ANSI/HL7 Arden V2.7-2008
December 10, 2008
The Health Level Seven

Arden Syntax
Version 2.7

The Arden Syntax for
Medical
Logic Systems

Version 2.8

© 2008 Health Level Seven, Inc.. All rights reserved. Page 0

Revision date: 2008-05-06

Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

The first version of this standard was developedeuthe auspices of the American Society for Tesind
Materials (ASTM) and published in April 1992 as A8 E1460-92. Subsequent versions, Version 2, Vergian
Version 2.5, and Version 2.6 were developed andighdd by Health Level Seven, Inc. (HL7). Thesesians
were accepted as standards by the American NatBiaatards Institute (ANSI) and The Internatiortain8ards
Organization (ISO). The previous standard, Ver&dh was accepted as an ANSI standard in 200% vEmnsion,
2.7, represents an extension of the previous AN8ion.

Arden Syntax for
Medical Logic Systems

TABLE OF CONTENTS

WHAT'S NEW IN VERSION 2.8 ...ttt ettt et e et e e e s e et e e s s e e s saaaa s s e e s s e aaaa e eesasbbaeeesensreass 8...
Y O @] = T 10
2 REFERENCED DOCUMENTS. ... ittt ettt e e e et e e e et e et s s e ea et st s esaaseasba s eesessaan s essesbaaseesssssnasns 10
2.1 Health Level SEVEN STANUAITS.o eeenee e eeeeeeeee e e e e e e e e e e ee et e e e e eeeaaeeeeeseraaaaaeeseeees 10
2.2 F N Y Y IS £ g o F= U0 £ 10
2.3 F N N ST IS =1 16 =1 (o £ PR S 0.1
2.4 RS @ IS = 1T = (o £ 10.
2.5 World Wide Web Consortium ReCOMMENUALIONS cememeevvriiiiiiiiiieiii e e esa e e e e e 11
2.6 (0] a1 Toto Lo [SIRS) =T o F= U o [T 11
T I == 311 1V [1 I 1 2 12
3.1 (LS 11110 N 12
3.1.1 Medical Logic Module (MLM)ooo i e 12
3.2 Descriptions of Terms Specific to This Standard...........coovvvviiiiiiiiiiiii e, 12
3.2.1 LU L o PO 12
3.2.2 LT TS0 o = Y o OSSP 12
3.2.3 [0 = (TR 0 T 12
3.24 [0 (0T =110 1R o T 12
3.2.5 LTy (1 U)o o TR o N 12
3.2.6 LAV] PR o 12
3.3 Notation Used in ThiS STANUAIT ;o ieieiriieie e e e e e s e e e e e e e e e e e eenaaneaeees 12
4 SIGNIFICANCE AND USEoot oot emm e ettt e e e e e et e e e e e ee e e e e e s s saaaa e e e e eeabban s eeesrsaaeeeeesennns 13
I Y 1Y (O]2 YN T 14
5.1 [LR o] 11 4T TR 14
5.2 (OF Fo T = Tox (=] Y= RN 14
5.3 (LTSRN =T (=T R 14
5.4 LAY T LTS o= U PR 14
55 (1=t o =T = T I |01 U L OSSPSR 14.
5.6 Categories
5.7 SIOtS v
5.8 IS (o] =0 o YA 1Y o L= PR 5.1
5.8.1 I LU= S (0] £ 15
5.8.2 B U= T IS R o] 15
5.8.3 (0000 1o IS (0] £ 15
5.8.4 Y (0 (o (0 L =T0 [(o) 15
5.9 Y Y =T 0 [= 4[] o 15
5.10 L0 1T [1ST =Y 1S 11, 2 PP 15
© 2008 Health Level Seven, Inc.. All rights reserved. Page 1

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

B SLOT DESCRIPTIONSeeiiiiiiitteite ettt ekttt e e e tbe et aeeasae bt eaeaans e eeeaaasseee e s anbeeeaaaaabsseeeesannbeeeesanneeeean 16
6.1 Y T (=T g F= U [t ST @ 1 (T [] o SR ORUPPPPPTPRRR 16
6.1.1 Title (teXtUAl, FEQUITEA). ... uuuueiii et e e e e e e e e ee e e e e aee e ee b e e s e e e aaeas 16
6.1.2 MImname (coded, reqQUIrEA) o esireieeieeeeeeeeeee e e et ieerare e e eeeeas 16
6.1.3 Arden Syntax version (coded, OPtIONAIY)iivveeie e 16
6.1.4 Version (teXtual, FEQUITEA)uuu . ceermetii i ieee e e e e e ee e e ee e e e e e e e e e e e aaaes 16
6.1.5 Institution (textual, reQUITE).........cueeeeei i e e e e e e e e e e e aee e 17
6.1.6 Author (textual list, reqUITE)cceiecieiiiiiiii e er e e e e e e e s ennes 17
6.1.7 Specialist (textual, reqUIrEd).........cuueeuriririiiiiii e 17
6.1.8 (D= (= (oo o [=To R (=T o [1 1 =T) SR 17
6.1.9 AVZ= UTe F=iTo] g (oo [=To IR Yo [N~ | IR PSP 17
6.2 (] o] =T VA @ 1T [] R 8.1
6.2.1 Purpose (textual, FEQUITEA)uuieeecc e e ee e e e e e e s er e e e e e s e eneeaeeaeeeas 18
6.2.2 Explanation (textual, reQUIrEd)ceeueeeeeer i ee e e seererer e e e e e e s reeeee e 18
6.2.3 Keywords (textual liSt, FeQUITEA) ...« eeeeeeerriieiririeresesesassnrsrereeresaeesessnnensnneneeeeees 18
6.2.4 Citations (structured / textual, Optional)..........coeeeeeiiiiiiiiir e 18
6.2.5 Links (structured / textual, OPtONAI) . e« eieiieiieeee e e 19
6.3 Knowledge Category.....c.ccoveviieiiieeiiceeeenc e
6.3.1 Type (coded, required)
6.3.2 Data (structured, required)
6.3.3 Priority (coded, optional)
6.3.4 Evoke (Structured, reQUITEA)comeeeeerereeeeseisiasnnrnieeeeereeseesessnssseseereeeaeesssssnnnnnns 20
6.3.5 Logic (Structured, reqUIrE).........eiuucee i e ee e e e s e e e e e e e e e e e e e aeeaeaaane 20
6.3.6 Action (structured, reqUIrEd) ceeeeeieee e e e e 20
6.3.7 6170 =T aToy VA (%00 [=To o]) o] -1) SRR 20
6.4 (24T o1 (o= R o= 1= Te (o] VA (o] o111 o] o T-) U S 20
6.4.1 Default (coded, reqUITEA) ..o eeeeeee e e e e e e s e eraeeaeees 21
6.4.2 [I=TaTo [WF=To [N (oTo Lo [=To I 1T o [0 1T =To) TR U 21
7 STRUCTURED SLOT SYNTAX
7.1 LI 1G] T PP PPPPPPR PRI
7.1.1 Reserved Words
7.1.2 [0 [=T 01 () =T £ P PP PP PP PPPPPPTPPUPPPRN
7.1.3 SPECIAI SYMDOIS ..ttt e e ——————— 23
7.1.4 NUMDBDEE CONSTANTS ...ttt eeee ettt ettt e e e e e e e s e enb e e e e e e e e e e e e e e e anbebeeees 23
7.15 Time Constants............ccceeeeene
7.1.6 String Constants
7.1.7 Term Constantseeeveeeeeeee
7.1.8 Mapping Clauses
7.1.9 1070] 1110 1=T 01 £ T TP PPPUPPPPTPPPPPPPINt
7.1.10 WWHITE SPACE.....ciiiiiiiiii ettt o ettt e s e s e e e e e e e e e e e tae et eeseeeeaeeese s beaesana s e anaaeeaeeaaaes
7.1.11 Time-of-day Constants
7.2 (@ 100 =T g T4 i o o U SU
7.2.1 STALEMIENTS ..eeeiie ittt e e e e e e e e e e e e e e e e e e
7.2.2 EXPIESSIONS ..evievtiettittiit s s s 14444 e e e e e e e e e e ae e e eeeaeaeae b bes e as s e s e e e e e e eaeeeaaeeeeeeaererees
7.2.3 V22 L= o] [PP TU TP TR
I B N N I 4 o = T T TP U PP PPP PP
8.1 N PP PP TP PSP PPPPPPT PRSI
8.2 (2 T0To] =T o PP P TR OPOTPPPPP
8.3 N U001 o= SO PP PPPPPOTPP
8.4 B 0= TP PO P TP PRUPTPRPP
8.4.1 LT o1 = Y PSRRI
8.4.2 17T Lo o P PPREERR
8.4.3 N0 SRR
8.4.4 V=T o] 1] o o= PP PP TP PPPRPPP
8.4.5 B I Lo o =T 1T 0= SRR
8.4.6 (O 4 =T 0111 101 T PR T T OPPRPP
Page 2 © 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

8.5 (D H] 21 1o o NPT TP PP ORI 29
8.5.1 YU oI £/ =SSP 29
8.5.2 Time and Duration ArthMETICoo i 29

8.6 S 1] o OSSP

8.7 L1510 OO PR PR

8.8 S USSP

8.9 (O 1N 1T YA =TS U1 £
8.9.1 L T a = 1Y/ 101 RS
8.9.2 Retrieval Order
8.9.3 DAA VAIUE.......eiieee ettt s
8.9.4 Time Function Operator

8.10 ObjecCt...cceiiiiiiiiiiiii

8.11 Time-of-dayccoecvvvvvennnnn.

8.12 T2 Y0 Y- =Y PP

9 OPERATOR DESCRIPTIONS

9.1 (CT=T T = L o o] 1= 1T PR 4.3
9.1.1 NUMDBET Of AFQUIMENTS.....oiiiiiiiiiiiiiieit s e e et e e e e s e eaeaes
9.1.2 Data TYPE CONSIIAINTS ..uuuuvuuieiimmmmmm e e eeeeeeeeeeeteeiabb s as e s e e e s aesaaeeaeaeaaaeeeesesessnssnnes
9.1.3 List Handling..........cooccvvveiiiiiiieeennns
9.14 Primary Time HanAINgG............oeeresmmeeeeeeeeeeeeeeseeesiisieeeeeeeeaeesessnneeseereeeeeesesnsnnnnns
9.15 Time-0f-Day HandliNgc.oooiiiiiiee e e e e e e e e e s e e eeneee s
9.1.6 (@] 1= = 1o gl = 1= To=To =T o ol TP UPESER
9.1.7 ASSOCTALIVITY L.ttt a e e e e e e et e ae e e
9.1.8 Parentheses...........cccceeene

9.2 List Operators......ccccccveeeeeeevieiccceeeeeeeeennn
9.2.1 , (binary, left associative)
9.2.2 , (unary, non-associative)
9.2.3 Merge (binary, left-associative)
9.24 Sort (UNary, NON-8SSOCIALIVE)........ccmeiieeiee et e s e e e e s e e s e e e e e aeaeeeeeeaaaens
9.2.5 Add ... To ... [At ...] (ternary, NON-aSSOCIALIVE)..........cuieiiiiiiieiiiiiiie e 43
9.2.6 Remove ... From (binary, NON-aSSOCIAtIVE)...ccceciiiiiiiiiiiiiiiiiie e 43

9.3 R AT L= =T @] o =T = o] S 4.4
9.3.1 Where (binary, NON-8SSOCIALIVE).......cuemmmeuuuuiiiiiiiiaeieeeieeeeeeteeeraers e eas 44

9.4 (oo oz @] 01T -1 (o] £ TP 5.4
9.4.1 Or (binary, [eft aSSOCIALIVE)ceeemeireeieiee e s e e e e e e e e e e e s e nnereeaeees
9.4.2 And (binary, left associative)
9.4.3 Not (unary, non-associative)

9.5 Simple ComMPariSON OPEIALOISc. eeeeeeereieietteieeeerreteeeeesasssssreerereeeaeeassssnsssssresneraeeeeeasssananns
9.5.1 = (DINArY, NON-ASSOCIALIVE)uvvvttieeeeeeeeeeeiie it it eeieeebb e e s ee e e e e s e e aeaaaaeaeaeeeesesnanes
9.5.2 <> (binary, NON-ASSOCIALIVE)..........ceummmeieiieeieeee et et as e e e s s e e s e e aeeaeeaeeeeeaeaens
9.5.3 < (biNary, NON-aSSOCIALIVE)iiiiiieeeeee e e e ie ettt e e e e e e e e e e st err e e e e e e e s e e e s enrereneeees
954 <= (binary, NON-aSSOCIALIVE)..........ceummmmiiiieeieeie ittt as e e e s s e e s e e aeeaeeeeeeaeaeanns
955 > (biNary, NON-aSSOCIALIVE)iiiiiieeeceee e e is et ee e e e e e e e s e st err e e e e ae e s e e e s eeneereneeees
9.5.6 >= (binary, NON-aSSOCIALIVE)..........ceummmmiiiieeieeee ettt es e e e s s e e e e e e e e aeaaeeeaeseanns

9.6 IS COMPATISON OPEIALOIS. ... iiiieeeie ettt e e e e e e e e e e e e e et ettt aeee st aar s e e s aasaaeaaaeaaaeaaeneeesennns
9.6.1 Is [not] Equal (binary, NON-aSSOCIALIVE).........uuuiiiiieeeee e er e e e e e e e 48
9.6.2 Is [not] Less Than (binary, NON-aSSOCIAtIME).........cccevriiieririiiieieie e e e e s e e e e 48
9.6.3 Is [not] Greater Than (binary, NON-aSSOCEYLIV.uvuriiiiiiieeee e ceeeees e 48
9.6.4 Is [not] Less Than or Equal (binary, NoN-a&80/€)..........ccccvvvvvereeeeeeeereiiinenns
9.6.5 Is [not] Greater Than or Equal (binary, N@BETIatiVe)ooevviiiiiiiiiiiiieceie
9.6.6 Is [not] Within ... To (ternary, NON-aSSOMIBJcuurrrrreieeeeeiiiiriirieiereeemnrreererereeeeeees
9.6.7 Is [not] Within ... Preceding (ternary, na@saciative)............cccceeecvvvvnnnenn.
9.6.8 Is [not] Within ... Following (ternary, NOBS0CIAtiVe)vuveeiiieiieeeeeeeeen,
9.6.9 Is [not] Within ... Surrounding (ternary, nassociative)
9.6.10 Is [not] Within Past (binary, NON-aSSOCIALIV.cuueieieieaiaiiiiiiiiiieie e e i e e 50
9.6.11 Is [not] Within Same Day As (binary, NON@Sative)..............eueeeieieiieiiiiiiiieieeee 50

© 2008 Health Level Seven, Inc.. All rights reserved. Page 3

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.6.12 Is [not] Before (binary, NON-aSSOCIAtIVE)uuuuriiiiiiiie e s 50
9.6.13 Is [not] After (binary, NON-aSSOCIALVE) wuuu.vvrruiiiiiieiiee et 50
9.6.14 Is [not] In (binary, NON-ASSOCIALIVE) e iiveieieiiiiie e 50
9.6.15 Is [not] Present (Unary, NON-aSSOCIALIVE) cee..vvvuvurriiiiieieeeeeeeeeeeeeeeeevevvereraerrean s 51
9.6.16 Is [Not] NUll (UN@ry, NON-@SSOCIALIVE) wummensrrrrrrrerrreeeeseisiiiiiieirerrreeeeseasassnrererereeeeseeens 51
9.6.17 Is [not] Boolean (unary, NON-aSSOCIALIVE)uvuurriiiiiiiieiiaeeie e e e e e e eaeaaeneeeeeeeeraeranne 51
9.6.18 Is [not] Number (uUnary, NON-aSSOCIALIVE). ciieeeieeiiieiieiiieiiiiiiiii s e e e e 51
9.6.19 Is [not] String (UNary, NON-ASSOCIALIVE) c..uvvviviiieeeeee i ir e e e s er e e e e e e 51
9.6.20 Is [not] Time (UNary, NON-ASSOCIALIVE) cecuuurrrrriiriiiiiiiieeeeeeeeeeee e vvereraee s 51
9.6.21 Is [not] Time of day (unary, NON-aSSOCIGVE.........cceeveiiiiiiiiiiieieie e 52
9.6.22 Is [not] Duration (Unary, NON-ASSOCIALIVE).........uvrirreeeeerieiierirreeeeeeeeeeesseernrreareeeeeeens 52
9.6.23 Is [not] List (UNary, NON-8SSOCIALIVE) auuuuiiieriereiiiiiiiiiiiiieieeeee e e e e eeeeeseeeeeeeeeeeeaerearrennean 52
9.6.24 [not] In (binary, NON-aSSOCIALIVE)cceeiiiiiiiiiiiiiie e e e e e e e 52
9.6.25 Is [not] Object (Unary, NON-AaSSOCIALIVE) cun...iiiecieeiieieiie e e ee e e s e eeeree e e e e s s eeeeeeeees 52
9.6.26 Is [not] <Object-Type> (unary, NON-aSSOTEL...........cccvuvereeirrereeeesisieeieieeeeesaneenenens 52
9.7 (@ oTo1 0] g @] 0] o F= 14 1 o] g IO 0 1=] = Lo] £ PSSR, 53
9.7.1 (CT=T o =T = Ul o o] o 1= 4 1= PRSP 53
9.7.2 Occur [not] Equal (binary, NON-aSSOCIALIVE)uu....vvureriiiiieeeeeeeeeeeeeeeeeevevveeeeeeeere 53
9.7.3 Occur [not] Within ... To (ternary, NON-aSBME)ccceeveecrrrniririrereee s errmeaeeeeeeeens 53
9.7.4 Occur [not] Within ... Preceding (ternarynrassociative)..........ccccvvveeevieeee e ieeeneeeeenn, 53
9.7.5 Occur [not] Within ... Following (ternary, M@sSOCIative)cceeeeerereiiiiinrrnenennns 53
9.7.6 Occur [not] Within . . . Surrounding (ternampn-associative)cccccveeeeeeeeevcvnvennenn. 53
9.7.7 Occur [not] Within Past (binary, NON-aSSACE...............ccevvveviieerieiiiiiiiiieeeeeeeeaeiennns 53
9.7.8 Occur [not] Within Same Day As (binary, NEB@CIAtIVE)cuvviiriiiireeeeres i s 54
9.7.9 Occur [not] Before (binary, NON-aSSOCIAtIVE)cceeviiiiciiiieiririe e e e e e 54
9.7.10 Occur [not] After (binary, NON-aSSOCIAIVE) ce...vvvviieeeeeeis e e e e e 54
9.7.11 Occur [not] At (binary, NON-ASSOCIALIVE).ccceiiiieeeeie i e e e e e e e s e e e e e e e 54
9.8 Y (][O] o L] = Lo] OSSPSR 54.
9.8.1 || (binary, 1eft @SSOCIALIVE).........ieeeiaeieiee e 54
9.8.2 Formatted with (binary, [eft-aSSOCIAtIVE).........vviiiieie e 55
9.8.3 String ... (Unary, right aSSOCIALIVE)uuuuriiiiiiii i e 56
9.8.4 Matches Pattern (binary, NON-aSSOCIAtIVE) man . .vvreririiieieeeee et e e e e e e e 56
9.8.5 Length (unary, right-aSSOCIALIVE)......ccceueiiiiiiiiiii e e e e e e e er e e eeanes 56
9.8.6 Uppercase (unary, Hght-aSSOCIAtIVE) . .cceaiiiiviiiiiiiiiiire e e e 57
9.8.7 Lowercase (unary, rght-aSSOCIAtIVE). ... vuuriiiiiiiieiee e eees s e e e e e 57
9.8.8 Trim [Left | Right] (unary, right-assoCiat)Ve...........ccccvviveiiiiiieie e 57
9.8.9 Find...[in] String...[starting at]... (terparight-associative)...............ccoevvvvcemmemrvvvvvnnennnn 57
9.8.10 Substring ... Characters [starting at ...] fron{ternary, right associative).................. 58
9.8.11 Localized (Unary, NON-aSSOCIALIVE)...auceeeerirrireiiiiiiiiiiiiiises s ee e e e e e e aaeseeeeeeeeeeeeaererrrennean 59
9.8.12 Localized (binary, right-aSSOCIAtIVE)cccivvveereiiiiiiiiiiiiiiiee e ee e 59
9.9 F N 11 = TR @] o LT = o] £ SR
9.9.1 + (binary, left aSSOCIALIVE)ceeemeneriiiiee it e a e e e e e e
9.9.2 + (UNArY, NON-ASSOCIALIVE)eeeee e eeeeeeeesnnteteteeeeeeaeesesesssssnrneeeaeaeesessssnnssreneeees
9.9.3 - (binary, left associative)........... ;
9.94 - (unary, non-associative).............
9.9.5 * (binary, left @SSOCIALIVE)ccii e
9.9.6 [(DINary, 1eft ASSOCIAIVE)cummemereeeeeeeeieeeseseiecie e e e e e e s e s sssaerer e eeeeeeeesesennnennes
9.9.7 ** (DINArY, NON-ASSOCIALIVE)uvuuriiimmmmmeeeeeieeet e ettt s e e e e e e e e e e aaaaaeaesaeeeaenennns
9.10 =L 10] o To = @) o= = Lo] £ PSSR
9.10.1 After (binary, NON-aSSOCIALIVE)uueeiiiieeieeii e e e e e e e e e e e e eeeaeraane
9.10.2 Before (binary, non-associative)
9.10.3 AJO (UNArY, NON-ASSOCIALIVE)cmmmmmm e eeeeeeeeseissssnnnteteerreraeeeesesssrsnserereeeeeesesnmnnnses
9.10.4 From (binary, NON-aSSOCIALIVE).......cuummm e ieeiieeeieeiee et ie e e e e e e
9.10.5 Time of day [0f] (unary, right-aSSOCIALIVE). w.....ueiiiii e 61
9.10.6 Day of week [of] (unary, right aSSOCIAtIVE)............cuvuriiiiiiiiiiiiir e 62
9.10.7 Extract Year (unary, right-aSSOCIAtIVE) ...ccoieiiiiiiiiiiiiiiiiiit e e 62
Page 4 © 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.10.8 Extract Month (unary, right-aSSOCIAtIVE)uuuuriiiiii i 62
9.10.9 Extract Day (unary, right-aSSOCIALIVE) cuuuuaiiiiiiiiiiiiiii e e 62
9.10.10 Extract Hour (Unary, right-aSSOCIAtIVE) coaa...iivvvereeiiiiiiesses e e e e e e e e eeaeeeeeeeeeeeeaeeaeienne 63
9.10.15 Extract Minute (unary, right-aSSOCIAtIVE)ccceiiiiiiiiiiiiiii e e
9.10.12 Extract Second (Unary, rght-aSSOCIAtINE).-........cceiriiiiiieiiiiiie e
9.10.13 Replace Year [of] ... With (binary, right-@SRLIVE)evviiiiiiiiiiiiiiiieeeeeeee e
9.10.14 Replace Month [of] ... With (binary, rightsasiative).............cccccevviviiiiiiiiiiiieememe e,
9.10.15 Replace Day [of] ... With (binary, right-aSBaiVe)ccouveiiiiiiiiieiiiie e
9.10.16 Replace Hour [of] ... With (binary, right-asBtiVe)eueeeiiiiieiieriiins

9.10.17 Replace Minute [of] ... With (binary, rigtdsociative)

9.10.18 Replace Second [of] ... With (binary, righsaciative)

9.11 (DI = Ui T0] g @ 01T 7= (o] =SSP PURSPRPPPPRPN 5.6
9.11.1 Year (Unary, NON-aSSOCIALIVE)........cuecentreiieeiiieiie sttt ettt e et e e seibeee e
9.11.2 Month (unary, non-associative)

9.11.3 Week (unary, non-associative)

9.11.4 Day (Unary, NON-aSSOCIALIVE).........ccreeeetiiriieie et ettt s e
9.11.5 Hour (unary, non-associative)

9.11.6 Minute (unary, non-associative)

9.11.7 Second (unary, non-associative)

9.12 P aXe o | C=To F= Lol g @] o<1 r- 1 o] £ PSSR
9.12.1 General Properties:ccccvvevevenens
9.12.2 Count (unary, right associative)

