a 1316

responding object. An example of a signal is the initiation of an event notification (for example, ADT) by 1317

the sending interface or the receipt of the event notification by the receiving interface. 1318

Interface Specification – specifies the Interface of the Computational Object, its Behavior, an 1319

Environment Contract, and the Interface Signature expressing syntax of the Interactions. In HL7, the 1320

Application Role takes on some aspects of the Interface Specification. 1321

Interface Signature - The set of Action signatures associated with the interactions of an interface. These 1322

signatures are the syntax for operations, including the representation of the operation, the parameters, 1323

and the message exchange pattern in use. 1324

Environment Contract - A contract between an object and its environment, including Quality of Service 1325

constraints, usage and management constraints. Quality-of-Service constraints include temporal 1326

constraints (e.g. deadlines); volume constraints (e.g. throughput); dependability constraints covering 1327

aspects of availability, reliability, maintainability, security and safety (e.g. mean time between failures). 1328

Usage and management constraints include: – location constraints (i.e. selected locations in space and 1329

time); – distribution transparency constraints (i.e. selected distribution transparencies). 1330

Service Contract – a special kind of Interface Specification modeling externally visible Behavior of 1331

Object. It defines obligations of an object to other objects in terms of computational interactions, as 1332

stated in the object's interface(s). The computational service contract can be accompanied by the 1333

Environment Contract, which states non-functional properties of the computational object. Service 1334

Contract allows the refinement of the Contract concept using Computational Concepts, for example, 1335

defining Computational Interfaces. This in turn allows the expression of correspondences of 1336

Computational Viewpoint concepts to their Enterprise Viewpoint counterparts, allowing Computational 1337

Objects to fulfill Community-defined Roles. For example, this can be used to model traditional notions of 1338

SOA Services, that is, as Service Providers realizing the Community Role of Responsible Parties for 1339

particular types of information. It can also be used to disambiguate traditional HL7 Application Roles like 1340

Lab Placer. 1341

Binding Object – a special kind of Computational Object that encapsulates the functionality required to 1342

connect two or more other Computational Objects. Note that the object itself provides a control 1343

interface to allow these connecting mechanisms to be configured and managed, which is of interest 1344

when one needs to support protocol translation. The Binding Object is what the BF refers to as a Subject 1345

Specification. 1346

The diagram below depicts the Computational Language concepts from the Logical 1347

Perspective.1348

 1349

Figure 6: Computational Language from the Logical Perspective 1350

Computational objects are typically identified and defined after the Enterprise and Information 1351

specifications have been developed. It is also possible to adopt a bottom-up approach, for example, 1352

when making use of the existing library of specifications or Application Roles. In this case, the behavior 1353

of existing components can be described using Computational Objects, so they can be used to realize 1354

Behavior of Roles in a community that defines the business purpose for the use of these objects. Roles 1355

and Communities do not need to be pre-established for this to be true, although they may be as a 1356

matter of governance. Enterprise objects which model IT systems play roles within communities as 1357

determined by the interface types exposed by computational objects realizing the enterprise objects. 1358

4.7.3 Implementable Perspective 1359

The BF’s Computational Language does not have an Implementable Perspective, though the 1360

considerations herein serve to refine specifications that include the Engineering Viewpoint. See End 1361

Point and Solution Specifications below. 1362

Contract Lifecycles 1363

As is pointed out in the models above, Contracts represent one of the central concepts in the BF. In fact, 1364

they represent the key placeholder for providing continuity and traceability from the design of an HL7 1365

standard to its eventual implementation. 1366

The life cycle of a contract is defined in terms of its establishing behavior, the period in which contract 1367

exists, and its terminating behavior. 1368

The establishing behavior is defined as the behavior by which a given contract is put in place, for 1369

example, through negotiation between parties to the contract, resulting in a contract, or a publication of 1370

a contract offer, of one object to its environment. 1371

Once a contract is established, its existence is signified through the contractual context, which is the 1372

knowledge that a particular contract is in place. A contract being in place signifies that a particular 1373

behavior of the set of objects to which the contract applies is required. 1374

A binding behavior is a specific type of establishing behavior involving two or more interfaces, and thus 1375

their owning objects. Binding is a special kind of contractual context, resulting from a given establishing 1376

behavior. The purpose of the binding function is to bind together interfaces (signal, operational, and 1377

stream) to enable communication between objects. 1378

The establishing behavior also yields a certain relationship between the objects in a set, referred to as 1379

liaison, effectively stating the fact that objects have a contractual context in common. Examples of 1380

liaisons are a distributed transaction, relationship between files and processes which access files, as well 1381

as provider and user of a service as defined in a Service Contract. 1382

The terminating behavior is the behavior that breaks down the liaison and repudiates the corresponding 1383

contractual context and the underlying contract. The figure below depicts different stages in the 1384

contract. This is followed by a figure illustrating the description of core contract modeling concepts. 1385

 1386

 1387

Figure 7: Contract Life Cycle 1388

Contracts can be established in different epochs of the software lifecycle, including, for example, at 1389

specification time, governance time, design time, or run time. 1390

4.8 Implementing the BF –Specifications and Correspondences 1391

The BF is implemented by using the metamodels to build specifications that can then be standardized 1392

via a governance process, like balloting. Particularly, Subject Specifications are supported using the 1393