9.12.3 Exist (Unary, right aSSOCIAtIVE)ccuvuiiiiiiiiiiiiiiiie i

9.12.4 Average (unary, right @SSOCIALIVE)...cccccceevieiiiiiiiier e e ee s e e e e s eeee s 66
9.12.5 Median (unary, right aSSOCIAtIVE)cemmemeerreeeeeieiiiiiiie et e e e e e e e s essreneer e e e e e e e e e ennnenees 66
9.12.6 Sum (Unary, right @SSOCIALIVE)cemmrcceeeeeeeieeciieieee e e ee e e e e e s eerree e e e e e e s e s snnrereneeees 67
9.12.7 Stddev (unary, right @SSOCIALIVE) ... ueeeeeeeii it e e e re e e e e e e eeeeee s 67
9.12.8 Variance (unary, right aSSOCIALIVE) .. e vevrrrrriiiiiiiisiiiiiee e e e e e e e e eeesaeeeeee e ee e 67
9.12.9 Minimum (unary, right @SSOCIALIVE)ceeeeururimiiiiiiieiieeeeeee et s 67
9.12.10 Maximum (unary, right @SSOCIALIVE)....cceeeiiiiiiiiiiieei i 68
9.12.11 Last (unary, rght aSSOCIALIVE) eeeeeeiieiiieiiiieiiiiitirrass s ses s e e e s e e e e aaeaaeeeeeeesesnnnes 68
9.12.12 First (Unary, right @SSOCIALIVE)cceeuieiiiiiiiiiiiiiiieeeee e e s ee e e e e e e e e eaee s 68
9.12.13 Any [IsTrue] (unary, rght @SSOCIALIVE) .eevvevreriiiiiiiiiiiisies e e e e e e e e eeeeee e e e e e e e 68
9.12.14 All [AreTrue] (unary, right @SSOCIALIVE)...........c.uvurriiiiiiiis e ee e eeeeee e e ee e 69
9.12.15 No [IsTrue] (unary, right @SSOCIALIVE)........ceeeiieiiiiiiiiiie it ie e e e e e ae e e e e e ennenees 69
9.12.16 Latest (Unary, right @SSOCIALIVE) ... ueerrieiiiiriiieieiiiiiie ettt 69
9.12.17 Earliest (Unary, right @SSOCIALIVE) . s srrriiieiieeiieeieieiieitieiiirsiesiarr s eaaeeaeae s 69
9.12.18 EIeMENt (DINAIY)eiiiiie e e e e e e e e e e ee e s ar e eeeaeeeeaeannnnn 70
9.12.19 Extract Characters ... (unary, right aS8ME)cooeeeeieiiiiiiiicce e 70
9.12.20 Seqto (binary, NON-ASSOCIALIVE)ceeummmreirrrriiriiiiiiiasiis e eeeaeeaeeteeeeeeeseee e 70
9.12.21 Reverse (Unary, Hght-aSSOCIALIVE) ..ceeeeerrrrrriiiiriieeeee e ee e e es e er e e e eee e 70
9.12.22 Index Extraction Aggregation OPEratOrS...... ... iiiiiiiereeeeeeeeeeeeeeeeeevveesensranrren s 71

9.13 Query AQQregation OPEIAtOFSuiiiiiceeeeeeieeeeeees ettt rereeeeeesss s s s arrrereaeesessssasnnsararereraeaeeesens 72
9.13.1 LCTCT o] = Ul o o] 01T [PPSR 72
9.13.2 Nearest ... From (binary, right aSSOCIAtNVE).........uiiiiiiiiiieiieeieieicee e 72
9.13.3 Index Nearest ... From (binary, right aSEDER)cooveiiviiiiiiriee e 72
9.13.4 Index Of ... From (binary, right-asSSOCIAHIVE.ccuriiiiiiiiiie e 73
9.13.5 At Least ... From (binary, right-aSSOCIQUVE.ccovvviiiiiiiiiiiiiiiiees e e e e e e eeeeeaeiaane 73
9.13.6 At Most ... From (binary, right-assoCiative)...........ccouiiieiriiiiii e 73
9.13.7 Slope (unary, right @SSOCIALIVE)ccoeeieiiiiiiieiiiiees e 73

9.14 TransfOrmMation OPEIALOIS ceememeeeeteeeeeseeesss et errreeeeeeessssaaateareeeaeaeeseas s nsnssnnsnarereeeeaees 74
9.14.1 (CT=T LT = L o o] 1= TSSO 74
9.14.2 Minimum ... From (binary, right @SSOCIAtIVE).........coiiiiiiiiiieiieiieeeeee 74
9.14.3 Maximum ... From (binary, right aSSOCIatiVE).............uuuviiiiiiiiiiiiii e, 74
9.14.4 First ... From (binary, right @SSOCIAtIVE)............uuuiiriiiiiiiiiie e 75
9.14.5 Last ... From (binary, right @SSOCIAtIVE).aa......evvuuiiiriiiiiiiiie e 75

© 2008 Health Level Seven, Inc.. All rights reserved. Page 5

Revision date: 2008-05-06

Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.14.6 Sublist ...Elements [Starting at ...] From ..ri{ggy, right-associative)uw 75
9.14.7 Increase (unary, fght @SSOCIALIVE)uuciirniiiiie i e

9.14.8 Decrease (unary, right associative)...
9.14.9 % Increase (unary, right associative)

9.14.10 % Decrease (unary, rght @SSOCIAtIVE).aae..vviviiiiiiiiieeee e er e e 76
9.14.11 Earliest ... From (binary, right @SSOCEIV............ccoeviiiiiiiiiiiiiiiii e 77
9.14.12 Latest ... From (binary, right @SSOCIALIVE)........cciiiiiiiiieieieieiiiee e s 77
9.14.13 Index Extraction Transformation OperatQrs...........cccuvrrrrireeeeeeririsciiiereeeee e e e esneneens 77
9.15 Query TransformMation OPEIALOrcccecccviiiieeiiieiii e e e e e e e taaaee e e e e et e e e aeeas 78
9.15.1 (CT=T T = L o o] 1= T OSSR 78
9.15.2 Interval (unary, right @SSOCIAtIVE)cccuvuiiiiiiiiiie e 78
9.16 Numeric Function Operators
9.16.1 Arccos (Unary, right @SSOCIALIVE)cccuemererrrrreeeereiiiiiitieieirrrreeesesesssrarareeeeeeaesesnnnnnens 78
9.16.2 Arcsin (unary, right @SSOCIALIVE).........ceeiieiiiiiiiiiee e ee e e e e e er e e e e e e 79
9.16.3 Arctan (unary, right @SSOCIALIVE)cceeeeieiriee e e e e e e e s e ennees 79
9.16.4 Cosine (unary, rght @SSOCIALIVE) ... ueeeeeeeieieiiiiiieieie e e e e ee e srr e e ee e s e e s eeeeeees 79

9.16.5 Sine (Unary, right @SSOCIALIVE)cuummmererriiiiriieee et ettt e e e aaaaes 79

9.16.6 Tangent (Unary, rght @SSOCIALIVE) ...uuuuceriiiiiiiii e e e e e e e e e e eeanns 79
9.16.7 EXp (Unary, right @SSOCIALIVE)........ceeeemreeeeeeeeieisiiiiiiieiieeteee e e e es s sernrereeae e e e s s s nnneeneeeeees 79
9.16.8 Log (unary, right @SSOCIAtIVE).......ccueeirieie et e e e e e 79
9.16.9 Log10 (unary, right @SSOCIALIVE)ccceeeururiiiiiiiiie e e ee e e e e es e r e e e e e e e 79
9.16.10 Int (Unary, right @SSOCIALIVE)........uuuuiiiiiiiiiieee e e e e s s s e e e e e s e s e e e nnnrnnes 80
9.16.11 Floor (unary, right @SSOCIALIVE).....ccceeeiiiiiiieiiiii et ee e e e e e e e e e e eeeeeaeraane 80
9.16.12 Ceiling (unary, right @SSOCIALIVE)cceeeeeeeei i e e e e e e e e e e e e reaeeees 80
9.16.13 Truncate (unary, right @SSOCIALIVE)uueuruiiriiiiiiieiee e e e e e ee e e e e e 80
9.16.14 Round (unary, right @SSOCIALIVE)....cceeeeeeeeeiiiiiiiiiiiiiiiieee e e e e s seerrrrrr e e e e e e s reaeeees 80
9.16.15 Abs (unary, right associative)
9.16.16 Sqrt (unary, right associative)
9.16.17 As Number (Unary, NON-aSSOCIALIVE) ..cceeeeeriiiiieeeiiiii ettt e e e e e e e e e 81
9.16.18 As Time (Unary, NON-aSSOCIALIVE)....ceueeeeriiieeeeeteiiiiiiiieieiereeaeeeesesssrnneeaeeeeeaesesennnnees 81
9.16.19 As String (Unary, NON-ASSOCIALIVE) .. cuueeeerriiiieiieiiieeeie it a e 81
9.17 TiME FUNCHON OPEIAONii i ieieieieeeeee ettt ee et e e e e e e s e st e e e e aeees e s snae e teaeaeeaeaaessasansnrsrnnnnees 82
9.17.1 Time (unary, right @SSOCIALIVE)ccceeeeiiiiiiiies e e a s 82
9.17.2 I 4TSN 1] o] =T o3 £ SRS 82
9.17.3 Attime (binary, right @SSOCIALIVE) ... e errreeeeeeeeisiiiiieieiereraeee e s e srseaeerereeeeaeseannnnnens 83
9.18 (01T A @] o1 =1 0] (=PSRRI 83.
9.18.1 Dot (binary, right @SSOCIALIVE)uceeeerieiiiiiiiiiiiiiiies e e e ee e e e ee e aee e 83
9.18.2 Clone (unary, right aSSOCIALIVE)..... e eeeeerieiirrieieerereteeeesssssesenreerereeeeessessssnreneneeees 83
9.18.3 Extract Attribute Names ... (unary, righd@SBative)cccooeeviiiiiiieiiiiceeeveeeeee e 84
9.18.4 Attribute ... From ... (binary, right associafiV.................cccceciiiiiiiiiiii e 84
L0 LOGIC SLOT .tttieiittiite e ittt ettt e sttt e e ettt e a4kt e e 4ot et e e e e am e e e e e aa b bbb e e e e abe et e e e e ke bt e e e e annbe e e e e s anneeeenaan
10.1 Purpose......cccooiiiiiiiiiiiii
10.2 Logic Slot Statements
10.2.1 YT o =T 0 A F= U= 1= o | O
10.2.2 [F-TREN SEALEMIENT.iiiiiiie e ettt e e e e e e e e e e e ee e e e e e e s e e annnees
10.2.3 Switch-Case Statement
10.2.4 Conclude Statement....................
10.2.5 Call SEALEMENT ...ttt ettt e e e e e e st e bttt e e e e ae e s nnbbbebeaeeaaaeaeeseaannnns
10.2.6 AT T L= e T T o PP PSPPSR PPPPPPRPON
10.2.7 [0 1Yo o PRSPPI
10.2.8 New Statement
10.3 [o T o0 [o | A 7= o =SS
R B AN 17 N @ I PR RPURPRRT
11.1 U 010 1T PO
11.2 Data SIOt STALEIMENTSeeiiiiiiie ettt e e e e r et e e e e e e e e s e e bbb bbb beeeeaaeaaeeseeannnnnranes
11.21 REAA STAEMENT.ceiiiiiii i cceeeeem ettt et e s e s anb b e eeeeeees
Page 6 © 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

11.2.2 ST T NSRS = U] 1T o S PP PUOPSN 99
11.2.3 YL] =1 (=11 4= o | PSSP PPPPRT 99
11.2.4 MLIM STAEEIMENT ...t o ettt e e et e e e ettt e e e e e e eebbe s r e e e e teaa e e eeeeeaenn 100
11.2.5 ArgumMENt STAtEMENT.cceiit e eeeeem e et e e e e et e e e eeeae s 100
11.2.6 MESSAGE STALEIMENT.......ciiiiiiiiitieeeeeee ettt e e e e e e e e e ee et e e e e eereebennbenaeneas 101
11.2.7 MeSSage AS SATEMENT....... it e e 101
11.2.8 DeStination StAtEMENT.........cuviiiicceeee e e e e e e e e e e e e e e et e e e e e e e 102
11.2.9 Destination AS StAtEMENT.........iiiiceeeeee e e e e e e e e e e e rereeees 102
11.2.10 ASSIQNMENT STALEMENT.......ciiiiiitieeeeeeeie e e eee e e e e e e e e e e aaeaaaeaaens
11.2.11 If-Then Statement..................voeme
11.2.12 Switch-Case Statement
11.2.13 Call Statement...................
0 2 I SV o T1 1= 1 T o S
0 S o T ol o Yo o PP PP PPRPUP
11.2.16 Interface StatemMeNt..........uuuiiiiiiieie e e e e e e e e ar e e e e
0 I A © o 1Yo 0] = (=Y .= PR
11.2.18 NEW SEALBMENT ..ot ceer oo e e et e e et e e et e et e e e e e eee bt r e e eeeeenanaeeaees
11.2.19 INCIUdE SEALEMENTueiii i e e e e e e e e e e e e e e e e e e eeaaeanenes
11.3 [= 12z TS (o] A 7= o = PSSR o4
12. ACTION SLOT ...ociviiieeiiiieeeee e . 104
12.1. PUIPOSE....utvieiiiiiiieneieeeenen, 104
D2 o (o] IS [0 AR =1 =] 1T PSSR 104
12.2.1 WIILE SEAEMENT......cii i eeeeeees e e ae s e e e e e e e e e e e aaeeeeeseereanes 104
12.2.2 RETUIN STAIEMENT ... e e e 105
12.2.3 [f-then StAtEMENT...... .o e e e e ereeeeee s 106
12.2.4 SWItCh-Case StatEMENT........cciii i et e et e e e e e ettt et a e e e e e e e aaeaaeees 106
12.2.5 L0 1| IS r= 1 1= 2 L= | PSRRI 106
12.2.6 RTAT L 11 L= I T o PP 106
12.2.7 o] 10T o USSP 106
12.2.8 ASSIGNMENT STALEIMENT.......eiiiiiiie e e e e e s e ee e e e e e e s ensenennes 106
12.3. Action Slot Usage
13. EVOKE SLOT ..o
0 Tt R o U1 o L0 < PP PPTPTN
13.1.1. Occurrence Of SOME EVENT.........co e a e e e e e e e e e ee e e raanes 108
13.1.2. ATIime Delay After @n EVENL.......... e eereieeeeeeeisieiieieereeeaeae e s e s ssrneaeeeaeeeeesesnnnnns 108
13.1.3. Periodically After an EVENL.......... o eeeeieeeeeieieisiiiiiieieteeeeeeesessssnrnneeeeeesesesesanssnsnnes
13.2. EVENTS. ...
13.2.1. EVENT PrOPEITIES ..ot e e e e e e e et e sttt e e e e aeaeesessnanaas e aeeeeaeeeeseennsnsnsnnnnees
13.2.2. TIME OF EVENTS .ottt sttt e e e e e e aaeaaaes
13.2.3. Declaration of Events
13.3. EVOKE SIOt StatemMENtS: ... iieiiiiieeiiee e e e e e e s s s s e e e e e e e e e e e rraraaaeeaaaaan 109
13.3.1. Simple Trigger STatEMENL............coeeemereriiiiiei e e eas 109
13.3.2. Delayed Event Trigger StatemMENtccccceeieeiieeeee e ee e er e ae e e 109
13.3.3. CoNStANt TIME THQGOET . iiiiiee e ceeeeee et e a e e e e aaeaeaaaaaaeaens 110
13.3.4. Periodic Trigger State€mMENT..........ccccce e e e e e e e e 111
13.3.5. Constant PeriodiC Trigger StAtEMENT e veeeereeeeeeieieeeiiieie e e e e e e s essrseeierereeeeeee e 112
13,4, EVOKE SIOt USAQEcciieeeiieiees et s e e e e ettt tee et eaaeeeeaasaaanssananaeaaaesesansnsnssssnseeeneeaeeesssannnnnnnes 21
ANNEXES (MANDATORY INFORMATION)
Al o Fo Yol (U LS AN = TU o o PRSP OU RO 113
A2 L TST T Y=o IRV o T o LSRR 138
A3 SPECIAl SYMDOIS. ...ciii it e e e e r e e e e e e e e araaaeaeaean 139
A4 Operator Precedence and ASSOCIALIVILY. ..uuuueeemieieieeiiiiiiieiiiiiiiiiiiiss s sresee s e e e e e e e aeeeaeeaaeesaeannnes 140
A5 Format Specifications (annex to Formatted WRBGtIoNn 8.8.2),oovvvvviviviiiiiiiiiceeeee s 145
A6 (0 o TT=To K 1Y (o = o OSSPt 148
© 2008 Health Level Seven, Inc.. All rights reserved. Page 7

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

APPENDICES (NON-MANDATORY INFORMATION)

X1 Structured Write Statement Suggested SChema.............oovvviiiiiiiiiiiiii e 151
X2 XML SChEMA FOF MLIMS ...ttt ettt et e ettt e e e e e e e e saaabb b b beeeeaaaaeeeesaaannrnnes 157
X3 Country and Language Codes for HL7 Internatidkffiliate Nationscccccevvvvivvvivevnniinnnnnnn. 170
X4 IS T= g o] L= 1Y PSR 171
X5 SUMMATY Of CRANQES. ..ovvviiiiiiiiii i s ettt rr e e e e e e e e e aaaeaeaaetaeeeeeeeaeaesrsassenn s 183
Page 8 © 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

WHAT'S NEW IN VERSION 2.8
(to be filled in)

1 SCOPE

This specification covers the sharing of computatihealth knowledge bases among personnel, infamat
systems, and institutions. The scope has beerelinit those knowledge bases that can be represantedet of
discrete modules. Each module, referred to as d@ddeldogic Module (MLM), contains sufficient knowdge to
make a single decision. Contraindication alertspagament suggestions, data interpretations, treatpnetocols,
and diagnosis scores are examples of the healthl&dge that can be represented using MLMs. Each Midd
contains management information to help maintain@vledge base of MLMs and links to other sourdes o
knowledge. Health personnel can create MLMs diyacting this format, and the resulting MLMs canused
directly by an information system that conformshis specification.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 9
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

2 REFERENCED DOCUMENTS

2.1 Health Level Seven Standards *:
HL7 Version 2.3
HL7 Version 3

2.2 ASTM Standards 2

E 1238 Specification for Transferring Clinical laabtory Data Messages Between

Independent Computer Systems

E 1384 Guide for Content and Structure of an Autech&rimary Record of Care

2.3 ANSI Standards 3:

ANSI X3.4 - 1986 Coded Character Sets-Americanddat Standard Code for Information

Interchange (7-bit ASCII)
ANSI/ISO 9899 - 1999 Programming Language C
ANSI/ISO/IEC 9075 - 2003 Information technology atBbase languages — SQL
ANSI/NISO Z39.88 - 2004 The OpenURL Framework fan@xt-Sensitive Services

2.4 1SO Standards *:

ISO 8601 — 2004 Data Elements and Interchange Rsfinformation Interchange
(representation of dates and times)

ISO 88599 — 1998 Latin-1 Coded Character Set

ISO / IEC 9075 — 2003 Information technology — atse languages — SQL

ISO 8879 — 1986 Information processing — Text affideosystems — Standard Generalized
Markup Language (SGML)

ISO 639-1 - 2002 Codes for the representation ofasaof languages -- Part 1: Alpha-2 code

ISO 3166-1 - 1997 Codes for the representatioranfes of countries and their subdivisions.

ISO/IEC 10646:2003 (Info;mation technology -- Unis&irMultiple-Octet Coded Character Set
UCs

Available from Health Level Seven, Inc.
3300 Washtenaw Ave, Suite 227, Ann Arbor, Ml 48108A. www.hl7.org

2 Annual Book of ASTM Standards, Vol 14.01. Avaikafrom ASTM International ,
100 Barr Harbor Drive, West Conshohocken, PA1942832 USA. www.astm.org

Available from American National Standards Inggtu
1430 Broadway, New York, NY 10018, USA. www.ansj.o

4 Available from ISO,
1 Rue de Varembe, Case Postale 56, CH 1211, GeBentzerland. www.iso.ch

Page 10 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

2.5 World Wide Web Consortium Recommendations °:
Extensible Markup Language (XML) 1.0 (Third Editjo2004-02-04

Extensible Markup Language (XML) 1.1 2004-02-04

2.6 Unicode Standards °:
Unicode 5.0

® Available from World Wide Web Consortium (W3C).
MIT, 32 Vassar Street, Room 32-G515, Cambridge, 02439 USA or
ERCIM, 2004, route des Lucioles, BP 93, 06902 Satiitipolis Cedex France. www.w3c.org.

Available from The Unicode Consortium.
P.O. Box 391476, Mountain View, CA 94039-1476, B.Swww.unicode.org.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 11
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

3 TERMINOLOGY

3.1 Definitions

3.1.1 Medical Logic Module (MLM), n

an independent unit in a health knowledge baséh EidVl contains maintenance information, links to
other sources of knowledge, and enough logic toengagingle health decision.

3.2 Descriptions of Terms Specific to This Standard

3.21 time,n

a point in absolute time. Also known as a timestaitnipcludes both a date and a time-of-day.

3.2.2 time-of-day, n
hours, minutes, seconds, and possibly, fractiorsobnds past midnight.

3.2.3 date, n

Gregorian year, month, and day.

3.2.4 duration, n

a period of time (for exampl8&,day9 that has no particular start or end point.

3.2.5 institution, n
a health facility of any size that will provide aotated decision support or quality assurance.

3.2.6 event,n

a clinically meaningful change in state. This iteaf but not always, reflected by a change in timécel
database. For example, ordering a medication &vant that could update the clinical database; when
stop time of the medication order is passed, thgpihg of the medication would be an event, evendgh
there might not be any change to the database.

3.3 Notation Used in This Standard

Throughout this standard, the location for opticglaments is noted by placing the optional elements
inside square bracket§]). This is not to be confused with the elementrafme|[] (see Section 9.12.18).
Thus,is [not] equal means thaits equalandis not equalare both valid constructs. The two most common
optional elements amot andof.

Page 12 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

4 SIGNIFICANCE AND USE

Decision support systems have been used for healehsuccessfully for many years, and severatuisths have
already assembled large knowledge bases. Theraarg conceptual similarities among these knowlduiges.
Unfortunately, the syntax of each knowledge baskfisrent. Since no one institution will ever dedia complete
health knowledge base, it will be necessary toeskaowledge bases among institutions.

Many obstacles to sharing have been identifieghadi®e vocabularies, maintenance issues, regidffedeshces,
liability, royalties, syntactic differences, etthi¥ standard addresses one obstacle by definipgtaxsfor creating
and sharing knowledge bases. In addition, the gyfaflitates addressing other obstacles by progdipecific
fields to enter maintenance information, assignnoéitinical responsibility, links to the literatirand mappings
between local vocabulary terms and terms in thevkexdge base.

The range of health knowledge bases is large. §ggsification focuses on those knowledge bases#mbe
represented as a set of Medical Logic Modules (MLNEs.ch MLM contains maintenance information, linés
other sources of knowledge, and enough logic toenaagingle health decision. Knowledge bases tlat@nposed
of independent rules, formulae, or protocols arstramenable to being represented using MLMs.

This specification, which is an outcome of the @alia-Presbyterian Medical Center 1989 Arden Honzekte
retreat on sharing health knowledge bases, wasetklargely from HELP of LDS Hospital, Salt LaketyZiUT

(1) and CARE, the language of the Regenstrief MedRemlord System of the Regenstrief Institute for He@lre,
Indianapolis, IN(2).

" The boldface numbers in parentheses refer tbsthef references at the end of this standard.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 13
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

5 MLM FORMAT

5.1 File Format

An MLM is a stream of text stored in an ASCII fl&NSI X3.4 - 1986) [international users may extend
this by using UNICODE encoding, but a conformingpiementation need only implement X3.4]. One or
more MLMs may be placed in the same file. Withiila an MLM begins with the markenaintenance:
and ends with the markend:. MLMs may be separated by white space, as defm&ection 7.1.10
and/or comments as defined in Section 7.1.9.

5.2 Character Set

Within an MLM only the printable ASCII characte®SCll 33 through and including 126), space (ASCII
32), carriage return (ASCII 13), line feed (ASC@)Lhorizontal tab (ASCII 9), vertical tab (ASCI1L)l and
form feed (ASCII 12) may be used. The use of hattabtab is discouraged because there is no agréeme
on how many spaces it represents. Other charasters,as the bell and backspace, are not allowtiwi
the MLM. Inside the library category (Section 6.2)string constant (Section 7.1.6) or comment {Sect
7.1.9), these character set restrictions are lifted

5.3 Line Break

Lines are delimited by line breaks, which are ang of the following: a single carriage return, rgéé line
feed, or a carriage return-line feed pair.

5.4 White Space

The space, carriage return, line feed, horizoata| vertical tab, and form feed are collectivelfereed to
as white space. See also Section 7.1.10.

5.5 General Layout

Annex Al contains a context-free grammar (formaladiption) of Arden Syntax MLMs expressed in
Backus-Naur Forn(3). See Appendix X4 for MLM examples. A typical MLM arranged like this.
maintenance:
slotname: slot-body;;
slotname: slot-body;;

library:
slotname: slot-body;;

knowledge:
slotname: slot-body;;

Resources: <optional>
Slotname: slot-body;;

end:
5.6 Categories
An MLM is composed of slots grouped into three liegplicategories, maintenance, library, and
knowledge, and one optional category, resourcesitégory is indicated by a category name followed
immediately by a colon (that imaintenance; library: , knowledge; andresources).White space may

precede the category name and follow the colonpbuwthite space is allowed between the categoryenam
and the colon. Categories must appear in the éhégrappear in this standard.

Page 14 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

5.7 Slots

Within each category is a set of slots.

Each slot consists of a slot name, followed immtijeby a colon (for exampléitle:), then followed by
the slot body, and terminated with two adjacentiselons ;) which is referred to as double semicolon.
White space may precede the slot name and folleveoton, but no white space is allowed between the
slot name and the colon. The content of the sldylepends upon the slot, but it must not contain a
double semicolon, except inside comments (Sectib®), string constants (Section 7.1.6), and mappin
clauses (Section 7.1.8).

Each slot must be unique in the MLM, and categaies$ slots must follow the order in which they are
listed in this standard. Some slots are requiretlathers are optional.

5.8 Slot Body Types

5.8.1

5.8.2

5.8.3

5.8.4

These are the basic types of slot bodies:

Textual Slots

A textual slot contains arbitrary text (except dlmuble semicolon, which ends the slot). As the MLM
standard is augmented, slots that are currentlgidered to be textual may become coded or struttidme
example of a textual slot is the title slot, whi@n contain arbitrary text. For required textuatslthe text
may be empty.

Textual List Slots

Some slots contain textual lists. These are listslmtrary textual phrases, optionally separatgdibgle
semicolons;). An example of a textual list slot is the keywsslot. The list may be empty. It may not
contain a double semicolon (which ends the slot).

Coded Slots

Coded slots contain a simple coded entry like abrra date, or a term from a predefined list. For
example, the priority slot can only contain a numbed the validation slot can contain only thener
production, research etc.

Structured Slots

Structured slots contain syntactically defined bladies. They are more complex than coded slotsaem
further defined in Section 7. An example of thisckif slot is the logic slot.

5.9 MLM Termination

The end of the MLM is marked by the waedd followed immediately by a colon (that end:). White
space may precede the terminator and follow thencbut no white space is allowed between the
terminator and the colon.

5.10 Case Insensitivity

Category names, slot names, andehé terminator may be typed in uppercase (for exanigiNy),
lowercase (for examplend), or mixed case (for exampleNd). See also Sections 7.1.1.2 and 7.1.2.1.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 15
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

6 SLOT DESCRIPTIONS

Next to each slot name is an indication of whetherslot is textual, textual list, coded, or stametl, and whether it
is required or optional. Slots must appear in tfiieothey appear in this specification.

6.1 Maintenance Category

The maintenance category contains the slots tleatifygnformation unrelated to the health knowledye
the MLM. These slots are used for MLM knowledgedoamintenance and change control. The
maintenance category also contains information eth@uversion of the Arden Syntax that is beingduse

6.1.1 Title (textual, required)
The title serves as a comment that describes prdfht the MLM does. For example,
title: Hepatitis B Surface Antigen in Pregnant Wome n;;
6.1.2 MImname (coded, required)
The mimname uniquely identifies an MLM within agli@ authoring institution. It is represented asring
of characters beginning with a letter and follovibgdetters, digits, period (.jninus (-),and underscores
(). An mimname may be 1 to 80 characters in lengtmnames are insensitive to case. The mimname is
distinct from the name of the ASCII file, which hmgms to hold one or more MLMs. For example,
mlmname: hepatitis_B_in_pregnancy;;
or
mlmname: hiv_screening.mim;;
While mimname is preferred as the name of this flehame is also permitted for backward compétibi
6.1.3 Arden Syntax version (coded, optional*)
The Arden Syntax version informs the compiler whielnsion of the standard has been used to write the
MLM. If this slot is missing, the MLM is assumedlie written with the ASTM E1460-1992 standard
(which didn't include this slot). Otherwise, thetsk of the following form:
arden: Version <Version number of Arden Syntax stan dard>;;
The text is not case sensitive. For example,
arden: Version 2;;
arden: version 2.1;;
arden: version 2.5;;
arden: version 2.6;;
* This slot is required for versions 2 and latetlod syntax, but is optional for backward compétibi
That is, if it is missing, the assumed versiondssion 1.
6.1.4 Version (textual, required)
The current version of the MLM is arbitrary texp to 80 characters in length, as is convenienttfer
institution's version control system, such as SC&8tware Change/Configuration Control System) or
RCS (Revision Control System). It is suggested ¥kations start at 1.00 and advance by .01 forlsmal
revisions and by 1 for large revisions. The exaotfof the version information is institution-spiégi but
must allow determining which MLM is the most recége Section 11.2.4). For example,
version: 1.00;;
Page 16 © 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

6.1.5 Institution (textual, required)

The institution slot contains the name of the aritigpinstitution, up to 80 characters in lengthr Fo
example,

institution: Columbia University;;

6.1.6 Author (textual list, required)

The author slot is free-form text. It should contailist of the authors of the MLM, delimited by
semicolons. The following format should be usetfhame, middle name or initial, last name, comma,
suffixes, comma, and degrees.

An electronic mail address enclosed in parentheegsoptionally follow each author's name. Internet
addresses are assumed. For example,

author: John M. Smith, Jr., M.D. (jms@camis.columbi a.edu);;

6.1.7 Specialist (textual list, required)

The domain specialist is the person in the institutesponsible for validating and installing thé&. M.
This slot should always be present but blank wihamsferring MLMs from one institution to anotherid
the borrowing institution's responsibility to fitiis slot and accept responsibility for the uséhef MLM.
The format is the same as for the author slot.example,

specialist: Jane Doe, Ph.D.;;
or

specialist: ;;

6.1.8 Date (coded, required)

The date of last revision of the MLM must be plagethis slot. Either a date or a date-time (tsagipoint

in absolute time composed of a date plus a timeéag}-can be used. The format for dates and fortitag
combinations is IS@omplete representation @xtended format (with th€ or t separator) with optional
time zones (ISO 8601:1988 (E)). Dateswrgy-mm-dd so that January 2, 1989 would be represented as
1989-01-02. The earliest date-time Arden Syntaxtraugport is January 1, 1800 (1800-01-01T00:00:002)
Times areyyyy-mm-ddThh:mm:ss with optional fractional seconds and optional tipo@es. Thus, 1:30
p.m. on January 2, 1989 UTC would be representd®&38-01-02T13:30:00Z. For example,

date: 1989-01-02;;

6.1.9 Validation (coded, required)
The validation slot specifies the validation statfithe MLM. Use one of the following terms:
a) production—approved for use in the clinical system,
b) research—approved for use in a research study,
c) testing—for debugging (when an MLM is written, this shobld the initial value), or
d) expired—out of date, no longer in clinical use.

An example is:
validation: testing;;

MLMs should never be shared with a validation ®atfproduction, since the domain specialist for the
borrowing institution must set that validation stat

© 2008 Health Level Seven, Inc.. All rights reserved. Page 17
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

6.2 Library Category

The library category contains the slots pertinerkriowledge base maintenance that are relateeto th
MLM's knowledge. These slots provide health pergbmith predefined explanatory information and &nk
to the health literature. They also facilitate sbarg through a knowledge base of MLMs.

6.2.1 Purpose (textual, required)
The purpose slot describes briefly why the MLM é&intg used. For example,
purpose: Screen for newborns who are at risk for de veloping hepatitis B;;
6.2.2 Explanation (textual, required)
The slot explains briefly in plain English how M works. The explanation can be shown to the theal
care provider when he or she asks why an MLM camits tdecision. For example,
explanation: This woman has a positive hepatitis B surface antigen titer
within the past year. Therefore her newborn is at r isk for developing
hepatitis B.;;
6.2.3 Keywords (textual list, required)
Keywords are descriptive words used for searctinguigh modules. UMLS tern{d) are preferred but not
mandatory. Terms are delimited by semicolons (comana allowed within a keyword). For example,
keywords: hepatitis B; pregnancy;;
6.2.4 Citations (structured / textual, optional)
The citations slots allows for the documentatioritdtions to relevant literature to be documentétin
an MLM. There are two supported formats for that@ns slot. The first is a textual format with no
implied structure. The textual format is provided hackward compatibility and is a deprecated forhe
second is a structured format described laterigngiction. When using the textual format, citadito the
literature should be entered in Vancouver st§le
In the structured format, citations must be numtheserving as specific references. The individual
citations may also be assigned a type. The typeldHollow the number and specify the function loé t
citation for the particular MLM. Citation types are
a) Support — citations which support, verify, or validate @gorithm in the logic slot;
b) Refute— citations which refute or offer alternativegte algorithm in the logic slot;
For example,
citations:
1. SUPPORT Steiner RW. Interpreting the fraction al excretion of sodium.
Am J Med 1984;77:699-702.
2. Goldman L, Cook EF, Brand DA, Lee TH, Rouan GW , Weisberg MC, et al. A
computer protocol to predict myocardial infarctio n in emergency
department patients with chest pain. N Engl J Med 1988;318(13):797-803.
Within the structured citations format, either Vaneer style(5) or OpenURL format (ANSI/NISO Z239.88)
are acceptable forms for representing individuticns. It is anticipated that the OpenURL formt
become the preferred form in future versions of gtandard. Appendix X2 contains examples ofioitat
formatted using the OpenURL format as part of tiseussion of an XML schema for representing MLMs.
Page 18 © 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

6.2.5 Links (structured / textual, optional)

The links slot allows an institution to define Igo other sources of information, such as an releict
textbook, teaching cases, or educational modulégre are two supported formats for the links Sibe
first is a textual format with no implied structuiiéghe textual format is provided for backward
compatibility and is a deprecated form. The sedsradstructured format described later in thisisact

The structured format may either use the ad-handofirst presented in Arden Syntax Version 2.ther
OpenURL format (ANSI/NISO Z39.88) to represent indual links. The individual links are delimiteg b
semicolons. The contents of the links are insttuspecific

Within the ad-hoc format, links to sites on intremer the internet should be prefixed by the tefRLU
(Uniform Resource Locator) and the title of the wtpent and link text should follow the defined startts
for representing protocols and data sources (Bgcument Title", 'FILE://link.html’; "Second Documig,
‘http://www.nim.nih.gov/"). Electronic materialrcalso be entered in tlo@ations slot above. The
preferred form for structured links is:

link type, space (ASCII 32), link description (Al Syntax term), comma, link text (Arden Syntax
string). The only required element is the link text

For example:

links:
OTHER_LINK "CTIM .34.56.78";
MESH "agranulocytosis/ci and sulfamethoxazole/ae";
URL 'NLM Web Page', "http://www.nlm.nih.gov/";
URL 'Visible Human Project’,
"http://www.nlm.nih.gov/research/visible/visible_ human.html”;
URL 'DOS HTML File', "file://doslinx.htm";
URL 'UNIX HTML File', "file://UnixLinx.html/";

Each institution should test for expired links whreneiving shared MLMs.

Appendix X2 contains examples of links formattethgghe OpenURL format as part of the discussion of
an XML schema for representing MLMs.

Note: This definition of the structured link differ frothe 2.5 and previous versions of the structured |
This change was made to bring the structured hitdk ¢onformance with the definitions of resource
statements as defined in Section 6.4. Futureseisi the Arden Syntax standard will provide medbiars
for calling external links, it was decided to brdmckward compatibility on this issue to make tHlated
constructs of links and resources have paralletire. As the structured link has not been widely
implemented it was felt that this was the propeetio make this change.

6.3 Knowledge Category

The knowledge category contains the slots thatadigtapecify what the MLM does. These slots defime
terms used in the MLM (data slot), the context lick the MLM should be evoked (evoke slot), the
condition to be tested (logic slot), and the actmitake should the condition be true (action slot)

6.3.1 Type (coded, required)

The type slot specifies what slots are containgtiérknowledge category. The only type that has bee
defined so far islata_driven, which implies that there are the following sladsata, priority, evoke, logic,
action, and urgency. For backward compatibilityhvthe 1992 standard, the tygata-driven (with a dash
"-" separating the words) is also permitted. That i

type: data_driven;;
or

type: data-driven;;

© 2008 Health Level Seven, Inc.. All rights reserved. Page 19
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

6.3.2

6.3.3

6.3.4

6.3.5

6.3.6

6.3.7

Data (structured, required)

In the data slot, terms used locally in the MLM arapped to entities within an institution. The attu
phrasing of the mapping will depend upon the ingtin. The details of this slot are explained irctim
11.

Priority (coded, optional)

The priority is a number from 1 (low) to 99 (highpt specifies the relative order in which MLMs sltb
be evoked should several of them satisfy their evokeria simultaneously. An institution may cheos
whether or not to use a priority. The institutisimésponsible for maintaining these numbers todavoi
conflicts. A borrowing institution will need to adjt these numbers to suit its collection of MLMghk
priority slot is omitted, a default value of 50used. For example,

priority: 90;;

priority: 40.5;;

Evoke (structured, required)

The evoke slot contains the conditions under wkiehMLM becomes active. The details of this slet ar
explained in Section 13.

Logic (structured, required)

This slot contains the actual logic of the MLMgknerally tests some condition and then concltrdesor
false The details of this slot are explained in Secfién

Action (structured, required)

This slot contains the action produced when th&lsipt concludesrue. The details of this slot are
explained in Section 12.

Urgency (coded, optional)

The urgency of the action or message is represastechumber from 1 (low) to 99 (high), or by aiafale
representing a number from 1 to 99. It is recomredritiat only integers be used as values in thenayge
slot. Whereas the priority determines the ordesx@fcution of MLMs as they are evoked, the urgency
determines the importance of the action of the Maly if the MLM concludes true (that is, only ifeh
MLM decides to carry out its action). If the urggrsiot is omitted, or the variable representingemay is
null or outside the range 1 to 99, a default urgesf&0 is used. For example,

urgency: 90;;

urgency: urg_var;;

6.4 Resources category (optional)

The optional resources category contains a setngfuage slots that specify the textual resourceghich

the localized operator may be applied to obtainsags contents in different languages (Section §.8.1
Each language slot defines a set of key/value pladtsrepresent text constants in one specificdagg. At
least one language slot is required if the res@ucagegory is defined. Its structure is:

resources:
default: <language code>;;
language: <language code>
<set of language specific resources> ;;
language : <language code>
<set of language specific resources> ;;

Page 20

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

The language codes are defined either as 2-chat&@®e639-1 language codes or as combination ef a 2
character ISO 639-1 language code and a 2-chal&®DeB166-1 geographical code concatenated by an
underscore. That is,

en

or

en_US
or

en_GB
or

fr

The ISO 639-1 code is mandatory while the exterubedbination of language and region is optional.
Implementing systems that support localization gisins extended language code (that is, a locale) c
further define resources for the individual usewné specific language in different regions in thaxld:

6.4.1 Default (coded, required)

When using the localized operator, the implemengiygiem has to retrieve the current user language
setting. The default slot specifies what languaggrg) has to be applied on the MLM when this user
language cannot be retrieved by the implementistesy. The value of the default slot is a languagkec
as defined in Section 6.4. That is,

default: de;;
or
default: en_US;;

6.4.2 Language (coded, required)

The resources category also consists of one or langeiage slots. Each language slot contains of a
language code as defined in Section 6.4 followed bgt of key/value pairs. Each key is a term (see
Section 7.1.7) and its associated value is a stdmgtant (Section 7.1.8). Each key is separated fts
value by a colon (:). Each string defines theiltesf the localized operator when applied to the
corresponding term. That is,

language: en

'msg': "Caution, the patient has the following al lergy to penicillin
documented: *;

‘creat’. "The patient's calculated creatinine cle arance is
%f ml/min."

language: de

'msg": "Vorsicht, zu diesem Patienten wurde die f olgende Penicillinallergie
dokumentiert: *;

‘creat’: "Die berechnete Kreatinin-Clearance des Patienten betrégt %f
ml/min."

© 2008 Health Level Seven, Inc.. All rights reserved. Page 21
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

Each language slot must contain a unique languade ¢SO 639.1) or optionally, a language code
concatenated with an underscore “_" followed bggion code (ISO 3166-1). If these region codes are
used, every entry associated with the language cwndain a region code. For example,

language: en_US [..] ;;

language: en_UK [..] ;;

is valid while

language: en [..] ;;
language: en_US [..] ;;

iS not.

The resources category may contain multiple langsmts with a variety of <language code>_<region
code> definitions. If the implementing system idycable to determine the required language aiment
but not the required region, the first languagé siatching that language is chosen. In the foltawi
example, if only the language code ‘de’ was knotlie, German definition (de_DE) would be used:
language: de_DE [..] ;;
language: de_AT [..] ;;

Page 22

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

7 STRUCTURED SLOT SYNTAX

7.1 Tokens

The structured slots consist of a stream of charattings known as lexical elements or tokenss&he
tokens can be classified as follows:

7.1.1 Reserved Words

Reserved words are predefined tokens made ofdedtet digits. They are used to construct statenents
represent operators, and to represent data cosisg&orhe are not currently used, but are reservefttiore
use. The predefined synonyms of operators as weéheoperators themselves are considered synonyms.

The existing reserved words are listed in Annex A2.
7.1.1.1 The

The is a special reserved word which is ignored wherévs found in a structured slot (that is, itrieated
exactly the same as white space). Its purposeiisfmve the readability of the structured slots by
permitting statements to be more like English.

7.1.1.2 Case Insensitivity

With the exception of theormat with ... format specification, the syntax is insensitivete case of
reserved words. That is, reserved words may beltypappercase, lowercase, and mixed case. For
examplethen andTHEN are the same word. See Sections 5.10 and 9.8 2rarek A5.

7.1.2 ldentifiers

Identifiers are alphanumeric tokens. The first elater of an identifier must be a letter, and tls neust be
letters, digits, and underscores.(dentifiers must be 1 to 80 characters in lendths an error for an
identifier to be longer than 80 characters. Reskwerds are not considered identifiers; for exaniblen
is a reserved word, not an identifier. Identifiare used to represent variables, which hold data.

7.1.2.1 Case Insensitivity

The syntax is insensitive to the case of idensfi&ee Sections 5.10 and 7.1.1.2.

7.1.3 Special Symbols

The special symbols are predefined non-alphanungkens. Special symbols are used for punctuation
and to represent operators. They are listed in Ak

7.1.4 Number Constants

Constant numbers contain one or more digit®o@) and an optional decimal poin}.((As in Specification
E 1238 and HL7 2.3]1 and345.are valid numbers.) A number constant may end aitlexponent,
represented by & or e, followed by an optional sign and one or moretdigrhese are valid numbers:

0

345

0.1
34.5E34
0.1e-4
.3

3.

3el0

© 2008 Health Level Seven, Inc.. All rights reserved. Page 23
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

7.14.1

Negative Numbers

Negative numbers are created using the unary nuipegator {, see Section 9.9.4). The minus sign is not
strictly a part of the number constant.

7.1.5 Time Constants
Time constants use the ISO extended format (wi tbr t separator) for date-time combinations with
optional fractional seconds (usinfprmat) and with optional time zones (see Sedfidn8).
7.1.5.1 Fractional Seconds
Fractional seconds are represented by appendiegimal point () and one or more digits (for example,
1989-01-01T13:30:00.123
7.1.5.2 Time Zones
The local time zone is the default. ISO Coordindtediversal Time (UTC) is represented by appendiag a
to the end (for exampld989-01-01T13:30:00.123Z The local time zone can be explicitly stated by
appendingt or - hh:mm to indicate how many hours and minutesdballtime is ahead or behind UTC.
Thus EST (Eastern Standard Time, United Statesrdrica) time zone would ud®89-01-01T13:30:00-
05:00, which would be equivalent tt989-01-01T18:30:002
7.1.5.3 Constructing times
The + operator can be used to construct a time thorations. Here is an example of constructingreeti
1800-01-01 + (1993-1800)years + (5-1)months + (I)ddys produces the valuE993-05-17
7.1.6 String Constants
String constants begin and end with the quotatiarkrfi’, which is ASCII 34). For example,
"this is a string".
There is no limit on the length of strings.
7.1.6.1 Internal Quotation Marks
A quotation mark within a string is representediBing two adjacent quotation marks. For example,
"this string has one quotation mark: ™ ".
7.1.6.2 Single Line Break
Within a string, white space containing a singtelbreak (see Section 5.3) is converted to a spzee.
For example,
"this is a string with
one space between 'with' and ‘one™
7.1.6.3 Multiple Line Breaks
Within a string, white space containing more thae bne break is converted to a single line break.
"this is a string with
one line break between 'with' and ‘one™
7.1.7 Term Constants
Term constants begin and end with an apostropkiki¢h is ASCII 39), and they contain a valid mimream
For example,
‘mlm_name'
Page 24 © 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

7.1.8

7.1.9

7.1.10

7.1.11

Mapping Clauses

A mapping clause is a string of characters thairtsegith{ and ends with (ASCII 123 and 125,
respectively). Mapping clauses are used in the glatdo signify institution-specific definitionsish as
database queries. The only requirement imposedhan i& within the curly brackets is that curly kats
are not allowed within mapping clauses. The definibf comments and quotes inside mapping classes i
not specified by this standard; it is recommendhed they be the same as those given in this stan@iae
Arden Syntax conventions for variable names, sigotaae insensitivity or the treatmenttuf as white
space, need not be observed in a mapping clausmafping>may (in an implementation-defined
manner), within the curly brackets, use Arden \Ja@ds; but it cannot set any Arden variables (Arden
variables can only set by tk@ar>(s) on the left side of the assignment operaRefause of this, an
MLM may require some modification before it cangsecessed at another institution, even if the other
institution's compiler is set to skip over read piags.

It is strongly recommended that MLM authors includenments to all the mapping clauses used in an
MLM, so MLM recipients understand the intentiontlbé mapping clause definition when sharing MLMs.
Identifiers from the UMLS Metathesaurus could aiddentifying and describing the concepts in the
comments. Authors should also put all literals eodstants in the data slot, with explanation, toval

MLM recipients to more easily customize MLMs.

Comments

A comment is a string of characters that begink Witand ends with/. Comments are used to document
how the slot works, but they are ignored logicélile the and other white space). Comments do not nest
(e.g.,/* Acomment /* */ is a single comment). A comment need not be pexted followed by white
space. Thusg/**/y is the same asy.

A comment may also be specified by the charaétéhsough line break (see Section 5.3). WHes
encountered, everything else on the line is igndreduding*/.

White Space

Any string of spaces, carriage returns, line febdsizontal tabs, vertical tabs, form feeds, anaicents is
known as white space. White space is used to gepatteer syntactic elements and to format thefelot
easier reading. White space is required betweervemyokens that may begin or end with lettersitdjgr
underscores (for exampli€done). They are also required between two string contsta hey are optional
between other tokens (for exampe4 versus3 + 4). See also Sections 5.4 and 7.1.1.1.

Time-of-day Constants

Time-of-day constants use the ISO format (for exani®:30, 13:23:00.12Bwithout the date field.
Constants are defined analogously to time constantefined in 7.1.5. Time-of-day constants must
contain at least the two-digit hour and minute congmts — in other words, they must consist of two
integers ranging from 00 to 23, one colon, and tvaze integers ranging from 00 to 59. Seconds,
fractional seconds and time zones are optionairia-bf-day constants. Midnight is expressed as
00:00:00.000and all other time-of-day values are greater thavalue.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 25
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

7.2 Organization

The tokens are organized into the following coretisu

7.2.1 Statements

A structured slot is composed of a set of statemdfdch statement specifies a logical constraiahor
action to be performed. In general, statementsamed out sequentially in the order that theyespp
These are examples of statements (each is prebgdedomment that tells what it does):

/* this assigns 0 to variable "varl" */

let varl be 0;

/* this causes the MLM named "hyperkalemia" to be e xecuted */
call "hyperkalemia’;

/* this concludes "true" if the potassium is greate rthan 5 */

if potassium > 5.0 then
conclude true;
endif;

7.2.1.1 Statement Termination

All statements except for the last statement iloarsust end with a semicolon)(Thus, the semicolon
acts as a statement separator. If the last statevharslot has a terminating semicolon, there rbesit
least one white space between it and the doubl&skm that terminates the slat;(is illegal but;/**/;;
is legal). For example, the logic slot could contain:

logic:

last_potas := last potas_list;

if last_potas > 5.0 then

conclude true;

endif;

The syntax of the statements depends upon theidudivslot. For a detailed description of the akdole
statement types in each structured slot, see $acti@, 11, 12, and 13.