Enterprise and Computational Languages to define working interoperability. There are two refinements 1394

of Subject Specifications: End Point and Solution. They are intended to support an architecture that may 1395

mix HL7’s Interoperability paradigms of documents, messages, and services. 1396

Each specification type represents a particular correspondence of the various contracts established in 1397

the BF. Below are a number of concepts relevant to Subject Specifications. 1398

End Point Specification – explicit correspondence between Objects allowing Computational Objects to 1399

fulfill Community-defined Roles. For example, the End Point models the traditional notion of an SOA 1400

Service, that is, a Service Providers realizing the Community Role of Responsible Parties for particular 1401

types of information. End Point Specifications utilize a Primitive Binding. 1402

Primitive Binding - signifies a contractual context that allows the objects to connect and to exchange 1403

services and information. It is a binding between two Objects. 1404

Primitive Binding Correspondence - for each interaction between roles described by the Enterprise 1405

Language, one may identify a set of Computational Binding Object types that are constrained by the 1406

enterprise interaction. In this case, two Community Roles are defined: Commissioner and Responsible 1407

Party. The Responsibilities are defined in terms of the Specification, and so each Commissioner becomes 1408

interchangeable. 1409

Primitive Binding’s Contract Correspondence - for each Enterprise Service specified in a Community 1410

Contract there might be one or more Computational Services that realize this Business Service. The 1411

Computational Services are specified through Service Contracts offered by Computational Objects. 1412

Solution Specification – explicit correspondence between Objects allowing Computational Objects to 1413

fulfill Community-defined Roles. Solution Specifications support multiple party interactions where 1414

definition is need for two (2) or more parties involved in the interaction. Solution Specifications specify a 1415

Compound Binding. 1416

Compound Binding - Compound binding is a special kind of Computational Object that can define and 1417

control Interactions such as message exchange protocol (or choreography), as well as service invocation 1418

sequence between multiple interfaces of different objects. Compound Bindings can be composed of 1419

Primitive Bindings. In cases where multi-party interactions must be expressed, the concept of Compound 1420

Binding can be used, making it the cornerstone of Solution Specifications. 1421

Compound Binding Correspondence - for each interaction between roles described by the Enterprise 1422

Language, one may identify a set of Computational Binding Object types that are constrained by the 1423

enterprise interaction. In this case, multiple Community Roles may be defined. Their interactions, 1424

including sequentiality, concurrency, or real-time constraints, are defined as conformance points in the 1425

specification. 1426

Compound Binding’s Contract Correspondence - for each Enterprise Service specified in a Community 1427

Contract there might be one or more Computational Services that realize this Business Service. The 1428

Computational Services are specified through Service Contracts offered by Computational Objects. This 1429

correspondence is realized in the Solution Specification for 2..* Community Roles. 1430

 1431

The model below shows the components of the Subject Specification as defined in the BF. Note that 1432

there are Informational and Engineering Correspondences that are out of the scope of the BF. 1433

 1434

Figure 8: The BF Subject Specification with its relevant correspondences 1435

Messaging represents a design paradigm that partitions responsibility between all parties in a 1436

Community, requiring Primitive Bindings to be established during specification to support conformance 1437

and to achieve the Community’s Objectives. Message End points specified using the BF are therefore 1438

incomplete from a conformance standpoint, but may be reused in other specifications by later 1439

identifying their counterpart in a Primitive Binding. 1440

SOA Services represent a different paradigm that defines the Responsible Party only, and thus serve to 1441

realize the Enterprise Policies around that responsibility. All Commissioning Roles (Enterprise Language) 1442

are thus the same, allowing for a Primitive Binding to be established during the design or 1443

implementation without undue constraints on the its implementation or deployment. This provides 1444

flexibility and supports reuse not only in specification, but in implementation and deployment as well. 1445

Documents represent an Information Object, and are therefore supported in either design paradigm. 1446

End Point Specifications are useful for defining HL7’s reusable interfaces, whether they are individual 1447

messaging roles or SOA Services. Solution Specifications are used when multiple parties in a Community 1448

must be specified together. Documents may be bound to either via the Computational – Information 1449

Correspondence (see below). 1450

 1451

4.9 Primitive Binding Illustration 1452

In Unified Modeling Language (UML), the Primitive Binding can be illustrated as in the example in the 1453

figure below. In the figure, a Responsible agent is expressed as the Provider component and a 1454

Commissioning agent is expressed as the Consumer component. The following UML concepts can be 1455

used to represent the RM-ODP concepts. 1456

UML components represent ODP computational objects, for example, Consumer and Provider. These 1457

components realize behavior of the commissioning and responsible roles. 1458

UML ports represent ODP interface types of the computational objects, for example, Client and Server. 1459