7.2.2 EXxpressions

Statements are composed of reserved words, sggoidlols, and expressions. An expression repreaents
data value, which may belong to any one of thesygefined in Section 8. Expressions may containcdiny
the following:

7.2.2.1 Constant

The data value may be represented explicitly uaingnstant like the numbay the time1991-03-
23T00:00:0Q etc. These are valid expressions:

null

true

3454

"this is a string"
1991-05-01T23:12:23

7.2.2.2 Variable

An identifier (see Section 7.1.2) within an expressignifies a variable (see Section 7.2.3). Trese
valid variables:

varl
this_is_a_variable
a

Page 26 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

7.2.2.3

7.2.3

7.23.1

7.2.3.2

Operator and Arguments

An expression may contain an operator and one oe sub-expressions known as arguments. For
example, iB+4, + is an operator angland4 are arguments. The result of such an expressiaméw data
value, which is7 in this example. Expressions may be nested sathakpression may be an argument in
another expression. These are valid expressions:

4 * cosine 5
varl =7 and var2 = 15
(4+3) * 7

For details on operators, precedence, associatanty parentheses, see Section 9.1.

Variables

A variable is a temporary holding area for a datlue. Variables are not declared explicitly, b ar
declared implicitly when they are first used. Aiabte is assigned a data value using an assignment
statement (see Section 10.2.1). When it is lated irs an expression, it represents the value that w
assigned to it. For examplearl is a valid variable name. If the variable is ubetbre it is assigned a
value, then its value isull.

Scope

The scope of a variable is the entire MLM, notradividual slot. MLMs cannot read variables fromeath
MLMs directly; thus, variables used in an MLM arat mvailable to MLMs that are called (see Section
10.2.5). Non-Arden variables may be referencedssdavithin mapping statements, as restricted by the
special rules for the individual mapping stateméfdsexample, Section 11.2.4); in mapping stateisien
Arden variables may be referenced but not set.iftstitution-defined how conflicts between Ardemda
non-Arden variable names are resolved.

Special Variables

Some variables, such as event variables, MLM vlesahlmessage variables, and destination variadles,
special. They can only be used in particular coiess; and not in general expressions. These vasgalde
special assignment statements in the data slatfased in Section 11 (these special assignmergrstts
are equivalent to declarations for the specialaldes). Special variables can be converted togstiamd
passed as arguments. The only valid operators exiadvariables aris [not] equal (Section 9.6.1)
(Section 9.5.1), and> (Section 9.5.2).

© 2008 Health Level Seven, Inc.. All rights reserved. Page 27
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

8 DATATYPES

The basic function of an MLM is to retrieve patielata, manipulate the data, come to some deciarahpossibly
perform an action. Data may come from various sesjrsuch as a direct query to the patient databas®stant in
the MLM, or the result of an operation on otheradat

Data items may be kept in an ordered collectioteda list (ordered by position in the list, ngt frimary time).
Lists are described further in Section 8.8.

The data are classified into several data types.

8.1 Null

Null is a special data type that signifies uncettaiSuch uncertainty may be the result of a ldck o
information in the patient database or an expfiait value in the database. Null results from an &rror
execution, such as a type mismatch or divisiondrg.zNull may be specified explicitly within a slaging
the wordnull (that is, the null constantEntities of data type null may also have a printane. The
following expressions result in null (each is pideg by a comment):
/* explicit null */
null
[* division by zero */
3/0
/* addition of Boolean */
true + 3

8.2 Boolean

The Boolean data type includes the two truth valtres and false. The wotdue signifies Boolean true
and the wordalse signifies Boolean false.

The logical operators use tri-state logic by using to signify the third state, uncertainty. For exdenp
true or null is true. Althougmull is uncertain, a disjunction that includese is always true regardless of
the other arguments. Howevéalse or nullis null becauséalsein a disjunction adds no information. See
Section 9.4 for full truth tables.

8.3 Number

There is a single number type, so there is nordistin between integer and floating point numbers.
Number constants (for exampR4E-12 are defined in Section 7.1.4. Internally, altametic is done in
floating point. For exampld,/2 evaluates t@.5.

8.4 Time

The time data type refers to points in absolutetfiinis also referred to as timestamp in othetesys.
Both date and time-of-day must be specified. Titreesk to the year 1800 must be supported and times
before 1800-01-01 are not valid. Time constantsé€i@mple,1990-07-12T00:00:0Pare defined in
Section 7.1.5.

8.4.1 Granularity

The granularity of tim&eyond milliseconds is left to the implementingamce Times stored in patient
databases will have varying granularities. Wheima is read by the MLM, it is always truncatedhe t
beginning of the granule interval. For exampleh# time-of-day is recorded only to the minute ntiero
seconds are assumed; if only the date is known, ttieetime-of-day is assumed to be midnight.

Page 28 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

8.4.2 Midnight
Midnight represents the beginning of a day anksessed as T00:00:00 in a time data type, or £¥0Gs
a time-of-day. 24:00 isot defined.

8.4.3 Now
The wordnow is a time constant that signifies the time whenNH.M started executiorNow is constant
through the execution of the MLM; that isniéw is used more than once, it will have the sameevalu
within the same MLMNow inside a nested MLM will therefore be differerrin thenow of the calling
MLM.

8.4.4 Eventtime
One way that MLMs are evoked is by a triggeringrevEor example, the storage of a serum potassium i
the patient database is an event that might evokdlaM. The wordeventtimeis a time constant that
signifies the time that the evoking event occulfed example, the time that the database was ugiate
Theeventtimeis useful because MLMs may be evoked after a delay; usingeventtime, the MLM can
query for what has occurred since the evoking event

8.4.5 Triggertime
If the MLM is triggered directly by an event or @gher MLM, thetriggertime is the same as the
eventtime If the MLM is triggered by a delayed trigger (s&ection 13.3.2) or a delayed MLM call (see
Section 12.2.5), thigiggertime is theeventtime plus the delay time. Usirtgggertime, an MLM can
trigger another MLM as if the second MLM were ditgdriggered by the event. The following inequlit
is guaranteed within a single MLMventtime < triggertime < now.

8.4.6 Currenttime
The wordcurrenttime represents the system time at the instant the isa@dcountered during MLM
executionCurrenttime differs fromnow in thatcurrenttime constantly changes, whitf@w remains
constant while an MLM runs. Thus, the time requite@éxecute an MLM (or query) can be determined by
subtractingnow from currenttime . The following inequality is guaranteed withiniagde MLM:
eventtime <= triggertime <= now <= currenttime

8.5 Duration
The duration data type signifies an interval ofdithat is not anchored to any particular pointthiscdute
time. There are no duration constants. Insteachailds durations using the duration operators &aaion
9.10.7). For examplé, day, 45 secondsand3.2 monthsare durations.

8.5.1 Sub-types
The duration data type has two sub-types: montbssanonds. The reason for the division is that the
number of seconds in a month or in a year dependieostarting date. Durations of months and yaegs
expressed as months. Durations of seconds, mirhdass, days, and weeks are expressed as seconds.
There are no complex durations; the sub-type meigither months or seconds, but not both. For both
types of durations, the duration amount may beatifig point value.
The printing of a duration (that is, its string si@n) is independent of its internal representafidre health
care provider who reads the result of an MLM matynealize that there are two sub-types of durations
How durations are printed is location-specific. Egample, the string version 6E+08 secondsnight be
19.01 years See Section 9.8.

8.5.2 Time and Duration Arithmetic
Operations among times and durations are carriedfollows:

© 2008 Health Level Seven, Inc.. All rights reserved. Page 29

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

8.5.2.1

8.5.2.2

8.5.2.3

8.5.24

Time - Time

The subtraction of two times always results in@ases duration. For examplE990-03-01T00:00:00 -
1990-02-01T00:00:00esults in2419200 seconds

Time and Seconds

The addition or subtraction of a time and a secahuiation results in a time. The arithmetic is
straightforward: the time is expressed as the numbgeconds since some anchor point (for example,
1800-01-01T00:00:0pand the number of seconds is added to or subttdgim the time. For example,
1990-02-01T00:00:00 + 2419201 secomésults in1990-03-01T00:00:01

Time and Months

The addition or subtraction of a time and a moudili®tion results in a time. The time is expressedkite

and time-of-day format (for exampl£991-01-31T00:00:0D Months are then added to or subtracted from
the year and month components of the date (tha®8&1-01in the example). If the resulting time is invalid
due to the number of days in the new month, therdttys are truncated to the last valid day of tbatm

For example1991-01-31T00:00:00 + 1 monthesults in1991-02-28T00:00:00If the month has a
fractional component (for example,l monthg then integer months are used (thaflimjonth and2
monthsin the example) and the result is computed throoggrpolation (the integer part of the months are
added; then the fractional part is used on the mextth for addition and on the previous month for
subtraction). For exampl&991-01-31T00:00:00 + 1.1 month®sults in1991-02-28T00:00:00 + (0.1 *
2629746 seconds)r 1991-03-03T01:02:54.6xplanation:

1991-01-31T00:00:00 + 1 month =1991-02-28TO@OO:
and
0.1 Months * 2629748econds / month [from 8.5.2.4] =262974.6 seconds
262974.6 seconds / (60 seconds / minute) / (1440ites /day) = 3.0436875 days
0.0436875 days * 1440 minutes / day = 62.91 minutes
=1 hour, 2 minutes, 54.6 seconds.
therefore
0.1 months = 3 days 1 hours 2 minutes 54.6 seconds
thus
1991-01-31T00:00:00 + 1.1 months =1991-02-28T0QO + 3 days 1 hour 2 minutes 54.6 seconds
=1991-03-03T01:02:54.6

Contrary to addition and subtraction on numberdjtamh and subtraction of durations is not invdgitFor
example:

1993-01-31 + 1 month = 1993-02-28
1993-02-28 - 1 month =1993-01-28 (3 days earlier)

The order of operations is importatd+1 month)+1 daymay have a different value thdm(1 month+1
day).

Other examples:

1991-01-31T00:00:00 - 2.1 months = 1990-11-26T22:57 :05.4
1991-01-31T00:00:00 - 1.1 months = 1990-12-27T22:57 :05.4
1991-04-30T00:00:00 - 0.1 months = 1991-04-26T22:57 :05.4

Months and Seconds

Operations between months and seconds are dornstogonverting the months arguments to seconds
using this conversion constant: 2629746 secondshr(@me average number of seconds in a month in the
Gregorian calendar). For examplemonth / 1 secondesults in2629746

Page 30

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

8.6 String
Strings are streams of characters of variable kergjting constants are defined in Section 7.1086. F
example,
"this is a string constant"
8.7 Term

Terms are currently used only to represent mimnanmitbén a structured slot and the link text portioina
structured link record. They are used only iral statement (see Section 10.2.5). In the future Wiktyoe
used for controlled vocabulary terms. Term constan¢ defined in Section 7.1.7. For example,

'mim_name2'
‘http://www.nIm.nih.gov/'

8.8 List

Alist is an ordered set of elements, each of whiely be null, Boolean, event, destination, mesdage,
number, time, duration, or string. There are ndetehsts; that is, a list cannot be the elemerarafther
list. Lists may be heterogeneous; that is, the efgmin a list may be of different types. Thererig list
constant, the empty list, which is signified byngsa pair of empty parenthes€s:White space is allowed
within an empty list's parentheses. Other listscagated by using list operators like the comgéo(build
lists from single items (see Section 9.2). Fordhgput format of lists (including single elemersts), see
Section 9.8. For example, these are valid lists:

4,3,5

3, true, 5, null

1

0

If operators that expect list arguments are presenon-list arguments, the arguments are implicitly
converted to single-element lists before the opeliatapplied.

8.9 Query Results
The result of a database query has a time valaddition to its data value.

Queries in the data slot retrieve data from theepatlatabase or from other databases (for exaraple,
controlled vocabulary database or a financial deejp The result of a query is assigned to a Viariab
use in the other slots.

8.9.1 Primary Time

Every item in the patient database is assumedwte s@me primary time (also called time of occurednc
associated with it. This time is defined as the icadly relevant time for that query. For differemttities,
the primary time might signify different times. Themary time of a blood test might be the timevits
drawn from the patient (or the closest to that Jinadereas the primary time of a medication ordighmn
be the time the order was placed. If there is ndicadly relevant time for a data item, its primairye
value should be equivalent to teeenttime (the time when the information was correct).

Implicit in every query to the patient databasa request for the primary time of the data. Foneple,
when one retrieves a list of serum potassiums astiglly retrieves a list of pairs. Each pair corga data
value (the serum potassium numeric value) and @ tiatue (for example, when the specimen was drawn).

8.9.2 Retrieval Order

The result of a query is by default sorted in clotogical order by the primary time of the resulhelquery
may specify a different sort order.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 31
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

8.9.3 Data Value
If a variable has been assigned the result of aygtieen the use of the variable always refersiéodata
value. For example, ffotasis a variable that has been assigned a list ohs@otassiums, then one could
use this statement to check the value of the neestnt potassium measurement:
if latest potas > 5.0 then
conclude true;
endif;
8.9.4 Time Function Operator
By using theime operator (see Section 9.16.18), one can setmevetthe primary time associated with a
variable or list element. The time retrieve funiatie describe in Section 9.17.1. Setting primames is
discussed in the second paragraph of Section 9.E@rlexample, one could use this statement tokctiec
primary time of the most recent potassium measunéme
if time of latest potas is within the past 3 days t hen
conclude true;
endif ;
Theeventtimeis not necessarily the primary time of the evoléwgnt. For example, if the storage of a
serum potassium evokes an MLM, then ¢lrenttimeis the time that the result was stored in thelzie,
but the primary time of the result is the time tihatas drawn from the patient.
8.10 Object

An object results from use of the New statemerd &ection 10.2.8), thread asstatement (Section
11.2.1.9), thedestination asstatement (Section 11.2.9), or thessage astatement (Section 11.2.7). It
may contain multiple named attributes, each of Wiy contain any valid Arden type (including lists
objects). The latter capability allows for compliata structures to be manipulated by an MLM (lists
within lists, for example) which would otherwisetre possible. Objects are also useful for inténfac
MLMs with other object-oriented domain models (ddesthe scope of this document).

8.11 Time-of-day

The time-of-day data type refers to points in titm&t are not directly linked to a specific daten&tof-day
constants are analogously defined to time consteatsng the date portion blank. Time-of-day contta
(for example23:20:00 are defined in Section 7.1.6.

Operators that can use both time arguments anddfrday arguments at the same time may follow the
default time-of-day handling as defined in Sec®oh5 .The primary time handling is unaffected hgste
extension.

Note: To improve readability when describing this dgize, the phrase “time-of-day” is usually
hyphenated. These hyphens are NOT included whigfie F DAY is used in an MLM.

Page 32

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

8.12 Day-of-week

The day-of-week data type is a special data typepcesent specific days of the week to be usetyalo
with the "day of week" operator. Values of thisalgtpe are either expressed by constants or bgente
values.

Day-of-week constants are defined by the followkegwords:

MONDAY (1),
TUESDAY (2),
WEDNESDAY (3),
THURSDAY (4),
FRIDAY (5),
SATURDAY (6)
SUNDAY (7),

Note: To improve readability when describing this dgge, the phrase “day-of-week” is usually
hyphenated. These hyphens are NOT included whevi OA WEEK is used in an MLM.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 33
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9 OPERATOR DESCRIPTIONS

9.1 General Properties

Operators are used in expressions to manipulate They accept one or more arguments (data vaduneks)
they produce a result (a new data value). Thewviatig properties apply to the operator definitionghis
section.

9.1.1 Number of Arguments
Operators may have one, two, or three argumentae@perators have two forms: one with one argument
and one with two arguments. Operators are desceabéddllows:
unary operator: one argument
binary operator: two arguments
ternary operator: three arguments
9.1.2 Data Type Constraints
Most operators work on only a subset of all thedgpes. Every operator description includes a type
constraint that shows the position and allowabpesyof all of its arguments. Its general formdikis this:
<num:type> := <num:type> op <num:type>
In this constraintpp is the operator being described.
9.1.2.1
Eachnum is one of the following:
1—the operator requires a single element
k, m, orn—the operator normally takes a single element Bist avith 0, 1, or more elements may be used
as described below. If the same letter appears thareonce in a data type constraint, then thenaegus
so indicated must have the same number of elemathisrwise the operation resultsnull.
9.1.2.2
Eachtype is one of the following:
null—null data type
Boolean—Boolean data type
number—number data type
time—time data type
time-of-day—time-of-day data type
times—time and time-of-day data type
duration—duration data type
string—string data type
item—not used in expressions, onlydall statements (see 10.2.4)
any-type—null, Boolean, number, timé&ime-of-day,duration, or string
non-null—Boolean, number, timeime-of-day,duration, or string
ordered—number, timetime-of-day,duration, or string
Page 34 © 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.1.2.3

<num:type>(s) to the right of the= indicates the data type(s) of the argument(shdfoperator is applied
to an argument with a type outside of its definetd thennull results. For examplé&* is not defined for
thetime data type s8**1991-03-24T00:00:00esults innull. For most operatorsull is not in the
defined set, saull is returned whenull is an argument. For examptayll is not defined for so3+null
results innull.

9.1.24

<num:type> to the left of the= indicates the data type of the result. Unlesedtatherwise, the operators
can also returnull regardless of the stated usual result.

9.1.3 List Handling

Except as otherwise stated, lists are treatedllasvin Each operator must apply the here desciised
handling first (if applicable) before the speciigt handling as described in the respective operat
description is applied.

9.1.3.1

When an operator has a template of the femtype> := op <n:type>or <n:type> := <n:type> op, the
scalar operator is applied to each element ofishedroducing a list with the same number of eletaéif
the list is empty, the resulting list is also empBor example;(3,4,5)results in3, -4, -5

Unary operators that act this way are:

not ...

.. is present

.. is not present
..is null

.. is not null

.. is Boolean

.. is not Boolean
.. is number

.. is not number

.. istime

.. is not time

.. is time of day

.. is not time of day
.. is duration

.. is not duration
.. is string

.. is not string

.. is object

.. Is not object

.. is <object-type>
. is not <object-type>

.. ago

.. year
.. years
.. month
.. months
.. week
... weeks
... day

.. days
.. hour
.. hours

© 2008 Health Level Seven, Inc.. All rights reserved. Page 35
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.1.3.2

.. minute

.. minutes

.. second

.. seconds

.. as number
.. as string

... astime
time [of] ...
time of day [of] ...
arccos [of] ...
arcsin [of] ...
arctan [of] ...
cos [of] ...
cosine [of] ...
sin [of] ...

sine [of] ...
tan [of] ...
tangent [of] ...
exp [of] ...
truncate [of] ...
floor [of] ...
ceiling [of] ...
log [of] ...
log10 [of] ...
abs [of] ...
extract year [of] ...

extract month [of] ...

extract day [of] ...
extract hour [of] ...

extract minute [of] ...
extract second [of] ...

int ...

round ...
sqrt ...

string ...
length [of] ...
uppercase ...
lowercase ...
trim ...
localized ...

Unary operators that act this way are:

count [of] ...
exist [of] ...
avg [of] ...
average [of] ...
median [of] ...
sum [of] ...
stddev [of] ...
variance [of] ...
any [of] ...

all [of] ...

no [of] ...

When an operator has a template of the felmlype> := op <n:type>or <1:type> := <n:type> op the
operator is applied to the entire list, producirgjregle element. For examplaax(3,4,5)results inb.

Page 36

Revision date: 2008-05-06

© 2008 Health Level Seven, Inc.. All rights reserved.
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.1.3.3

9.1.34

min [of] ...

minimum [of] ...

max [of] ...

maximum [of] ...

last [of] ...

first [of] ...

earliest [of] ...

latest [of] ...

string [of] ...

... is list

... is not list

index min [of] ...
index minimum [of] ...
index max [of] ...
index maximum [of] ...
index earliest [of] ...
index latest [of] ...

When an operator has a template of the farmtype> := op <n:type>or <m:type> := <n:type> op, the
operator is applied to the entire list, producingther list. For exampléacrease(11,15,13,12esults in
4, -2, -1)

Unary operators that act this way are:

slope [of] ...

increase [of] ...
decrease [of] ...
percent increase [of] ...
% increase [of] ...
percent decrease [of] ...
% decrease [of] ...
interval [of] ...

extract characters [of] ...
sort [dataltime] ...
reverse ...

When an operator has a template of the famtype> := <n:type> op <n:type>, the scalar operator is
applied pair-wise to the elements of the listsdping a list with the same number of elementthéflist
is empty, the resulting list is also empty). Foample,(1,2)+(3,4)results in 4,6)and() +() results in() .

If one of the operands is a single element anather operand has n elements, the single element is
replicated n times. For exampliet(3,4)is equivalent t@1,1)+(3,4)and results in4,5).

If the numbers of elements in the two argumentedénd one argument is not a single element,dbeltr
is null.

Binary operators that act this way are:

..or...
..and ...

..eq ...

s ...

<>

..ne ...

..is not equal ...
<

|

..isless than ...

© 2008 Health Level Seven, Inc.. All rights reserved. Page 37
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.1.35

.. is not greater than or equal ...
<=

e ...

.. is less than or equal ...

.. iIs not greater than ...
>

. gt..

.. is greater than ...

.. iIs not less than or equal ...
>

..ge...

.. Is greater than or equal ...
..is not less than ...

.. is within past ...

.. Is not within past ...

.. is within same day as ...

.. is not within same day as ...
.. is before ...

.. is not before ...

.. is after ...

.. is not after ...

.. occur equal ...

.. occur within past ...

.. occur not within past ...

.. occur within same day as ...
.. occur not within same day as ...
.. occur before ...

.. occur not before ...
.. occur after ...

.. occur not after ...
A

s *

L

. **

.. before ...

.. after ...
... from ...
localized ... by ...
replace year ... with ...
replace month ... with ...
replace day ... with ...
replace hour ... with ...
replace minute ... with ...
replace second ... with ...

... where ...

The following operators are of the form:type> := <m:type> op <m:type>; they replicate the
arguments if necessary but may return a list widliffarent number of elements:

When an operator has a template of the femtype> := <n:type> op; <n:type> op, <n:type>, the scalar
operator is applied triple-wise to each elemerheflists, producing a list with the same number of
elements (if the list is empty, the resulting issalso empty). For exampl@,,2) is within (0,2) to (3,4)
results in {rue,true).

Page 38

Revision date: 2008-05-06

© 2008 Health Level Seven, Inc.. All rights reserved.
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.1.3.6

9.1.3.7

If one of the operands is a single element anather operands have n elements, the single element
replicated n times. If two of the operands arenglsi element and the other operand has n elentbats,
single elements are replicated n times. For exantipl2) is within 2 to (3,4)is equivalent t¢1,2) is

within (2,2) to (3,4) and results ilffalse,true).

If the number of elements in any pair of argumeliffer and one argument is not a single elemest, th

result isnull.

Ternary operators that act this way are:

.. Is within ... to ...
.. Is not within ... to ...

.. iIs within ... preceding ...
.. is not within ... preceding ...

.. is within ... following ...

.. Is not within ... following ...
.. is within ... surrounding ...
.. Is not within ... surrounding ...

.. occur within ... to ...

.. occur not within ... to ...

.. occur within ... preceding ...

.. occur not within ... preceding ...
.. occur within ... following ...

.. occur not within ... following ...

.. occur within ... surrounding ...

.. occur not within ... surrounding ...

When an operator has a template of the fermtype> := op, <1l:type> op, <m:type>, the operator is
applied to the entire second argument, producinegvalist. The first argument must be a single elangié

not, the result of the operatorriall). For examplemin 2 from (5,3,4)results in 8, 4).

Binary operators that act this way are:

min ... from ...
minimum ... from ...
max ... from ...
maximum ... from ...
last ... from ...

first ... from ...
latest ... from ...

earliest ... from ...

index min ... from ...
index minimum ... from ...
index max ... from ...
index maximum ... from ...
index earliest ... from ...
index of ... from ...

add ... to ...

at least ... from ...

at most ... from ...

When an operator has a template of the famtype> := op, <n:type> op, <m:type>, the operator is
applied to the entire second argument, producingvalist. The first argument is typically a single
element. For exampl@,is in (0,3)results infalseand(1,2,3) is in (0,3yesults in false,false,true)

Binary operators that act this way are:

nearest ... from ...
...isin ...

© 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06

Page 39
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

...isnotin ...
index nearest ... from ...
remove ... from ...

9.1.3.8

When an operator has a template of the femtype> := <k:type> op <m:type>, the operator is applied
to the entire two lists, producing a new list. Egample 1,(3,4)results in {,3,4)

Binary operators that act this way are:
... merge ...
el e

... seqto ...

9.1.4 Primary Time Handling

Queries attach primary times to their results Geetions 8.9.1). Some operators maintain thosegpyim
times and others lose them. Except as otherwisedstarimary times are treated as follows.

9.1.4.1 Unary Operators

Unary operators maintain primary times. In thisragée,resultl still has primary times attacheddétal
is the result of a query:

resultl := sin(datal);
9.1.4.2 Binary and Ternary Operators

Binary and ternary operators maintain primary tinfiedl operands have primary times and all of the
primary times are equal. If any operand is missiqgimary time or if the primary times are notedual,
the primary time is lost.

Example (primary times are the same, the primang tis kept):
Data Values: 6 = 2 * 3;

Time Values: (Jan 1) (Jan 1) (Jan 1);

Example (primary times are different, then primtnye is lost):
Data Values: 42 = 6 * 7;

Time Values: (null) (Feb 1) (Jan 1);

9.1.5 Time-of-Day Handling

Operators that are defined for operands of "angeé tyrdered types, etc. are not affected by timéagyf
values. For example, aggregation operators suttheagverage operator still compute a result from a
homogeneous list of time-of-day values, but returh if time-of-day values and time values are camb.
Those operators that can be used with combineddfrtely and time values are defined in the next
sections.

9.1.5.1 Default Time-of-Day Handling

Some binary and ternary operators can combinedimdgtime-of-day values as operands as definecein th
next section. In this case, as the time-of-day tgte is a sub-type of the time data type, the atpes
automatically use the common information part &f tpperands, which is the time-of-day-fraction & th
given time value, and ignore the date informatibthe other operand (see examples of simple comspari
operators in Section 9.5).

Operators that follow the default time-of-day hanglare
- simple comparison operators (Section 9.5)
- is after/before (Section 9.6.12, 9.6.13)

Page 40 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.15.2

9.15.3

9.1.6

9.1.6.1

9.1.7

9.1.7.1

9.1.7.2

9.1.7.3

9.1.8

Role of midnight
Operators where the order of the arguments magatelithat the midnight boundary may be spanned are
is within ... to ... (Section 9.6.6)
- iswithin ... to ... preceding/following (Section 97/69.6.8)
- iswithin ... to ... surrounding ... (Section 9.6.9)
- Arithmetic operators (Section 9.9)
Undefined Operators for time-of-day values
Operators for which time-of-day data types areatiotved as arguments are

* ‘is within same day asundefined for time-of-day operands as the required infororafor the
comparison (date) is not present; returns null

» ‘within past’: undefined for time-of-day operands as the reference of treparison is usually a
fixed date and time; returns null

Operator Precedence

Expressions are nested structures, which may contare than one operator and several arguments. The
order in which operators are executed is decidedsiryg an operator property called precedence.
Operators groups into several precedence groupsra@ps of higher precedence are performed before
operators of lower precedence. For example, theesgpn3+4*5 (three plus four times five) is executed
as follows: sincé& has higher precedence thait is performed first so tha*s results in20; then+ is
performed so th&8+20results i23. Parentheses can always be used to override operatedence.

Precedence Table

The operators are shown grouped by precedenceriaxv4.

Associativity

When an expression contains more than one opewéttin the same precedence group, the operators'
associativity property decides the order of ex@cutlhe associativity of each operator is showfirinex
A4. There are three types of associativity:

Left

Left associative operators are executed from ¢efight. For example3-4-5has two subtractions)(Since
they are the same operator, they must be in the gaetedence group. Sinces left associative3-4 is
performed first resulting i¢1); then(-1)-5is performed, resulting ing).

Right

Right associative operators are executed from tmgleft. For examplegverage sum dhas two operators
in the same precedence group. Since they areagifiuciativesum 3is performed first resulting ig; then
average 3is performed, resulting i8.

Non-Associative

Non-associative operators cannot have more thamperator from the same precedence group in the sam
expression unless parentheses are used. Thusgressio?**3**4 is illegal since™ (the exponentiation
operator) is non-associative (howey@r*3)**4 and2**(3**4) are both legal).

Parentheses

One can use parentheses to force a different ofdetecution. Expressions within parentheses avaya
performed before ones outside of parentheses.Xaonm@e, the expressidB+4)*5 is executed as follows:
3+4is within parentheses, so it is performed firgfarelless of precedence, resultingirthen* is
performed so that*5 results in35. Similarly, (2**3)**4 is a legal expression which results}idO6

© 2008 Health Level Seven, Inc.. All rights reserved. Page 41
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.2 List Operators

9.2.1

9.2.2

9.2.3

9.2.4

The list operators do not follow the default listndling. Primary times are maintained accordin§eotion
9.1.4, unless otherwise specified.

, (binary, left associative)

Binary, (list concatenation) appends two lists. Primamet of the individual list elements are maintained.
Its usage is:

<n:any-type> := <k:any-type> , <m:any-type>
4,2):=4,2
(4,"a",null) := (4,"a") , null

, (unary, non-associative)

Unary, turns a single element into a list of length dhdoes nothing if the argument is already a list.
usage is (wherg8) means a list with 3 as its only element):

<l:any-type>:=, <l:any-type>
(,3):=,3

Merge (binary, left-associative)

Themerge operator appends two lists, appends a singletibesrlist, or creates a list from two single
items. It then sorts the result in chronologicalesrbased on the primary times of the elementddfined
in 9.2.4). All elements of both lists must havenmary times; otherwispull is returned (the construxt
where time of it is present can be used to select only elements tiat have primary times).
The primary times are maintainéderge is typically used to put together the resultsvad separate
queries. The expressiarmerge yis equivalent t@ort time (X,y). Its usage is (assuming thagttal has a
data value o and a time 01991-01-02T00:00:0Pand thatlata? has data valuek 3 and time values
1991-01-01T00:00:001991-01-03T00:00:0D

<n:any-type> := <k:any-type> MERGE <m:any-type>
(1, 2, 3) := datal MERGE data2
null := (4,3) MERGE (2,1)

Sort (unary, non-associative)

Thesort operator reorders a list based on element keyiehvere either the element values (keyword
data) or the primary times (keywortiine). An optional modifier may be use with the soreogior. If used,
the modifier must be placed immediately aftersbe keyword. The following keywords can be placed
after thesort keyword:data or time, which are mutually exclusive. If no modifier isad, the sort operator
defaults to a data sort. Direction of sorting isa}s ascending. For a descending sextersecan be used.

The sort options are considered to be part of deoperator for precedence purposes. This restihees
potential conflict with théime [of] operator (9.17.1). Thus the expressisart time x" should be parsed
as "sort the list x by time" rather than as "exttae primary times from the list x and sort ttst bf times.”

When sorting by primary times, if any of the elettisetio not have primary times, the resuligl. (The

sort argument can always be qualifiedvidyere time of it is present if this is not desired behavior.)
Elements with the same key will be kept in the santer as they appear in the argument. If anygfair
element key cannot not be compared because ottgpbessort returnsnull (that is, when sorting by
data, any null value (or non-comparable value)ltesonull; when sorting by time, any null primary time
results innull). Its usage is (assuming ttgdtal has a data value 80D,10,20with time values991-01-
01T00:00:0Q 1991-02-01T00:00:001991-01-03T00:00:00

<n:any-type> := SORT <n:any-type>

<n:any-type> := SORT [DATA | TIME] <n:any-type>
(10, 20, 30) := SORT DATA datal

(30, 20, 10) := REVERSE (SORT DATA datal)
null := SORT DATA (3,1,2,null)

Page 42

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

null := SORT DATA (3,"abc")

() := SORT TIME ()

(1,2,3,3):= SORT (1,3,2,3)

(30, 20, 10) := SORT TIME datal

The optional modifieusing ...can be appended to thert operator to control the calculation of the
ordering. Thus, the following expressions can eus sort the list by the data or the primary sroéthe
elements:

<n:any-type> := sort <n:any-type> using it; // for sorting by data
<n:any-type> := sort <n:any-type> using time of it; /[for sorting by time
The above mentioned expressions will be equivdtettie currently available expressi@ust time and

sort data. Additional, theusing operator can be used to sort the list by an arfgitalculation applied to
each element of the list, e.g.:

<n:any-type> := sort <n:any-type> using sin it; // for sorting the list by
/I the sin of each value
<n:any-type> := sort <n:any-type> using abs it; / for sorting the list by
/I their absolute values
<n:any-type> := sort <n:any-type> using extract mon th it; // for sorting the

/I list by their month part

If the using operator is applied to a list of objects, the gty be sorted by a specified field of the given
objects, e.g.:

<n:object> := sort <n:object> using it.height; // or sorting the objects by
/I their field "height"

<n:any-type> := sort <n:any-type> using time of it. value; // for sorting the
/I objects by the primary time of their field "valu e"

The modifier using can contain any complex expogsgicorporating thé keyword.

9.25 Add... To ... [At..] (ternary, non-associative)
Theadd ... to ... [at ...Joperator expects an arbitrary data value asrgsdrgument and a list as its second
argument. It adds this element to the given Ifstol position is given, the element will be addedhe end
of the list. If a position is provided, the elemeninserted at this position and the index okédiments
from this to the end of the list will be increadgdone. If the given position is greater than taedmality
of the list, the element will be appended at the: @fithe list. In case a negative position or giien, the
element will be appended at the beginning of téie lif the second argument is not a list, the argjpins
assumed a list with one element. When more tharposi¢ion is given, the positions are first ideietif and
then the elements are inserted. The usage afdtie... to ... [at ...Joperator is:
<n+l:any-type> := ADD <l:any-type> TO <n:any-type>
<n+m:any-type> := ADD <l:any-type> TO <n:any-type> AT <m:number>
(1,2,3,4):=ADD 4 TO (1, 2, 3);
(4,1,2,3):=ADD 4 TO (1, 2, 3) AT 1;
(1, 2, 3, null) := ADD null TO (1, 2, 3);
(null, 4) := ADD 4 TO null;
(1,2,3,4):=ADD4TO (1,2, 3) AT 9;
(4,4,1,2,3):=ADD 4 TO (1, 2, 3) AT (1, -1);
(1,2, 3,4) :=ADD 2 TO (1, 3, 4) AT INDEX OF 3 WI THIN (1, 3, 4);
(4,1,4,2,3):=ADD4TO (1, 2, 3) AT (1, 2);
9.2.6 Remove ... From ... (binary, non-associative)
Theremove ... from ...operator expects a number or list of numberssafir#t argument and a list as its
second argument. The operator also accepts fidstaah as its first argument, they are interpretethe
number representing the last (the first) indexhim given list. The operator removes the elemertts thie
given indices from the list. The index of all elamtsefrom the given index to the end of the listl \é
decreased by one. If the second argument is nst, &he argument is assumed a list with one elémen
© 2008 Health Level Seven, Inc.. All rights reserved. Page 43

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

When more than one position is given, the positemesfirst detected and then the elements are rethov
The usage of theemove ... from ...operator is:

<n-m:any-type> := REMOVE <m:number> FROM <n:any-typ e>
(2,1) := REMOVE 1 FROM (3, 2, 1);
("two”, 4, 5) := REMOVE (1,3,6) FROM ("one", "two", 3,4, 5, 6 days);

(3,2, 1) := REMOVE null FROM (3, 2, 1);

(3,2, 1) := REMOVE 8 FROM (3, 2, 1);

() := REMOVE (INDEX OF "3" WITHIN ("3", "3")) FROM ("3","3");
(null) := REMOVE 2 FROM null;

() := REMOVE 1 FROM null;

(3, 2,1) ;= REMOVE () FROM (3, 2, 1);

9.3 Where Operator

Thewhere operator does not follow the default list handlorghe default time handling.

9.3.1 Where (binary, non-associative)

Thewhere operator performs the equivalent of a relatia®éct ... where ..on its left argument. In
general, the left argument is a list, often theiltesf a query to the database. The right argurizensually
of type Boolean (although this is not required)] amust be the same length as the left argumentrashst
is a list that contains only those elements ofidifteargument where the corresponding elementaerright
argument is Booleatmue. If the right argument is anything else, includfatse, null, or any other type,
then the element in the left argument is droppé@\where operator maintains the primary time(s) of the
operand(s) to the left afhere. The primary time(s) of the operand(s) to the trighwhere are dropped. Its

usage is:
<n:any-type> := <m:any-type> WHERE <m:any-type>
(10,30) :=(10,20,30,40) WHERE (true,false,true,3)
Example
7.38 = (7.34, 7.38, 7.4) WHEREEe of it is within 20 minutes following time &fentChange
(1/1 16:20) (1/1 18:01) (1/1 16:20) (Jan 1082: (Jan 1 16:12)

Where handles mixed single items and lists in a mannatagous to the other binary operators. If thetrigh
argument tavhereis a single item, then if it isue, the entire left argument is kept (whether orihig a

list); if it is nottrue, then the empty list is returned. If only the l@fgument is a single item, then the result
is a list with as many of the single items as tleeeelements equal tawe in the right argument. If the two
arguments are lists of different length, then glginull results (the rules in Section 9.1.3.4 are used to
replicate a single-element argument if necess&ny) example,

1:=1 WHERE true

(1,2,3) :=(1,2,3) WHERE true

(1,1) := 1 WHERE (true,false,true)

null := (1,2,3,4) WHERE (true,false,true)

Where is generally used to select certain items fromstaThe list is used as the left argument, andesom
comparison operator is applied to the list in flghtrargument. For examplpotassium_list where
potassium_list > 5.0would select from the list those values that aeatgr than 5.

Where can be used to filter out invalid data. For examidla query returns either numeric values or text
comments, the following can be used to select efesifrom the query that have proper numeric values

gueryResult where they are number

Similarly, if a query returns some values withoritrfary times, the following can be used to select
elements from the query that have proper primangsi

gueryResult where time of it is present

Page 44 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.3.1.1

In this example, the unary operatione is applied to the queryResult (which is what thiigaf 'it" is),
resulting in a list of times (for those resultstthave a primary time) and nulls (for those resilied do not
have a primary time). The unary operdtopresentis then applied to that list, give a list of Boahs: true
where there is a primary time and false where tlsen® primary time. Finally, th&here operator is used
to remove those values that do not have primarggim

The following example follows the default time-odydhandling as it combines primary times (time eaju
with time-of-day constraints to select those blghttose values that have been measured after lunch:

post_prandial_blood_glucoses := bc_values where the y occurred within 13:00:00
to 15:00:00

The where operator can also be combined with dayesfk arguments, such as
labResults where day of week of time of them is in (SATURDAY, SUNDAY)

It

The wordit and synonynthey are used in conjunction withhere. To simplifywhere expressionst may
be used in the right argument to represent theecletit argument. For exampleotassium_list where

they > 5.0would select those values from the list that asatpr than 3t is most useful when the left
argument is a complex expression; for examfpetassium_list + sodium_list/3) where it > 5.@ould
assign the entire expression in parenthesds licthere are nestaeghere expressionst refers to the left
argument of the innermogthere. If it is used outside ofwahere expression, then it has a valuenafl. An
implementation of the Arden Syntax may choosedg fise oft outside avhere expression as an error at
compile time.

9.4 Logical Operators

9.4.1 Or (binary, left associative)
Theor operator performs the logical disjunction of it@targuments. If either argumentise (even if
the other is not Boolean), the resultrige. If both arguments arfalse, the result ialse Otherwise the
result isnull. Its usage is:
<n:Boolean> := <n:any-type> OR <n:any-type>
true :=true OR false
false := false OR false
true := true OR null
null := false OR null
null := false OR 3.4
(true, true) := (true, false) OR (false, true)
0=00R(
Its truth table is given her&ther means any of these data types: null, number, tilmetion, or string.
OR TRUE FALSE Other (Right
argument)
(Left TRUE TRUE TRUE TRUE
argument) FALSE TRUE FALSE NULL
other TRUE NULL NULL
© 2008 Health Level Seven, Inc.. All rights reserved. Page 45

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.4.2 And (binary, left associative)

Theand operator performs the logical conjunction of ®targuments. If either argumentése (even if
the other is not Boolean), the resulfdakse If both arguments artteue, the result isrue. Otherwise the
result isnull. Its usage is:

<n:Boolean> := <n:any-type> AND <n:any-type>
false := true AND false

null := true AND null

false := false AND null

Its truth table is given her@ther means any of these data types: null, number, tilmegtion, or string.

AND TRUE FALSE other (Right
argument)
(Left TRUE TRUE FALSE NULL
argument)
FALSE FALSE FALSE FALSE
other NULL FALSE NULL

9.4.3 Not (unary, non-associative)

Thenot operator performs the logical negation of its angat. Thugrue becomedalse, false becomes
true, and anything else becommeudll. Its usage is:

<n:Boolean> := NOT <n:any-type>
true := NOT false
null := NOT null

Its truth table is given her@ther means any of these data types: null, number, tilmetion, or string.

NOT | TRUE FALSE other

| FALSE TRUE NULL

9.5 Simple Comparison Operators

9.5.1 = (binary, non-associative)

The= operator has two synonymeq andis equal It checks for equality, returnirtgue orfalse If the
arguments are of different typdalseis returned. If an argumentnsill, thennull is always returned.
Primary times are not used in determining equatlitg; primary time of the result is determined by thles
in Section 9.1.4. Its usage is:

<n:Boolean> := <n:non-null> = <n:non-null>
false i =1=2

(null,true false) := (1,2,"a") = (null,2,3)
null := (3/0) = (3/0)

0=5=0

null :=(1,2,3) = ()

O :=null=()

0=0=0

null :=5 = null

(null,null, null) := (1,2,3) = null

null := null = null

(true,true,false) := (1,2,3) = (1,2,4)

Page 46 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

true := 1979-02-25T08:20:00 = 08:20:00

Useis presentor existsinstead of= to test whether an argument is equatutl. See Sections 9.6.15 and
9.12.3.

9.5.2 <> (binary, non-associative)

The<> operator has two synonymse andis not equal It checks for inequality, returnirtgue or false. If
the arguments are of different typ&sie is returned. If an argumentnsill, thennull is returned. Its usage
is:

<n:Boolean> := <n:non-null> <> <n:non-null>
true:=1<>2

(null,false,true) := (1,2,"a") <> (null,2,3)

null := (3/0) <> (3/0)

false := 1979-02-25T08:20:00 <> 08:20:00

9.5.3 < (binary, non-associative)

The< operator has three synonynis; is less than andis not greater than or equal It is used on ordered
types; if the types do not matahyll is returned. Its usage is:

<n:Boolean> := <n:ordered> < <n:ordered>
true:=1<2

true := 1990-03-02T00:00:00 < 1990-03-10T00:00:00
true := 1990-03-02T00:00:00 < 13:00:00

null := 13:00:00 < 14 hours

true := 2 days < 1 year

true := "aaa" < "aab"

null :="aaa"< 1

9.5.4 <= (binary, non-associative)

The<= operator has three synonynes:is less than or equalandis not greater than It is used on
ordered types; if the types do not matahl| is returned. Its usage is:

<n:Boolean> := <n:ordered> <= <n:ordered>
true:=1<=2

true := 1990-03-02T00:00:00 <= 1990-03-10T00:00:00
true := 1990-03-02T00:00:00 <= 13:00:00

true := 2 days <= 1 year

true := "aaa" <= "aab"

null :="aaa" <=1

9.5.5 > (binary, non-associative)

The> operator has three synonyngs; is greater than, andis not less than or equallt is used on ordered
types; if the types do not matahyll is returned. Its usage is:

<n:Boolean> := < n:ordered> > <n:ordered>

false . =1>2

false := 1990-03-02T00:00:00 > 1990-03-10T00:00:00
false := 1990-03-02T00:00:00 > 13:00:00

false := 2 days > 1 year

false := "aaa" > "aab"

null :="aaa" > 1

© 2008 Health Level Seven, Inc.. All rights reserved. Page 47
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.5.6

9.6

9.6.1

9.6.2

9.6.3

9.6.4

9.6.5

9.6.6

>= (binary, non-associative)

The>= operator has three synonyngg is greater than or equal andis not less thanlt is used on
ordered types; if the types do not matahl] is returned. Its usage is:

<n:Boolean> := <n:ordered> >= <n:ordered>

false :=1>=2

false := 1990-03-02T00:00:00 >= 1990-03-10T00:00:00
false := 1990-03-02T00:00:00 >= 13:00:00

false := 2 days >= 1 year

false := "aaa" >= "aab"

null :="aaa">=1

Is Comparison Operators

The following comparison operators include the wigradvhich can be replaced wittte, was, orwere. An
optionalnot may follow theis, negating the result (using the definitionnait , see Section 9.4.3). For
example, these are valid:

surgery_time WAS BEFORE discharge_time
surgery_time IS NOT AFTER discharge_time
Is [not] Equal (binary, non-associative)
See Section 9.5.1.

Is [not] Less Than (binary, non-associative)
See Section 9.5.3.

Is [not] Greater Than (binary, non-associative)
See Section 9.5.5.

Is [not] Less Than or Equal (binary, non-associative)
See Section 9.5.4.

Is [not] Greater Than or Equal (binary, non-associative)
See Section 9.5.6.

Is [not] Within ... To (ternary, non-associative)

Theis within ... to operator checks whether the first argument isiwithe range specified by the second
and third arguments; the range is inclusive. ltsed on ordered types; if the types do not match,is
returned. When used with time-of-day arguments attder of the right and middle argument may be
relevant, as the specified time frame may span menight.

When used with arguments that are not time-of-adgyraents, operator functionally checks the follagvin
relationship

argument 2 <= argument 1 <= argument 3

and returns true if the relationship is satisfiad &alse if is not satisfied.

Page 48

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.6.7

9.6.8

9.6.9

Its usage is:

<n:Boolean> := <n:ordered> IS WITHIN <n:ordered> TO <n:ordered>
true :=3ISWITHIN2 TO 5
false ;=3 ISWITHIN5TO 2

true := 1990-03-10T00:00:00 IS WITHIN 1990-03-05T00 :00:00 TO 1990-03-
15T00:00:00

true := 3 days IS WITHIN 2 days TO 5 months
true :="ccc" IS WITHIN "a" TO "d"
false := 1990-03-10T15:00:00 IS WITHIN 16:00:00 TO 17:00:00

If the middle and right argument of the last exagrgnle swapped, then the reference time frame spans
midnight:
true := 1990-03-10T15:00:00 IS WITHIN 17:00:00 TO 1 6:00:00
true := time of day of time of order IS WITHIN 22:0 0:00 to 02:00:00
The last example returns true, if the order has Iptegced after 10 pm and 2 am, independently fiwen t
date of the order. The next example checks whellgemeasurement has been recorded on a weekday.
true := DAY OF WEEK OF TIME OF measurement IS WITHI N MONDAY TO FRIDAY

Note that the day of week of a primary time resuita number, as well as the keywords MONDAY and
FRIDAY. The following code snippet is not valid:

null := measurement OCCURRED WITHIN MONDAY to FRIDA Y

Caution must be used when using the day of weektgipe with the is . . . within operator, as vasdithe
other comparison operators. Each day of the weaksociated with an integer, with Monday = 1 tgtou
Sunday = 7 (see Section 8.12). Thus, the randays specified can not begin before Monday and end
after Sunday. For example.