These are operations interface types. ODP also supports stream and flow interface types, but these are 1460

not discussed in this Implementation Guide. 1461

UML provided and required interfaces represent roles in interaction, that is, a service provider and a 1462

service consumer. There is a correspondence between these interfaces and the behavior of responsible 1463

and commissioning roles in the community. These interfaces realize behavior specified in community 1464

roles. Note the distinction between roles in interaction (as described here) and roles in community 1465

specified in the Enterprise Viewpoint (that is, Accountability pattern in the BF specification). 1466

UML interface specifies the signature of the operations that comprise the service. 1467

 1468

 1469

Figure 9: UML Components representing Computational Service 1470

4.9.1 Correspondences 1471

Contracts are expressed in the Enterprise and Computational Languages. While ODP standards do not 1472

have an explicit refinement of the basic contract concept in the Engineering or Information Languages, 1473

their corresponding concepts appear in specifications or can be derived, as required. This is possible 1474

because the above models establish certain correspondences between ODP viewpoints that represent 1475

useful compositions of concepts. Specifications, when including the other Viewpoints, are 1476

correspondences between Viewpoints. Below, a number of expected correspondences are detailed. 1477

Some examples of correspondence between Enterprise and Information Viewpoints are: 1478

For each Role in each Community in the Enterprise Specification, there may be a list of those 1479

Information Object types (if any) that specify information or information processing of an Enterprise 1480

Object fulfilling that Community Role. 1481

For each Action in the Enterprise Specification, there may be Information Objects subject to a Dynamic 1482

Schema constraining that Action; 1483

For each relationship between enterprise Roles, there may be an Invariant Schema that constrains 1484

objects fulfilling Roles in that relationship. 1485

Some examples of correspondence between Enterprise and Computational Viewpoints are: 1486

For each Enterprise Service specified in a Community Contract there may be one or more Computational 1487

Services that realize this Business Service. The Computational Services are specified through Service 1488

Contracts offered by Computational Objects. 1489

For each Interaction between Roles in the Enterprise Specification, one may identify a set of 1490

Computational Binding Object types that are constrained by the Enterprise Behaviors (Interactions). 1491

Solution Specifications, introduced below, include correspondence between Computational and 1492

Engineering Viewpoints. Some examples of are: 1493

For each Binding Object that represents a complex binding (more than two Computational Objects), the 1494

Solution Specification can include UML Communication Diagrams of Sequence Diagrams to convey 1495

patterns in communication. This is conveyed using Nodes and Channels from the Engineering Viewpoint. 1496

HL7 ITS represents an Interceptor Object from the ODP Engineering Language, and is included in the 1497

description of the Solution. 1498

 1499

4.10 References 1500

[ODP-Foundations] ISO/IEC IS 10746-2, Information Technology — Open Distributed Processing — 1501

Reference Model: Foundations, 2010. Also published as ITU-T Recommendation X.902. 1502

[ODP-Architecture] ISO/IEC IS 10746-3, Information Technology — Open Distributed Processing — 1503

Reference Model: Architecture, 2010. Also published as ITU-T Recommendation X.903. 1504

[ODP-EL] ISO/IEC IS 15414, Information Technology — Open Distributed Processing — Enterprise Language, 1505
2003. Also published as ITU-T Recommendation X.911. 1506

[ODP-UML4ODP] ISO/IEC IS 19793, Information Technology — Open Distributed Processing — Use of 1507

UML for ODP System Specifications, 2009. Also published as ITU-T Recommendation X.906. 1508

5 Governance Framework 1509

1. This Chapter describes the motivation for, the structure, content and utilization of the 1510

Governance Framework (GF). 1511

2. The GF is the “rules of the game.” 1512

 Who gets to make the decisions 1513

 how/when are they made, and 1514

 how/when are they enforced. 1515
3. You gotta have it 1516
4. You gotta document it 1517

 1518

	Services Aware Interoperability Framework
	1 Introduction
	1.1 Executive Summary
	1.2 SAIF Implementation

	2 Enterprise Conformance and Compliance Framework
	2.1 Overview: The purpose of the ECCF

	3 Information Framework
	3.1 Overview
	3.2 Goals
	3.2.1 Information framework essentials
	3.2.2 Domain analysis model
	3.2.3 Reference Information Model
	3.2.4 Domain information model
	3.2.5 Serializable information model
	3.2.6 Localized information model

	3.3 Types - classes, attributes, data types, semantic type –
	3.4 Vocabulary –
	3.4.1 Vocabulary Binding
	3.4.2 Logical perspective binding
	3.4.3 Implementable perspective

	3.5 Validation forms for information models
	3.5.1 Schema
	3.5.2 Templates
	3.5.3 Unstructured Information

	4 Behavioral Framework
	4.1 Overview: The Purpose of the BF
	4.2 Key Grammars - Leveraging ISO RM-ODP standards
	4.3 Motivation – ODP and Health IT
	4.4 BF Foundational Concepts
	4.5 BF Enterprise Language
	4.6 Logical and Implementable Perspectives
	4.7 BF Computational language
	4.7.1 Conceptual Perspective
	4.7.2 Logical Perspective
	4.7.3 Implementable Perspective

	4.8 Implementing the BF –Specifications and Correspondences
	4.9 Primitive Binding Illustration
	4.9.1 Correspondences

	4.10 References

	5 Governance Framework