True := WEDNESDAY IS WITHIN TUESDAY TO FRIDAY
True := SATURDAY IS WITHIN FRIDAY TO SUNDAY
FALSE := SATURDAY IS WITHIN FRIDAY TO MONDAY
(this returns false because 6 is not within 5 to 1)

Is [not] Within ... Preceding (ternary, non-associative)
Theis within ... precedingoperator checks whether the left argument is withe inclusive time period
defined by the second two arguments (from the thigdiment minus the second to the third). Its ussige

<n:Boolean> := <n:time s> IS WITHIN <n:duration> PRECEDING <n:time s>
true := 1990-03-08T00:00:00 IS WITHIN 3 days PRECED ING 1990-03-10T00:00:00

Is [not] Within ... Following (ternary, non-associative)
Theis within ... following operator checks whether the left argument is withé inclusive time period
defined by the second two arguments (from the thiigliment to the third plus the second). Its ussige

<n:Boolean> := <n:time s> IS WITHIN <n:duration> FOLLOWING <n:time s>
false := 1990-03-08T00:00:00 IS WITHIN 3 days FOLLO WING 1990-03-10T00:00:00

Is [not] Within ... Surrounding (ternary, non-associative)

Theis within ... surrounding operator checks whether the left argument is withe inclusive time period
defined by the second two arguments (from the thigdiment minus the second to the third plus the
second). Its usage is:

<n:Boolean> := <n:time s> IS WITHIN <n:duration> SURROUNDING <n:time s>
true := 1990-03-08T00:00:00 IS WITHIN 3 days SURROU NDING 1990-03-10T00:00:00

This operator may be used with small durations stsoat-hand notation for some comparisons thatean
also represented by using the ‘is within to’ operat

© 2008 Health Level Seven, Inc.. All rights reserved. Page 49
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

Examples:
false := time of day of time of request is within 2 hours surrounding 14:00
(true, true, true, false, true) := time of day of t ime of measurements
are within 30 minutes su rrounding 13:00

9.6.10 Is [not] Within Past (binary, non-associative)

Theis within past checks whether the left argument is within theetiperiod defined by the right argument
(now minus the right argument tow). Its usage is (assumimgw is 1990-03-09T00:00:00):

<n:Boolean> := <n:time s> IS WITHIN PAST <n:duration>
true := 1990-03-08T00:00:00 IS WITHIN PAST 3 days
null := 12:00:00 IS WITHIN PAST 2 weeks

9.6.11 Is [not] Within Same Day As (binary, non-associative)

Theis within same day a®perator checks whether the left argument is erséime day as the second
argumentlts usage is:

<n:Boolean> := <n:time> IS WITHIN SAME DAY AS <n:i me>
true := 1990-03-08T11:11:11 IS WITHIN SAME DAY AS 1 990-03-08T01:01:01
null ;= 12:00:00 IS WITHIN SAME DAY AS 1990-03-08T0 1:01:01

9.6.12 Is [not] Before (binary, non-associative)

Theis beforeoperator checks whether the left argument is leetfloe second argument; it is not inclusive.

Its usage is:
<n:Boolean> := <n:time s> |S BEFORE <n:itime s>
false := 1990-03-08T00:00:00 IS BEFORE 1990-03-07TO 0:00:00
false := 1990-03-08T00:00:00 IS BEFORE 1990-03-08T0O 0:00:00

9.6.13 Is [not] After (binary, non-associative)

Theis after operator checks whether the left argument is #fiesecond argument; it is not inclusive. Its
usage is:

<n:Boolean> := <n:time s> IS AFTER <n:time s>

true := 1990-03-08T00:00:00 IS AFTER 1990-03-07T00: 00:00

false := now is after 18:00:00

The last example assumes, that the MLM runs bef8r@0 (for example, now is 2005-01-01T17:30:00).

9.6.14 s [not] In (binary, non-associative)

Theis in operator does not follow the default list handlihg-hecks for membership of the left argument in
the right argument, which is usually a list. If tleé argument is a list, then a list resultsié tieft

argument is a single item, then a single item tssiflthe right argument is a single item, theis itreated

as a list of length ondf the first operand iswull, true is always returned. If the second operanalils then
null is returned, except the first one is atsdl . Primary times are retained only if they match (ikathe =
operator is used for determining membership, exttegthull will match). Its usage is:

<n:Boolean> := <n:any-type> IS IN <m:any-type>

false := 2 IS IN (4,5,6)

(false,true) := (3,4) IS IN (4,5,6)

true := null is in (1/0,2)

false := day of week of (time of potassium) IS IN (SATURDAY, SUNDAY)

See also Section 9.6.23.

Page 50 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.6.15

9.6.16

9.6.17

9.6.18

9.6.19

9.6.20

Is [not] Present (unary, non-associative)

Theis presentoperator has one synonyig:not null. (Similarly,is not presenthas one synonynis null.)
It returnstrue if the argument is natull, and it returngalseif the argument iswill. Is presentnever
returnsnull. This operator is used to test whether an argumsentl sincearg=null always results imull
regardless oérg. Its usage is:

<n:Boolean> := <n:any-type> IS PRESENT
true := 3 IS PRESENT

false := null IS PRESENT

(true,false) := (3,null) IS PRESENT
(false,true) := (3,null) IS NULL

Is [not] Null (unary, non-associative)
See Section 9.6.15.

Is [not] Boolean (unary, non-associative)

Theis Booleanoperator returngue if the argument's data type is Boolean. Othenitisgturnsfalse Is
Booleannever returnsull. Its usage is:

<n:Boolean> := <n:any-type> IS BOOLEAN

true := false IS BOOLEAN

true := 31S NOT BOOLEAN
(false,true,false) := (null,false,3) IS BOOLEAN

Is [not] Number (unary, non-associative)
Theis number operator returngue if the argument's data type is number. Otherwisetiirnsfalse Is
number never returngiull. Its usage is:

<n:Boolean> := <n:any-type> IS NUMBER
true := 3 1S NUMBER
false := null IS NUMBER

Theis number is useful for ensuring that a list is all numbleefore an aggregation operator is applied.
This avoids returningull. For example,

sum(serum_K where it IS NUMBER)

Is [not] String (unary, non-associative)

Theis string operator returngue if the argument's data type is string. Otherwigeturnsfalse. Is string
never returnsull. Its usage is:

<n:Boolean> := <n:any-type> IS STRING

true := "asdf" IS STRING

false := null IS STRING

Is [not] Time (unary, non-associative)

Theis time operator returngue if the argument's data type is time. Otherwisetiirnsfalse Is time
never returnsiull. Its usage is:

<n:Boolean> := <n:any-type> IS TIME
true := 1991-03-12T00:00:00 IS TIME
false := null IS TIME

© 2008 Health Level Seven, Inc.. All rights reserved. Page 51
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.6.21

9.6.22

9.6.23

9.6.24

9.6.25

9.6.26

Is [not] Time of day (unary, non-associative)

Theis time of dayoperator returngue if the argument's data type is time-of-day. Othsewt returns
false Is time of daynever returnsiull. Its usage is:

<n:Boolean> := <n:any-type> IS TIME OF DAY
true := 23:20:00 IS TIME OF DAY

true := 23:20:00.12 IS TIME OF DAY

false := 1991-03-12T00:00:00 IS TIME OF DAY
false := null IS TIME OF DAY

Is [not] Duration (unary, non-associative)

Theis duration operator returngue if the argument's data type is duration. Othenitiseturnsfalse Is
duration never returnsiull. Its usage is:

<n:Boolean> := <n:any-type> IS DURATION
true := (3 days) IS DURATION
false := null IS DURATION

Is [not] List (unary, non-associative)
Theis list operator returngue if the argument is a list. Otherwise it retufatse Is list never returnsull.
Its usage is:

<1:Boolean> := <n:any-type> IS LIST
true :=(3,2,1) ISLIST

False :=5IS LIST

false := null IS LIST

Theis list operator does not follow the default list handlbegause it does not operate on each item in the
argument, but rather operates on the argumentdmke. Thus it never returns a list. Notice thdeténce:

true := (3, 2, "asdf") IS LIST
(true, true, false) := (3, 2, "asdf") IS NUMBER

[not] In (binary, non-associative)
The operatom is a synonym ofs in and behaves in the same manner. Its usage is:

<n:Boolean> := <n:any-type> IN <m:any-type>
false := 2 IN (4,5,6)

(false,true) := (3,4) IN (4,5,6)

true := null in (1/0,2)

See also Section 9.6.14.

Is [not] Object (unary, non-associative)

Theis objectoperator returngue if the argument is an object (any type of objefirted with an Object
declaration, as described in Section 11.2.17). @iise it returndalse Its usage is:

<n:Boolean> := <n:any-type> IS OBJECT

Is [not] <Object-Type> (unary, non-associative)

Theis <object-type>operator returngue if the argument is an object of the named typepfasiously
defined with an Object declaration, as describefldation 11.2.17). Otherwise it retuffiatse. Its usage is:

<n:Boolean> := <n:any-type> IS <OBJECT-TYPE>
RectType := OBJECT [X, y, width, height];

Rect := new RectType;

true := Rect IS RectType;

Page 52

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.7 Occur Comparison Operators

9.7.1 General Properties

The following comparison operators are analogouleds comparison operators in Section 9.6. They use
the wordoccur instead ofs. The wordoccur can be replaced withiccursor occurred. An optionalnot
may follow theoccur, negating the result (using the definitionnot, see Section 9.4.3).

The effect is that rather than using the left argotdirectly, the primary time of the left arguméntised
instead (that is, thieme of the left argument is used; see Section 9.16TI&) following pairs are
equivalent expressions:

time of var IS NOT BEFORE 1990-03-05T11:11:11
var OCCURRED NOT BEFORE 1990-03-05T11:11:11

time of surgery IS WITHIN THE PAST 3 days
surgery OCCURRED WITHIN THE PAST 3 days

time(a) IS WITHIN 1990-03-05T11:11:11 TO time(b)
a OCCURRED WITHIN 1990-03-05T11:11:11 TO time(b)

In the following operator examples, query_resuthis result of a query; its primary time is 1996-03
05T11:11:11; andow is 1990-03-06T00:00:00.

Day-of-week data types are not allowed as argunterascur comparison operators at this time. Tofie-
day data types are allowed and follow standard-tifrgay processing.

9.7.2 Occur [not] Equal (binary, non-associative)
<n:Boolean> := <n:any-type> OCCUR EQUAL <n:time s>
false := query_result OCCURRED EQUAL 1990-03-01T00: 00:00

See also Section 9.7.11.

9.7.3 Occur [not] Within ... To (ternary, non-associative)

<n:Boolean> := <n:any-type> OCCUR WITHIN <n:times> TO <n:itime s>
true := query_result OCCURRED WITHIN 1990-03-01T00: 00:00 TO 1990-03-
11T00:00:00

9.7.4 Occur [not] Within ... Preceding (ternary, non-associative)
<n:Boolean> := <n:any-type> OCCUR WITHIN <n:duratio n> PRECEDING <n:itime s>
false := query_result OCCURRED WITHIN 3 days PRECED ING 1990-03-10T00:00:00

9.7.5 Occur [not] Within ... Following (ternary, non-associative)
<n:Boolean> := <n:any-type> OCCUR WITHIN <n:duratio n> FOLLOWING <n:time s>
false := query_result OCCURRED WITHIN 3 days FOLLOW ING 1990-03-10T00:00:00

9.7.6 Occur [not] Within . . . Surrounding (ternary, non-associative)

<n:Boolean> := <n:any-type> OCCUR WITHIN <n:duratio n> SURROUNDING <n:time s>
false := query_result OCCURRED WITHIN 3 days SURRO UNDING 1990-03-10T00:00:00
false := request occurred within 2 hours surroundin g 14:00

(true, true, true, false, true) := measurements occ urred within 30 minutes

surrounding 13:00

9.7.7 Occur [not] Within Past (binary, non-associative)
<n:Boolean> := <n:any-type> OCCUR WITHIN PAST <n:du ration>
true := query_result OCCURRED WITHIN PAST 3 days

© 2008 Health Level Seven, Inc.. All rights reserved. Page 53
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.7.8

9.7.9

9.7.10

9.7.11

Occur [not] Within Same Day As (binary, non-associative)

<n:Boolean> := <n:any-type> OCCUR WITHIN SAME DAY A S <n:time>
false := query_result OCCURRED WITHIN SAME DAY AS 1990-03-08T01:01:01
null := query_result OCCURRED WITHIN SAME DAY AS 01 :01:01

Occur [not] Before (binary, non-associative)
<n:Boolean> := <n:any-type> OCCUR BEFORE <n:time s>
true := query_result OCCURRED BEFORE 1990-03-08T01 :01:01

Occur [not] After (binary, non-associative)
<n:Boolean> := <n:any-type> OCCUR AFTER <n:time s>
false := query_result OCCURRED AFTER 1990-03-08T01 :01:01

Occur [not] At (binary, non-associative)

Theoccur at operator functionally identical to tleecur equal operator.

<n:Boolean> := <n:any-type> OCCUR AT <n:time s>
false := query_result OCCURRED AT 1990-03-01T00:00 :00

See Section 9.7.2.

9.8 String Operators

9.8.1

The string operators do not follow the default liahdling or the default primary time handling.

[| (binary, left associative)

The|| operator (string concatenation) converts its arguisito strings and then concatenates those strings
together. The null data type is converted to thagnull and then appended to the other argument. TThus
never returnsull. Lists are converted to strings and then appetmléte other argument; the list is
enclosed in parentheses and the elements are wabhyawith no separating blanks. The string
representation of Booleans, numbers, times, anatidas is location-specific to allow for the usetiod

native language. Thermatted with operator$bs operator is used to convert values to strings (see
Section 9.8.2). Thetring operator is a generalization of theperator (see Section 9.8.3), except that the
string operator does not do anything special for liste Pprimary times of its arguments are lost. ltgesa
is:

<1:string> := <m:any-type> || <n:any-type>

"null3" ;= null || 3

"45" =45

"4.7four" := 4.7 || "four"

"true" := true || "

"3 days left" := 3 days || " left"

"on 1990-03-15T13:45:01" :="on " || 1990-03-15T13: 45:01
"list=(1,2,3)" := "list="]| (1,2,3)

Page 54

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.8.2 Formatted with (binary, left-associative)

Theformatted with operator allows a formatting string to be usedafditional control over how data
items are output. The formatting string is simttathe ANSI C language printf control string, with
additional ability to format an Arden time. Itsage is

<string> := <data> formatted with <format_string>

"01::02::03" := (1,2,3) formatted with "%2.2d::%2.2 d::%2.2d"

"The result was 10.61 mg"

:=10.60528 formatted with "The result was %.2f mg"

"The date was Jan 10 1998"

:=1998-01-10T17:25:00 formatted with "The date was %.2t"

"The year was 1998"

1= 1998-01-10T17:25:00 formatted with "The year was %.0t"

/* longer example */

a="ten",

b := "twenty";

¢ := "thirty";

f 1= "%s, %s, %s or more";

"ten, twenty, thirty or more" := (a, b, c) formatte d with f;
If datais a single item, it serves as the single paranfetdormat string substitution. Hata is a list, the
list is not formatted as a list. Instead, it istased to be a list of parameters for format strimigssitution.
Parameters are substituted into filenat string as described below, which becomes the resulteof th
operation.
A format string consists of a literal string angitally contains 1 or more format specifications.
A format specification, which consists of optioaald required fields, has the following form:

%][flags][width][.precision]type
Each field of the format specification is a singlaracter or a number signifying a particular farma
option. The simplest format specification containgy the percent sign and a type character (fomge,
%s). If a percent sign is followed by a charadbat has no meaning as a format field, the charéctest
revised. For example, to print a percent-sign dattarause %%.
Note that to retain compatibility with C languagm€tions, several formatting type specifiers hawerb
retained that will probably not be useful to thelémn MLM author. The most likely format specificatio
types an MLM author will use are:

%c (for outputting special characters)

%s (string width control)

%d (integer formatting)

%t (time formatting)

%e (floating point number formatting with exponent)

%f (floating point number formatting without expon ent)

%g (floating point number formatting using %e or % f)
A complete description of supported types withia thrmat specification can be found in Annex A5.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 55

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.8.3 String ... (unary, right associative)
Thestring operator expects a string or list of strings sasaigument. It returns a single string made by
concatenating all the elements, as|tloperator (see Section 9.8.1). If the argument israpty list, the
result is the empty string (). The element oparg§Section 9.12.18) can be used to select ceiteims
from the list. The primary times of its arguments st. Its usage is:
<1:string> := STRING <m:string>
<1:string> := STRING <m:list of strings>
“abc" := STRING ("a","b","c")
“abc" := STRING ("a","bc")
"™ := STRING ()
“edcba" := STRING REVERSE EXTRACT CHARACTERS "abcde
9.8.4 Matches Pattern (binary, non-associative)
The effect of this operator is similar to the LIKRerator in SQL (ISO / IEC 9073)atches patternis
used to determine whether or not a particular gtniatches a pattern. This operator expects twagstri
arguments. The first argument is a string to becheat, and the second is the pattern used for nmagchi
Matches patternreturns a Boolean value: true if the pattern efghcond argument matches the first
argument and false if it does not. The first argotraéso may be a list of strings, in which casertsult is
a list of Boolean values, each corresponding tortatch between one string and the pattern of tbense
argument. If the arguments are not strings, nuktgrned. Matching is case-insensitive. The printemes
of the arguments are lost.
The pattern of the second argument may be any $tgat) character. In addition, two wild-card claess
may be used. The underscorg\Will match exactly any one character. The persigm @6) will match O
to arbitrarily many characters. In order to matale of the literal wild-card character, precedeithvan
escape\] character.
<n : Boolean> := <n : string> MATCHES PATTERN <1: string>
true := "fatal heart attack" MATCHES PATTERN "%hear t%";
false := "fatal heart attack” MATCHES PATTERN "hear t";
true := "abnormal values" MATCHES PATTERN "%value_" ;
false := "fatal pneumonia" MATCHES PATTERN "%pulmon ary%";
(true, false) := ("stunned myocardium", "myocardial infarction”) MATCHES
PATTE
"%myocardium";
true := "5%" MATCHES PATTERN " \%";
9.8.5 Length (unary, right-associative)
Thelength operator returns the number of characters inikgstteading or trailing spaces are included in
this calculation. Applying thkength operator to an empty string returns zero, whitéhgth of a non-
string data type or an empty listrigll. Thelength operator is different from theount operator (see
Section 9.12.2), in thaé&ngth is the number of characters in a single stringlendount is the number of
items in a list. Primary times are not preserved.
<n:number> := LENGTH [OF] <n:string>
7 := LENGTH OF "Example"
14 := LENGTH "Example String"
0:=LENGTH ™
null := LENGTH ()
null := LENGTH OF null
(8, 3, null) := LENGTH OF ("Negative", "Pos", 2)
9.8.6 Uppercase (unary, right-associative)
Theuppercaseoperator converts all lowercase characters inirggsto uppercase. Non-lowercase
characters, including numeric and punctuation attarg, are not affected. Thpercaseof a non-string
data type or an empty list is null. Primary times preserved.
Page 56 © 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<n:string> := UPPERCASE <n:string>
"EXAMPLE STRING" := UPPERCASE "Example Strin g"
" := UPPERCASE "
null := UPPERCASE null
null := UPPERCASE ()

("5-HIAA", "POS", null) := uppercase ("5-Hiaa", "Po s", 2)
9.8.7 Lowercase (unary, right-associative)
Thelowercaseoperator converts all uppercase characters inrgggb lowercase. Non-uppercase
characters, including numeric and punctuation attars, are not affected. Thmvercaseof a non-string
data type or empty list isull. Primary times are preserved.
<n:string> := LOWERCASE <n:string>
"example string" := LOWERCASE "Example Strin g"
" := LOWERCASE "
null := LOWERCASE 12.8
null := LOWERCASE null
("5-hiaa", "pos", null) := LOWERCASE ("5-HIAA", "Po s", 2)
9.8.8 Trim [Left | Right] (unary, right-associative)
Thetrim operator removes leading and trailing white sgem® a string (see Section 7.1.10). The optional
left orright modifier can be applied to remove leading or itngilwhite space respectively. Printable
characters and embedded white space charactemstaaffected. Thérim of a non-string data type or
empty list isnull. Primary times are preserved.
<n:string> := TRIM [LEFT | RIGHT] <n:stri ng>
"example" ;== TRIM " example "
"= TRIM ™
null := TRIM ()
"result: " :=TRIM LEFT " result: "
" result:" := TRIM RIGHT " result: "
("5 N, "2 E*, null) := TRIM ("5 N", "2 E ", 2)
9.8.9 Find...[in] String...[starting at]... (ternary, right-associative)
Thefind ... string operator locates a substring within a target gtréamd returns a number that represents
the starting position of the substririgind ... string is similar tomatches pattern but returns a number
(rather than a boolean), and does not support aitticFind ... string is case-sensitive, and returns a zero
if the target string does not contain the exactsiry. If either the substring or target is natring data
type,null is returned. Primary times are not preserved.
The optional modifiestarting at... can be appended to tfied ... string operator to control where the
search for the substring begins. Omitting the medifauses the search to begin at the first charaéthe
string. The value followingtarting at... must be an integer, otherwisell is returned. If the value
following starting at... is an integer beyond the length of the targetgt(i.e. less than 1 or greater than
length target), zero is returned.
<n:number> := FIND <1:string> [IN] STRING <n:string >
<n:number> := FIND <1:string> [IN] STRING <n:string > [STARTING AT <n:number>]
3:=FIND "a" IN STRING "Example Here"
5:= FIND "ple" IN STRING "Example Here"
0:= FIND "s" IN STRING "Example Here"
null := FIND 2 IN STRING "Example Here"
null := FIND "a" STRING 510
(2,0, 4) := FIND "t* STRING ("start", "meds", "ha It")
7 := FIND "e" IN STRING "Example Here" STA RTING AT 1
1:= FIND "e" IN STRING LOWERCASE "Example Here" STARTING AT 1
10 := FIND "e" IN STRING "Example Here" STA RTING AT 8
10 := FIND "e" IN STRING “Example Here" STA RTING AT 10
© 2008 Health Level Seven, Inc.. All rights reserved. Page 57

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

12 := FIND "e" IN STRING "Example Here" STA

0 := FIND "e" IN STRING "Example Here" STA

null := FIND "e" IN STRING "Example Here" STA

null := FIND "e" IN STRING "Example Here" STA
(10,12) := FIND "e" IN STRING "Example Here" STA

RTING AT 11
RTING AT 13
RTING AT 1.5
RTING AT "x"
RTING AT (10,11)

9.8.10 Substring ... Characters [starting at ...] from ... (ternary, right associative)

Thesubstring ... characters [starting at ...] from ... operator returns a substring of characters from a
designated target string. This substring consistseospecified number of characters from the sestdng
beginning with the starting position (either thesficharacter of the string or the specified laatiithin

the string). For exampkubstring 3 characters starting at 2 from "Example” would return "xam" —a 3
character string beginning with the second charactthe source string "Example".

The target string must be a string data type, téiisg location within the string must be a pagtinteger,
and the number of characters to be returned muash lieteger, or the operator retumdl. If a starting
position is specified, its value must be an intdgetiveen 1 and the length of the string, othenaisempty
string is returned. If the requested number of attars is greater than the length of the string etfitire
string is returned. If a starting point is spedfiand the requested number of characters is gribate the
length of the string minus the starting point, tesulting string is the original string to the rigli and
including the starting position. If the number bfcacters requested is positive the charactersoarged
from left to right. If the number of charactersuegted is negative, the characters are countedrfgimto
left. The characters in a substring are alwaysmetliin the order that they appear in the strirgfaDit list
handling is observed. Primary times are preserved.
<n:string> := SUBSTRING <n:number> CHARACTER
FROM <n:string>
"ab" := SUBSTRING 2 CHARACTERS FROM "a bcdefg”
"abcdefg" := SUBSTRING 100 CHARACTERS FROM "abcdefg"
“def" := SUBSTRING 3 CHARACTERS STARTIN G AT 4 FROM “abcdefg"
"defg" := SUBSTRING 20 CHARACTERS STARTI NG AT 4 FROM "abcdefg"
null := SUBSTRING 2.3 CHARACTERS FRO M “abcdefg"
null := SUBSTRING 2 CHARACTERS START ING AT 4.7 FROM "“abcdefg"
null := SUBSTRING 3 CHARACTERS STARTIN G AT “c" FROM “abcdefg"
null := SUBSTRING "b" CHARACTERS START ING AT 4 FROM "“abcdefg"
null := SUBSTRING 3 CHARACTERS STARTIN G AT 4 FROM 281471
"d" := SUBSTRING 1 CHARACTERS STARTIN G AT 4 FROM “abcdefg"
"d" := SUBSTRING —1 CHARACTERS STARTI NG AT 4 FROM “abcdefg"
"bed" := SUBSTRING -3 CHARACTERS STARTI NG AT 4 FROM "abcdefg"
"a":= SUBSTRING 1 CHARACTERS FROM “a bcdefg”
"g" := SUBSTRING —1 CHARACTERS STARTI NG AT LENGTH OF "abcdefg"
FROM "abcdefg"
("Pos","Neg",null):= SUBSTRING 3 CHARACTERS FROM ("

S [STARTING AT <n:number>]

Positive","Negative",2)

Example: Determine the systolic and diastolic valofpatient's blood pressure when observations (bp

are stored as strings like this: "98/72", "18L[&r "138/102".

Bp := "121/86";

slash_pos := FIND "/" IN STRING bp;

systolic := SUBSTRING (slash_pos — 1) CHARACTERS FR OM bp;

or

systolic := SUBSTRING -3 CHARACTERS STARTING AT (s lash_pos - 1) FROM bp;

diastolic := SUBSTRING 3 CHARACTERS STARTING AT (sl
or

diastolic := SUBSTRING (LENGTH of bp) CHARACTERS ST
FROM bp

ash_pos + 1) FROM bp;

ARTING AT (slash_pos + 1)

Revision date: 2008-05-06

© 2008 Health Level Seven, Inc.. All rights reserved.
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.8.11 Localized (unary, non-associative)

Thelocalizedoperator returns a string that has been previaledfiyed in the language slot of the MLM’s
resources category. The string is looked up by simgathe key/value pair defined in the languagétblat
matches the current language setting of the sysiieich executes the MLM. The argument of the operato
specifies the term that is used as key to lookeprstiue for one specific text resource.

Retrieving the current language setting is impletaigon specific. If the language cannot be retrikoeno
language slot is defined for the current languége default language of the resources categoryad.uf
the term is not defined in the chosen languageosldtthe argument is not a Termyll is returned.

According to the examples in Section 6.4.2 its esag

<n:string> := LOCALIZED <n:term>

"Caution, the patient has
the following allergy to
penicillin documented: " := localized 'msg’;

"The patient's calculated
creatinine clearance is
0.33 ml/min." := creat formatted with lo calized ‘creat’;

null := localized 'unknown'

Or in an German setting:

"Vorsicht, zu diesem Patienten
wurde die folgende
Penicillinallergie
dokumentiert: " :=localized 'msg’;

"Die berechnete Kreatinin-
Clearance des Patienten
betragt 0,33 ml/min." := creat formatted with localized 'creat’;

null := localized 'unknow n'

9.8.12 Localized (binary, right-associative)

The binarylocalized operator acts like the unary version of this operand additionally allows the
selection of the target language as second argusgisecond operator, either a string constant or a
variable can be used. Other expressions are nidt val

This operator can be used if the language of tresage has to be different from the current langirage
the system setting, for example when the systeguiage is English (as the user operates in an Englis
environment), but the recipient of the messagerexiires another language, such as German.

Regarding the lookup mechanism and the defaultiagg handling it acts in the same way like the yinar
version. In addition, if the second argument dags@solve to a string, the default language islue
usage is:

<n:string> := LOCALIZED <n:term> by <n:string>

"Caution, the patient has
the following allergy to
penicillin documented: " := localized 'msg' by "en_ us";

"Die berechnete Kreatinin-
Clearance des Patienten
betragt 0,33 ml/min." := creat formatted with loc alized 'creat' by
lang_setting; I*1 ang_setting == "de" */

9.9 Arithmetic Operators
The behavior of time and duration data types ida®pd in Section 8.5.2.

9.9.1 + (binary, left associative)

Binary + (addition) adds the left and right argumentsatt perform simple addition, add two durations, or
increment a time by a duration. Underflow or ow@sflresults imull. Its usage is:

<n:number> := <n:number> + <n:number>

© 2008 Health Level Seven, Inc.. All rights reserved. Page 59
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.9.2

9.9.3

9.94

9.95

6:=4+2

0:=5+(

null :=(1,2,3) + ()

O :=null+()

null :=5 + null

(null,null;null) := (1,2,3) + null
null := null + null

<n:duration> := <n:duration> + <n:duration>

3 days :=1day + 2 days

<n:time s>:=<n:itime s>+ <n:duration>

1990-03-15T00:00:00 := 1990-03-13T00:00:00 + 2 days

1993-05-17T00:00:00 := 0000-00-00 + 1993 years + 5 months + 17 days
<n:itime s> :=<n:duration> + <n:time s>

1990-03-15T00:00:00 := 2 days + 1990-03-13T00:00:00

+ (unary, non-associative)

Unary+ has no effect on its argument if it is of a vdlide. Its usage is:

<n:number> := + <n:number>
2:=+2
null := + "asdf"
<n:duration> := + <n:duration>
2 days := + 2 days

- (binary, left associative)

Binary- (subtraction) subtracts the right argument fromléit. It can perform numeric subtraction,
subtract two durations, decrement a time by a duradr find the duration between two times. Unbbevf
or overflow results imull. In writing expressions, care must be taken thaisubtraction operator is not
confused with the "-" in time constant (Section.%)1Any ambiguity is resolved in favor of time cbants.

Its usage is:

<n:number> := <n:number> - <n:number>
4:=6-2
<n:duration> := <n:duration> - <n:duration>
1 day := 3 days - 2 days
<n:time s>:=<n:itime s> - <n:duration>
1990-03-13T00:00:00 := 1990-03-15T00:00:00 - 2 days
<n:duration> := <n:time s> - <n:time s>
2 days := 1990-03-15T00:00:00 - 1990-03-13T00:00:00

- (unary, non-associative)

Unary- is used for arithmetic negation; this is how orekes negative number constants. Underflow or
overflow results imull. One cannot put two arithmetic operators togettwthe following expression is
illegal: 3 + -4 Instead one must use one of thé&se:(-4), 3 - 4, or-4 + 3 Its usage is:

<n:number> := - <n:number>
(-2):=-2

<n:duration> := - <n:duration>
(-2) days := - (2 days)

* (binary, left associative)

The* operator (multiplication) multiplies the left andht arguments. Underflow or overflow results in
null. It can perform numeric multiplication or multipdyduration by a number. Its usage is:

<n:number> := <n:number> * <n:number>
8:=4*2

<n:duration> := <n:number> * <n:duration>
6 days := 3 * 2 days

Page 60

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<n:duration> := <n:duration> * <n:number>
6 days := 2 days * 3

9.9.6 / (binary, left associative)

The/ operator (division) divides the left argument bg tight one. It can perform numeric division, divi
a duration by a number, or find the ratio between durationsNull results from division by zero,

underflow, or overflow. Duration unit conversiomdae done with théoperator (e.g... / 1 yearturns any
duration into years). Its usage is:

<n:number> := <n:number>/ <n:number>
4:=8/2

<n:duration> := <n:duration> / <n:number>
2 days:=6days/3

<n:number> := <n:duration> / <n:duration>
120 := 2 minutes / 1 second
36 := 3 years / 1 month

9.9.7 ** (binary, non-associative)

The** operator (exponentiation) raises the left arguni@tiie power of the right argument. Its usage is:

<n:number> := <n:number> ** <1l:number>
9:=3*2
9.10 Temporal Operators

The behavior of time and duration data types idampd in Section 8.5.2.

9.10.1 After (binary, non-associative)

Theafter operator is equivalent to addition between a dumadnd a time. Its usage is:

<n:time s> :=<n:duration> AFTER <n:time s>
1990-03-15T00:00:00 := 2 days AFTER 1990-03-13T00:0 0:00

9.10.2 Before (binary, non-associative)

Thebefore operator is equivalent to the subtraction of aatian from a time. Its usage is:

<n:time s> :=<n:duration> BEFORE <n:time s>
1990-03-11T00:00:00 := 2 days BEFORE 1990-03-13T00: 00:00

9.10.3 Ago (unary, non-associative)

Theago operator subtracts a duration fravow, resulting in a time. Its usage is (assuming tioat is
1990-04-19T00:03:15):

<n:time> := <n:duration> AGO
1990-04-17T00:03:15 := 2 days AGO

9.10.4 From (binary, non-associative)

Thefrom operator is equivalent to addition between a domand a time. Its usage is:

<n:time s> :=<n:duration> FROM <n:time s>
2000-09-13T00:08:00 := 2 days FROM 2000-09-11T00:08 :00

9.10.5 Time of day [of] (unary, right-associative)

Thetime of day operator extracts the time-of-day from a time. Rrigitimes are lost.
Its usage is:
<n:time-of-day> := TIME OF DAY [OF] <n:time>
14:23:17.3 := TIME OF DAY OF 1990-01-03T14:23:17.3

© 2008 Health Level Seven, Inc.. All rights reserved. Page 61
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

null := TIME OF DAY OF "this is not a time"

/* let time of dataO be 2006-01-01T12:00:00 */
12:00:00 := TIME OF DAY OF (TIME OF data0)

null := TIME OF (TIME OF DAY OF (TIME OF data0))

9.10.6 Day of week [of] (unary, right associative)

Theday of weekoperator returns a positive integer from 1 toat tepresents the day of the week of a
specified time (Section 8.12). The number 1 cowadp to Monday, 2 corresponds to Tuesday, etc. The
number 7 represents Sunday. This operator maydzbwith a user-defined list of strings to report an
actual weekday in an appropriate language, or reaysked with the reserved words representing the day
of the week. The example below assumes that 26@6-@as a Friday, 2006-06-03 was a Sunday, 2006-
06-06 was a Tuesdgyptassiumis the result of a query with the primary time8@8-06-03T09:04:00,
2006-06-06T16:40:00), and the weekday of now iscadidy.

<n:number> := DAY OF WEEK [OF] <n:time>

5 := DAY OF WEEK OF 2006-05-26T13:20:00

(6, 2) := DAY OF WEEK OF (TIME OF potassium)

1 := DAY OF WEEK OF now

null := DAY OF WEEK 15:30:00

true := DAY OF WEEK OF 2006-05-26T13:20:00 = FRIDAY

(true, false) := DAY OF WEEK OF TIME OF potassium | S IN (SATURDAY, SUNDAY)
false := DAY OF WEEK OF now IS IN (SATURDAY, SUNDAY)

A more detailed example:

weekend := DAY OF WEEK OF eventtime is in (SATURDAY , SUNDAY);
/I weekend is true if the event occurred on Saturda y or Sunday
weekday := ("Monday", "Tuesday", ..., "Sunday");

last_k := last potassium;
last_k_time :=time last_k;

msg := "The last potassium was collected on "
|| weekday[DAY OF WEEK OF last_k_time];

/["The last potassium was collected on Tuesday"

9.10.7 Extract Year (unary, right-associative)

Theextract year operator extracts the year from a time. Its ussige

<n:number> := EXTRACT YEAR <n:time>
1990 := EXTRACT YEAR 1990-01-03T14:23:17.3
null := EXTRACT YEAR (1 YEAR)
null := EXTRACT YEAR 14:23:17.3

9.10.8 Extract Month (unary, right-associative)

Theextract month operator extracts the month from a time. Its ussge

<n:number> := EXTRACT MONTH <n:time>
1:= EXTRACT MONTH 1990-01-03T14:23:17.3
null := EXTRACT MONTH 1
null := EXTRACT MONTH 14:23:17.3

9.10.9 Extract Day (unary, right-associative)

Theextract day operator extracts the day from a time. Its usage i

<n:number> := EXTRACT DAY <n:time>
3:= EXTRACT DAY 1990-01-03T14:23:17.3
null := EXTRACT DAY "this is not a time"
null := EXTRACT DAY 14:23:17.3

Page 62 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.10.10 Extract Hour (unary, right-associative)

Theextract hour operator extracts the hour from a time. Its usage

<n:number> := EXTRACT HOUR <n:times>
14 := EXTRACT HOUR 1990-01-03T14:23:17.3
null := EXTRACT HOUR (1 HOUR)
14 := EXTRACT HOUR 14:23:17.3

9.10.11 Extract minute (unary, right-associative)

Theextract minute operator extracts the minute from a time. Its esag

<n:number> := EXTRACT MINUTE <n:times>
23 := EXTRACT MINUTE 1990-01-03T14:23:17.3
0 := EXTRACT MINUTE 1990-01-03
null := EXTRACT MINUTE 0000-00-00
23 := EXTRACT MINUTE 14:23:17.3

9.10.12 Extract second (unary, right-associative)

Theextract secondoperator extracts the second from a time. Itseissig

<n:number> := EXTRACT SECOND <n:times>
17.3 ;= EXTRACT SECOND 1990-01-03T14:23:17.3
null := EXTRACT SECOND (1 second)
17.3 := EXTRACT SECOND 14:23:17.3

9.10.13 Replace Year [of] ... With (binary, right-associative)

Thereplaceyear of ... with operator allows the replacement of the year faattome. For example:

<n:time> := REPLACE YEAR [OF] <n:time> WITH <n:numb er>;

varl := 1990-03-15T15:00:00;

2011-03-15T15:00:00 := REPLACE YEAR OF varl WITH 20 11;
(2011-03-15T15:00:00, 2010-03-15T15:00:00) := REPLA CE YEAR OF varl WITH

(2011, 2010);
null := REPLACE YEAR OF varl WITH -10;

The result of theeplaceyear of ... with operator preserves the primary time of the firgument. If a
fractional replacement parameter is given, thetifsaal part of the parameter will be removed before
evaluating the operator. If the replacement is tieganull will be returned.

9.10.14 Replace Month [of] ... With (binary, right-associative)

Thereplacemonth of ... with operator allows the replacement of the month giaattime. For example:

<n:time> := REPLACE MONTH [OF] <n:time> WITH <n:num ber>;

varl := 1990-03-15T15:00:00;

1990-11-15T15:00:00 := REPLACE MONTH OF varl WITH 1 1;

(19901-11-15T15:OO:00, 1990-10-15T15:00:00) := REPLA CE MONTH OF varl WITH (11,

1

null := REPLACE MONTH OF varl WITH 14;

The result of theeplacemonth of ... with operator preserves the primary time of the firguenent. If the
value that should be assigned to the month pareiater than 12, the operator will retunl. This also
holds for negative values. If a fractional reptaeat parameter is given, the fractional part of the
parameter will be removed before evaluating theatpe.

9.10.15 Replace Day [of] ...With (binary, right-associative)

Thereplaceday of ... with operator allows the replacement of the day paat tifhe. For example:

<n:time> := REPLACE DAY [OF] <n:time> WITH <n:numbe r>;
varl := 1990-03-15T15:00:00;

© 2008 Health Level Seven, Inc.. All rights reserved. Page 63
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

1990-03-11T15:00:00 := REPLACE DAY OF varl WITH 11,
(1990-03-11T15:00:00, 1990-03-10T15:00:00) := REPLA CE DAY OF varl WITH (11,
10):

i

null := REPLACE DAY OF varl WITH 100;

The result of theeplaceday of ... with operator preserves the primary time of the firgument. If the
value that should be assigned to the day partiatgr than the amount of days in the referred mahéh
operator will returmull. This also holds for negative values. If a fractl replacement parameter is

given, the fractional part of the parameter willrbenoved before evaluating the operator.

9.10.16 Replace Hour [of] ... With (binary, right-associative)

Thereplacehour of ... with operator allows the replacement of the hour plaattome or time-of-day. For
example:

<n:times> := REPLACE HOUR [OF] <n:times> WITH <n:nu mber>;
varl := 1990-03-15T15:00:00;
1990-03-15T11:00:00 := REPLACE HOUR OF varl WITH 11 ;

(1990-03-15T11:00:00, 1990-03-15T10:00:00) := REPLA CE HOUR OF varl WITH (11,
10);

null := REPLACE HOUR OF varl WITH 100;
10:00 := REPLACE HOUR OF 18:00 WITH 10;

The result of theeplacehour of ... with operator preserves the primary time of the firgueent. If the
value that should be assigned to the hour pareiatgr than 24, the operator will retumull. This also
holds for negative values. If a fractional replaeat parameter is given, the fractional part of the
parameter will be removed before evaluating theatpe.

9.10.17 Replace Minute [of] ... With (binary, right-associative)

Thereplaceminute of ... with operator allows the redefinition of the minutetpra time or time-of-day.

For example:
<n:times> := REPLACE MINUTE [OF] <n:times> WITH <n: number>;
varl := 1990-03-15T15:00:00;
1990-03-15T15:11:00 := REPLACE MINUTE OF varl WITH 11;
(1990-03-15T15:11:00, 1990-03-15T15:10:00) := REPLA CE MINUTE OF varl WITH

(11, 10);
null := REPLACE MINUTE OF varl WITH 100;
18:10 := REPLACE MINUTE OF 18:00 WITH 10;

The result of theeplaceminute of ... with operator preserves the primary time of the firgueent. If
the value that should be assigned to the minuteigpgreater than 60, the operator will retarrl. This
also holds for negative values. If a fractiongdlaeement parameter is given, the fractional piitie
parameter will be removed before evaluating theatpe.

9.10.18 Replace Second [of] ... With (binary, right-associative)

Thereplacesecond of ... withoperator allows the redefinition of the second p&e time or time-of-day.

For example:
<n:times> := REPLACE SECOND [OF] <n:times> WITH <n: number>;
varl := 1990-03-15T15:00:00;
1990-03-15T15:00:11 := REPLACE SECOND OF varl WITH 11;
(1990-03-15T15:00:11, 1990-03-15T15:00:10) := REPLA CE SECOND OF varl WITH

(11, 10);
null := REPLACE SECOND OF varl WITH -100;
18:00:10 := REPLACE SECOND OF 18:00 WITH 10;

The result of theeplacesecond of ... withoperator preserves the primary time of the firguenent. If the
value that should be assigned to the second pare&er than 60, the operator will retmudl to. This also

holds for negative values. Fractional replacempanameters are allowed for treplacesecond of ...
with operator.

Page 64 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.11 Duration Operators

9.11.1

9.11.2

9.11.3

9.11.4

9.11.5

9.11.6

9.11.7

The behavior of the duration data type is explaine8lection 8.5.2. Because the precedence of the
temporal operators is lower than that of the daratiperators3 hours before 3 days ag@ parsed a3
hours) before ((3 days) ago)and it would return what time it was three dayd three hours before the
current time.

Year (unary, non-associative)

Theyear operator has one synonygears It creates a months duration from a number: @z is 12
months. Its usage is:

<n:duration> := <n:number> YEAR
24 months := 2 YEAR
Month (unary, non-associative)

Themonth operator has one synonymonths. It creates a months duration from a number.dtge is:

<n:duration> := <n:number> MONTH

Week (unary, non-associative)

Theweekoperator has one synonymeeks It creates a seconds duration from a numberweek is
604800 seconds. Its usage is:

<n:duration> := <n:number> WEEK

Day (unary, non-associative)

Theday operator has one synonydays. It creates a seconds duration from a numberdayéds 86400
seconds. Its usage is:

<n:duration> := <n:number> DAY

Hour (unary, non-associative)

Thehour operator has one synonyhours. It creates a seconds duration from a numberhooe is 3600
seconds. Its usage is:

<n:duration> := <n:number> HOUR

Minute (unary, non-associative)

Theminute operator has one synonyminutes. It creates a seconds duration from a numbernunate
is 60 seconds. Its usage is:

<n:duration> := <n:number> MINUTE

Second (unary, nhon-associative)

Thesecondoperator has one synonyseconds It creates a seconds duration from a numbeuskge is:

<n:duration> := <n:number> SECOND

9.12 Aggregation Operators

9.12.1 General Properties:
The aggregation operators do not follow the defiatlhandling, or the default primary time handlin
They perform aggregation on a list. That is, theleta list as an argument (they are all unary)rangn a
single item as a result. Unless otherwise noteal| the elements of the list have the same printiarg,
the result maintains that primary time (otherwise primary time is lost). An argument that is ayiritem
is treated as a list of length one.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 65

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.12.2

9.12.3

9.12.4

9.12.5

Each of the operators may be followed by the wairdParentheses are not required. For example, tiese
all the same:

SUM a_list
SUM OF a_list
SUM(a_list)
SUM OF(a_list)

Multiple aggregation and transformation operatfos éxample, see Section 9.14) may be placed in an
expression without parentheses; for example:

AVERAGE OF LAST 3 FROM a_list

Count (unary, right associative)

Thecount operator returns the number of items (includintj items) in a list.Count never returnsiull.
The result loses the primary time. Its usage is:

<1:number> := COUNT <n:any-type>
4 := COUNT (12,13,14,null)
1 := COUNT "asdf"
0:=COUNT ()
1 := COUNT null

Exist (unary, right associative)

Theexist operator has one synonyexists It returnstrue if there is at least one non-null item in a liét o
any typelf the list argument is a single item, then itrisated as a list of length orexist never returns
null. If all the elements of the list have the samenpriy time, the result maintains that primary time
(otherwise the primary time is lost). Its usage is:

<1:Boolean> := EXIST <n:any-type>
true := EXIST (12,13,14)
false := EXIST null
false := EXIST ()
true := EXIST ("plugh”,null)

Average (unary, right associative)

Theaverageoperator has one synonyaug. It calculates the average of a number, time uoatibn list. If
all the elements of the list have the same prirtiarg, the result maintains that primary time (othise the
primary time is lost). Its usage is:

<1:number> := AVERAGE <n:number>
14 := AVERAGE (12,13,17)
3:= AVERAGE 3
null := AVERAGE ()
<1:time> := AVERAGE <n:time s>
1990-03-11T03:10:00 := AVERAGE (1990-03-10T03:10:00 , 1990-03-12T03:10:00)
null := AVERAGE (03:10:00, 1990-03-12T03:10:00)
04:10:00 := AVERAGE (03:10:00, 05:10:00)
<1:duration> := AVERAGE <n:duration>
3 days := AVERAGE (2 days, 3 days, 4 days)

Median (unary, right associative)

Themedian operator calculates the median value of a nuntipee, or duration list. The list is first sorted.
If there is an odd number of items, it selectsrttiédle value. If there is an even number of iteitns,
averages the middle two values. If there is attien it selects the latest of those elements tiet A
primary time. If a single element is selected dh# two selected elements of the list have theesam
primary time, the result maintains that primarydifotherwise the primary time is lost). Its usagje i

<1:number> := MEDIAN <n:number>

Page 66

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

13 := MEDIAN (12,17,13)
3:=MEDIAN 3
null := MEDIAN ()

<1:time s> :=MEDIAN <n:time s>

1990-03-11T03:10:00 := MEDIAN (1990-03-10T03:10:00, 1990-03-11T03:10:00,
1990-03-28T03:10:00)

03:10:00 := MEDIAN (03:10:00, 02:10:00, 23:10:00)
<1:duration> := MEDIAN <n:duration>
3 days := MEDIAN (1 hour, 3 days, 4 years)

9.12.6 Sum (unary, right associative)
Thesum operator calculates the sum of a number or durdigt If all the elements of the list have the
same primary time, the result maintains that printisne (otherwise the primary time is lost). It@ge is:
<l:number> := SUM <n:number>
39 := SUM (12,13,14)
3:=SUM3
0:=SUM ()
<1:duration> := SUM <n:duration>
7 days := SUM (1 day, 6 days)
9.12.7 Stddev (unary, right associative)
Thestddevoperator returns the sample standard deviatienmfmeric list. If all the elements of the list
have the same primary time, the result maintaiasghimary time (otherwise the primary time is Jo#ts
usage is:
<l:number>:= STDDEV <n:number>
1.58113883 := STDDEV (12,13,14,15,16)
null := STDDEV 3
null := STDDEV ()
9.12.8 Variance (unary, right associative)
Thevariance operator returns the sample variance of a nuntistidf all the elements of the list have the
same primary time, the result maintains that printiene (otherwise the primary time is lost). It@ge is:
<l:number> := VARIANCE <n:number>
2.5 := VARIANCE (12,13,14,15,16)
null := VARIANCE 3
null := VARIANCE ()
9.12.9 Minimum (unary, right associative)
Theminimum operator has one synonymin. It returns the smallest value in a homogeneai®fian
ordered type (that is, all numbers, all timesdallations, or all strings), using tke operator (see Section
9.5.4). If there is a tie, it selects the elemeith the latest primary time. The primary time oé thelected
argument is maintained. Its usage is:
<l:ordered> := MINIMUM <n:ordered>
12 := MINIMUM (12,13,14)
3:=MIN3
null := MINIMUM ()
null := MINIMUM (1,"abc")
Theminimum operator can also be extended by the using moci§ielefined for the sort operator (see
9.2.4) to allow more complex calculations of theanimum. For example:
<l:object> := minimum <n:object> using it.age; // will return the youngest
/I person from a list of person s (represented by objects)
180 := minimum (0, 30, 90, 180, 200, 300) using cos inus of it;
© 2008 Health Level Seven, Inc.. All rights reserved. Page 67

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.12.10 Maximum (unary, right associative)

Themaximum operator has one synonymax. It returns the largest value in a homogeneoti®iian
ordered type, using the= operator (see Section 9.5.6). If there is a tiseliects the element with the latest
primary time. The primary time of the selected angat is maintained. Its usage is:

<1:ordered> := MAXIMUM <n:ordered>
14 := MAXIMUM (12,13,14)
3 := MAXIMUM 3
null := MAXIMUM ()
null := MAXIMUM (1,"abc")

Themaximum operator can also be extended by the using modifieefined for the sort operator (see
9.2.4) to allow more complex calculations of theximaum. For example:

<l:object> := maximum <n:object> using it.age; // will return the oldest
/I person from a list of person s (represented by objects)
90 := maximum (0, 30, 90, 180, 200, 300) using sinu s of it;

9.12.11 Last (unary, right associative)

Thelast operator returns the value at the end of a kgfardless of type. If the listis emptyll is
returned. The expressidast x is equivalent tx[count x]. Last on the result of a time-sorted query will
return the most recent value. The primary timehefgelected argument is maintained. Note [dsttis
different thanast specified in Arden Syntax version E 1460-92. Tdarator is now callelhtest (see
Section 9.12.16). Its usage is:

<l:any-type>:= LAST <n:any-type>
14 := LAST (12,13,14)
3:=LAST3
null := LAST ()

9.12.12 First (unary, right associative)

Thefirst operator returns the value at the beginning ddtalf the list is emptynull is returned. The
expressiorii rst x is equivalent tox[1] . First on the result of a time-sorted query will retune t
earliest value. The primary time of the selecteghiarent is maintained. Note tHast is different than
first specified in Arden Syntax version E 1460-92. Tdyadrator is now calledarliest (see Section
9.12.17). Its usage is:

<l:any-type> := FIRST <n:any-type>
12 := FIRST (12,13,14)
3:=FIRST 3
null := FIRST ()

9.12.13 Any [IsTrue] (unary, right associative)

Theany operator returngue if any of the items in a list isue. It returnsfalseif they are alfalse.
Otherwise it returnaull. The special case of a list with zero membersiltef false. If all the elements of
the list have the same primary time, the resultnta&is that primary time (otherwise the primaryeiia
lost). The optional keywordIsTrue” can be used to increase the readability of statésusing thany
operatorlts usage is:

<1:Boolean> := ANY [ISTRUE] <n:any-type>
true := ANY IsTrue (true,false,false)
false := ANY false
false := ANY ()

null := ANY (3, 5, "red")
false := ANY (false, false)
null := ANY (false, null)

Page 68

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.12.14 All [AreTrue] (unary, right associative)

Theall operator returngue if all of the items in a list argue. It returnsfalseif any of the items ifalse
Otherwise it returnaull. The special case of a list with zero membersiltes true. If all the elements of
the list have the same primary time, the resulintaais that primary time (otherwise the primarydiig

lost). The optional keywordAreTrue” can be used to increase the readability of statésusing thall
operatorlts usage is:

<1:Boolean>:= ALL [ARETRUE] <n:any-type>
false := ALL AreTrue (true,false,false)
false := ALL false
true := ALL ()

null := ALL (3, 5, "red")
null := ALL (true, null)

9.12.15 No [IsTrue] (unary, right associative)

Theno operator returngue if all of the items in a list arfalse It returnsfalseif any of the items isrue.
Otherwise it returnaull. The special case of a list with zero membersiltes true. If all the elements of
the list have the same primary time, the resulintaais that primary time (otherwise the primarydiig

lost). The optional keywordIsTrue” can be used to increase the readability of statgsusing theo
operatorlts usage is:

<1:Boolean>:= NO [ISTRUE] <n:any-type>

false := NO IsTrue (true,false,false)
true := NO false
true :=NO ()

null := NO (3, 5, "red")
null := NO (false, null)

9.12.16 Latest (unary, right associative)

Thelatest operator returns the value with the latest primteme in a list. If any of the elements do not
have primary times, the resultrigll (the argument can always be qualifiedtyere time of it is present

if this is not desired behavior). If the list is ptyy null is returnedIf more than one element has the latest
primary time, the first (with the lowest index) thiese elements will be returnéithe primary time of the
selected argument is maintained. Its usage is:

<l:any-type>:= LATEST <n:any-type>
null := LATEST ()

"penicillin" := LATEST ("penicillin”, "ibuprofen”, "pseudoephedrine HCL");
(T16:40) (T16:40) (T14:05) (T14:04)

Thelatest operator can also be extended by the using modifieefined for the sort operator (see 9.2.4) to
allow more complex calculations of the latest vaker example:

<l:object> := latest <n:object> using it.birthday; [Iwill return the youngest
/I person from a list of person s (represented by objects)

9.12.17 Earliest (unary, right associative)

Theearliest operator returns the value with the earliest printime in a list. If any of the elements do not
have primary times, the resultrisll (the argument can always be qualifiedWtere time of it is present
if this is not desired behavipif more than one element has the earliest pyrtiare, the first (with the

lowest index) of these elements will be returriéthe list is emptynull is returned. The primary time of
the argument is maintained. Its usage is:

<l:any-type> := EARLIEST <n:any-type>
null := EARLIEST ()

" pseudoephedrine HCL" := EARLIEST ("penicillin”, " ibuprofen”, "pseudoephedrine HCL");

(T14:04) (T16:40) (T14:05) (T14:04)

© 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06

Page 69
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

Theearliest operator can also be extended by the using mocisielefined for the sort operator (see 9.2.4)
to allow more complex calculations of the earlisue. For example:

<1:object> := earliest <n:object> using it.birthday ; Iwill return the
/I youngest person from a list of persons (represented by objects)

9.12.18 Element (binary)

The element[(..]) operator is used to select one or more elememnts & list, based on ordinal position
starting at 1 for the first element. The arguméatindex" are a list expression (to the left oé fth.]) and
a list of integers (inside the.]). The element operator maintains the primary tiofabe selected
arguments. Its usage is:

<n:any-type> := <k:any-type>[n:index]
20 :=(10,20,30,40)[2]

(0 :=(10,20)[(]

(null,20) := (10,20)[1.5,2]

(10,30,50) := (10,20,30,40,50)[1,3,5]
(10,30,50) :=(10,20,30,40,50)[1,(3,5)]
(10,20,30) :=(10,20,30,40,50)[1 seqto 3]

9.12.19 Extract Characters ... (unary, right associative)

Theextract charactersoperator expects a string as its argument. Itmsta list of the single characters in
the string. If the argument has more than one el¢rtige elements are first concatenated, as folj the
operator (see Section 9.8.1). If the argument israpty list, the result is the empty {3t Thestring
operator (Section 9.8.3) can be used to put thédisk together; and the index operator (Sectiéd.28)
can be used to select certain items from theTltst. primary times of its arguments are lost. l&sgesis:

<n:string> := EXTRACT CHARACTERS <m:string>

("a","b","c") := EXTRACT CHARACTERS "abc"

("a","b","c") := EXTRACT CHARACTERS ("ab","c")

() := EXTRACT CHARACTERS ()

() := EXTRACT CHARACTERS ™

"edcba" := STRING REVERSE EXTRACT CHARACTERS "abcde

9.12.20 Seqto (binary, non-associative)

Theseqtooperator generates a list of integers in ascenalidgr. Both arguments must be single integers;
otherwise null is returned. If the first argumengieater than the second argument, the reshié isrpty
list. The primary times are lost. Its usage is:

<n:number> := <1:number> SEQTO <1l:number>
(2,3,4) :=2 SEQTO 4
() :==4 SEQTO 2
null := 4.5 SEQTO 2
(2) :=2SEQTO 2
(-3,-2,-1) == (-3) SEQTO (-1)
(2,4,6,8) :=2* (1 SEQTO 4)
null := (1.5 seqto 5)

9.12.21 Reverse (unary, right-associative)

Thereverseoperator generates a new list with the elementiseémeverse order. The primary times of its
arguments are maintained. Its usage is:

<n:any-type> := REVERSE <n:any-type>
(3,2,1) :=reverse (1,2,3)
(6,5,4,3,2,1) :=reverse (1 seqto 6)
() :=reverse ()

Page 70 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.12.22 Index Extraction Aggregation operators

These operators behave similarly to their non-ingldxacting counterparts with the exception thafth
return the value of the index of the element thataimes the specified criteria rather than the vafitbe
element. These operators do not maintain primanggi

9.12.22.1Index Latest (unary, right associative)

Theindex latestoperator returns the index of the element withlaélbest primary time in a list. If any of the
elements do not have primary times, the resultils (the argument can always be qualifiedWdyere time
of it is present, if this is not desired behavior). If the listampty,null is returned. The primary time of the
selected argument is maintained. Its usage is:

<l:any-type> := INDEX LATEST <n:any-type>
null := INDEX LATEST ()

1:= INDEX LATEST ("penicillin", "ibuprofen”, "psue dophedrine HCL");
(T16:40) (T14:05) (T14:04)

9.12.22.2 Index Earliest (unary, right associative)

Theindex earliestoperator returns the index of the element withethdiest primary time in a list. If any
of the elements do not have primary times, thelrésuaull (the argument can always be qualified by
where time of it is present if this is not desired behavior). If the listampty,null is returned. The
primary time of the argument is maintained. Itsgeses:

<l:any-type>:= INDEX EARLIEST <n:any-type>
null := INDEX EARLIEST ()

3 := INDEX EARLIEST ("penicillin“, "ibuprofen”, "ps uedophedrine HCL");
(T16:40) (T14:05) (T14:04)

9.12.22.3Index Minimum (unary, right associative)

Theindex minimum operator has one synonymdex min. It returns the index of the element with the
smallest value in a homogeneous list of an ordbseel (that is, all numbers, all times, all durasipar all
strings), using the= operator (see Section 9.5.4). If there is a tigeliects the element with the latest
primary time. Its usage is:

<1:ordered> := INDEX MINIMUM <n:ordered>
1 := INDEX MINIMUM (12,13,14)
1:= INDEX MIN 3
null := INDEX MINIMUM ()
null := INDEX MINIMUM (1,"abc")

9.12.22.4Index Maximum (unary, right associative)

The indexmaximum operator has one synonym: indeax. It returns the largest value in a homogeneous
list of an ordered type, using the operator (see Section 9.5.6). If there is a tiseliects the element with
the latest primary time. The primary time of theested argument is maintained. Its usage is:

<1:ordered> := INDEX MAXIMUM <n:ordered>
3 := INDEX MAXIMUM (12,13,14)
1:= INDEX MAX 3
null := INDEX MAXIMUM ()
null := INDEX MAXIMUM (1,"abc")

9.12.22.5 Absence of other index operators

There are no index extraction equivalents for dast first agndex first would always return 1 ariddex
lastis equivalent to the count operator.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 71
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.13 Query Aggregation Operators

9.13.1 General Properties:

The query aggregation operators do not follow tikualt list handling, or the default primary time
handling. They perform aggregation on a list. Tibathey take a list as one argument and returnghes
item as a result. If the list argument is a singgm, then it is treated as a list of length oneléds
otherwise specified, if all the elements of thétiave the same primary time, the result mainttias
primary time (otherwise the primary time lost).

The unary query aggregation operators (that isehbat do not include tHiemm word) may optionally be
followed byof.

The query aggregation operators follow the defémlé-of-day handling, when used with a time-of-day
argument. The time-of-day value is a point in tiwithin the current day.

9.13.2 Nearest ... From (binary, right associative)

Thenearest ... fromoperator expects a time as its first argumentaaligt as its second argument. It selects
the item from the list whose time of occurrenceéarest the specified time. If any of the elemeptsaot
have primary times, the resultrisll (the argument can always be qualifiedtere time of it is present

if this is not desired behavior). In the case titathe element with the smallest index is usdgk primary
times of the argument are maintained. Assumedat is a list that is the result of a query with these
values:12, 13, 14 data has these primary times:1990-03-15T15:00:00, 1®306T15:00:00, 1990-03-
17T15:00:00; and now is 1990-03-18T16:00:00. Tregasof thenearest ... fromoperator is:

<n:any-type> := NEAREST <1:times> FROM <m:any-type>
13 := NEAREST (2 days ago) FROM data
null := NEAREST (2 days ago) FROM (3,4)
null := NEAREST (2 days ago) FROM ()

14 := NEAREST 12:00 FROM data
/I the same as NEAREST 1990-03-18T12:00:00

14 := NEAREST 23:00 FROM data
/I the same as NEAREST 1990-03-18T23:00:00

A more detailed example: a blood glucose querylresmtains following value3.0, 10.0, 12.0,
query_result has the primary times 1990-03-18T12:00:00, 1990-8812:30:00, 1990-03-18T13:00:00,
and now is 1990-03-18T16:00:00.

The blood glucose level before lunch can be reddewith:
7.0 := NEAREST 12:00 FROM query_result

The blood glucose level after %2 hour is:
12.0 := NEAREST 12:30 FROM query_result

9.13.3 Index Nearest ... From (binary, right associative)

Theindex nearest ... fromoperator functions exactly as thearest ... from operator(Section 9.13.2),
except that it returns the index of the elemerteathan the element itselfidex nearest ... fromdoes

not maintain primary time. Assume tlg#ta is a list that is the result of a query with theakies:12, 13,

14; data has these primary times:1990-03-15T15:00:00, 1®306T15:00:00, 1990-03-17T15:00:00; and
now is 1990-03-18T16:00:00. The usage ofitftex nearest ... fromoperator is:

<n:number> := INDEX NEAREST <n:time> FROM <m:any-ty pe>
2 := INDEX NEAREST (2 days ago) FROM data
null := INDEX NEAREST (2 days ago) FROM (3,4)

Page 72 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.13.4 Index Of ... From ... (binary, right-associative)

Theindex of ... from operator expects an arbitrary data value asrgsdrgument and a list as its second
argument. It returns the index of the occurrencthefgiven data value within the provided listthére is
more than on occurrence a list containing all omes are returned. The resuligl if no such value is
found in the list or in case of invalid parametdise primary times of the arguments are not maiethi
The usage of thimdex of ... from operator is:

<n:number> := INDEX OF <1:any-type> FROM <m:any-typ e>
4 := INDEX OF 4 FROM (1, 2, 3, 4, "5", "six", 7);
5:= INDEX OF “5” FROM (1, 2, 3, 4, "5", "six", 7);
null := INDEX OF 5 FROM (1, 2, 3, 4, "5", "six", 7)
null := INDEX OF null FROM (1, 2, 3, 4, "5", "six", 7);
null := INDEX OF 5 FROM null;
1 := INDEX OF null FROM null;
1:= INDEX OF 5 FROM 5;
(1,3,5) :=INDEXOF 1 FROM (1, 2, 1, 4, 1, "six", 7);
(3,5) := INDEX OF null FROM (1, 2, null, 4, null, " six", 7);

9.13.5 At Least... [IsTrue|AreTrue] From (binary, right-associative)

Theat least ... from ...operator expects a number (call it N) as its fargiument and a homogeneous list of
Boolean as its second argument. @héeast ... from ... operator returnsue if at least N items of the list
aretrue. If the first argument is not a number or the secparameter contains a non Booleaut| is

returned. If N is greater than the cardinalitylud tist,falseis returned. The primary times of the arguments
are not maintained. The optional keywordisTtue” and “AreTrue” can be used to increase the readability
of statements using tlat least ... fromoperator. The usage of the operator is:

<1:Boolean> := AT LEAST <1l:number> [ISTRUE|ARETRUE] FROM <n:Boolean>
TRUE := AT LEAST 1 IsTrue FROM (TRUE, TRUE, FALSE, FALSE)

TRUE := AT LEAST 2 AreTrue FROM (TRUE, TRUE, TRUE, FALSE)

FALSE := AT LEAST 2 FROM (TRUE, FALSE, FALSE, FALSE)

FALSE := AT LEAST 7 AreTrue FROM (TRUE, FALSE, FALS E)

null := AT LEAST 2 YEARS FROM (TRUE, FALSE, FALSE)
null := AT LEAST 2 FROM (TRUE, "true", FALSE)

9.13.6 At Most ... [IsTrue|AreTrue] From (binary, right-associative)

Theat most ... from ...operator expects a number (call it N) as its fargfument and a homogeneous list of
Boolean as its second argument. Bhenost ... from ... operator returngue if at most N items of the list
aretrue. If the first argument is not a number or the secparameter contains a non Booleaul| is

returned. If N is greater than the cardinalitylud tist,falseis returned. The primary times of the arguments
are not maintained. The optional keywordsTfue” and “AreTrue” can be used to increase the readability
of statements using tla most ... from operator. The usage of the operator is:

<1:Boolean> := AT MOST <l:number> [ISTRUE|ARETRUE] FROM <n:Boolean>
TRUE := AT MOST 2 AreTrue FROM (TRUE, TRUE, FALSE, FALSE)
FALSE := AT MOST 1 IsTrue FROM (TRUE, TRUE, TRUE, F ALSE)

TRUE := AT MOST 2 FROM (TRUE, FALSE, FALSE, FALSE)
FALSE := AT MOST 7 FROM (TRUE, FALSE, FALSE)

null := AT MOST 2 YEARS FROM (TRUE, FALSE, FALSE)
null := AT MOST 2 FROM (TRUE, "true", FALSE)

9.13.7 Slope (unary, right associative)

Theslopeoperator performs a regression and returns tipe gt the result of a query assuming the y axis
contains the values and the x axis contains thestihe result is expressed as units per daysbut i
considered to be a numbaiull results if the argument has fewer than two itdfrall the elements of the
list have the same primary time, the resutiui. If one or more of the primary times is non-existe¢he

© 2008 Health Level Seven, Inc.. All rights reserved. Page 73
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

result isnull. The result of the slope operator does not hgwnaary time. Its usage is (assuming the same
data as above):

<1:number> := SLOPE <n:number>
1 := SLOPE data
null := SLOPE (3,4)

9.14 Transformation Operators

9.14.1 General Properties:

The transformation operators do not follow the difiist handling, or the default primary time héingd.

They transform a list, producing another listhétist argument is a single item, then it is tededs a list
of length one. The result is always a list evethdire is only one item (except if there is an elirowhich
case the result isull).

Operators that are unary (that is, that do notuhelthefrom word) may optionally be followed kof.

9.14.2 Minimum ... From (binary, right associative)

Theminimum ... from operator has one synonymin ... from. It expects a number (call it N) as its first
argument and a homogeneous list of an orderedayjis second argument. It returns a list withNhe
smallest items from the argument list, in the sander that they are in the second argument, artdamy
duplicates preserved. The resulhigl if N is not a non-negative integer. If there ao¢ @nough items in
the argument list, then as many as possible auened. If there is a tie, then it selects the labvéshose
elements that have a primary time. The primary $ilmiethe argument are maintained. Its usage is:

<n:ordered> := MINIMUM <21:number> FROM <m:ordered>
(11,12) := MINIMUM 2 FROM (11,14,13,12)
(,3) := MINIMUM 2 FROM 3
null := MINIMUM 2 FROM (3, "asdf")
() := MINIMUM 2 FROM ()
() := MINIMUM 0 FROM (2,3)
(1,2,2) := MINIMUM 3 FROM (3,5,1,2,4,2)

Theminimum ... from operator can also be extended by the using modi§ielefined for the sort operator
(see 9.2.4) to allow more complex calculationshef minimum. For example:

<n:object> := minimum 2 from <n:object> using it.ag e; /iwill return the two
/I youngest persons from a list of person s (represented by objects)

9.14.3 Maximum ... From (binary, right associative)

Themaximum ... from operator has one synonymax ... from. It expects a number (call it N) as its first
argument and a homogeneous list of an orderedayjis second argument. It returns a list withNhe
largest items from the argument list, in the samdkeiothat they are in the second argument, andavith
duplicates preserved. The resulhigl if N is not a non-negative integer. If there ao¢ @nough items in
the argument list, then as many as possible avened. If there is a tie, then it selects the labéshose
elements that have a primary time. The primary $ilmiethe argument are maintained. Its usage is:

<n:ordered> := MAXIMUM <1:number> FROM <m:ordered>
(14,13) := MAXIMUM 2 FROM (11,14,13,12)
(,3) := MAXIMUM 2 FROM 3
null := MAXIMUM 2 FROM (3, "asdf")
() := MAXIMUM 2 FROM ()
() := MAXIMUM 0 FROM (1,2,3)
(5,4,4) := MAXIMUM 3 FROM (1,5,2,4,1,4)

Themaximum ... from operator can also be extended by the using modifieefined for the sort
operator (see 9.2.4) to allow more complex caleuhatof the maximum. For example:

<n:object> := maximum 2 from <n:object> using it.ag e; /iwill return the two
/I oldest persons from a list of persons (represented by objects)
Page 74 © 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.14.4

9.14.5

9.14.6

First ... From (binary, right associative)

Thefirst ... from operator expects a number (call it N) as its farglument and a list as its second
argument. It returns a list with the first N itefnsm the argument list. The resultrigll if N is not a non-
negative integer. If the list is the result ofradisorted query, then the returned items are thiestan
time. If there are not enough items in the argurlisntthen as many as possible are returned. Me&ns
thatfirst 1 from x differs fromfirst x if x is empty; the former returr{y and the latter returnaull. The
primary times of the argument are maintained. $&ge is:

<n:any-type> := FIRST <1l:number> FROM <m:any-type>
(11,14) := FIRST 2 FROM (11,14,13,12)
(,3) := FIRST 2 FROM 3
(null,1) := FIRST 2 FROM (null,1,2,null)
() :== FIRST 2 FROM ()

Last ... From (binary, right associative)

Thelast ... from operator expects a number (call it N) as its fargiument and a list as its second argument.
It returns a list with the last N items from thg@ment list. The result isull if N is not a non-negative
integer. If the list is the result of a time-sortpekry, then the returned items are the latestria.tlf there

are not enough items in the argument list, themasy as possible are returned. This meanddbai

from x differs fromlast x if x is empty; the former returr§y and the latter returnaull. The primary times

of the argument are maintained. Its usage is:

<n:any-type> := LAST <1:number> FROM <m:any-type>
(13,12) := LAST 2 FROM (11,14,13,12)
(,3) :=LAST 2 FROM 3
(2,null) := LAST 2 FROM (null,1,2,null)
() := LAST 2 FROM ()

Sublist ...Elements [Starting at ...] From ... (ternary, right-associative)

Thesublist ... elements [starting at ...] from ...operator returns a sublist of elements from agihedied
target list and works analogue to thebstring operator. This sublist consists of the specifiathber of

elements from the source list beginning with tteetstg position (either the first elements of ttst or the
specified location within the list). For examleblist 3 elements starting at 2 from (“E”, "x”, "a”, "m”,
"p”, "I”, "e”) wouldreturn ("x”, "a”, "m") —a 3 element list beginning with the second elenettie

source list.

The target list must be a list data type, the istgutbcation within the list must be a positivedager, and the
number of elements to be returned must be an integéhe operator returmalll. If target is not a list data
type, a list with one element is assumed. If aisi@gposition is specified, its value must be aedger
between 1 and the length of the list, otherwiserapty list is returned. If the requested number of
elements is greater than the length of the ligt gihtire list is returned. If a starting point pesified, and
the requested number of elements is greater theasizk of the list minus the starting point, theuieng
list is the original list to the right of and incling the starting position. If the number of eletserequested
is positive the elements are counted from lefigbtr If the number of elements requested is negathe
elements are counted from right to left. The eleména sublist are always returned in the ordaet they
appear in the original list. Default list handlilsgobserved. Primary times are preserved.
<n:any-type> := SUBLIST <l:number> ELEMENTS [STARTI NG AT <l:number>] FROM

<m:any-type>

(1, 2) := SUBLIST 2 ELEMENTS FROM (1, 2, 3, 4, 5)

(1,2, 3,4,5) := SUBLIST 100 ELEMENTS FROM (1, 2 ,3,4,5)

(4, 5, 6) := SUBLIST 3 ELEMENTS STARTING AT 4 FROM (1,2,3,4,5,6,7)

(z;,)s, 6, 7) := SUBLIST 20 ELEMENTS STARTING AT 4 F ROM (1, 2, 3, 4, 5, 6,

null := SUBLIST 2.3 ELEMENTS FROM (1, 2, 3,4,5, 6 ,7)

null := SUBLIST 2 ELEMENTS STARTING AT 4.7 FROM (1, 2,3,4,5,6,7)
null := SUBLIST 3 ELEMENTS STARTING AT "c" FROM (1, 2,3,4,5,6,7)
null := SUBLIST "b" ELEMENTS STARTING AT 4 FROM (1, 2,3,4,5,6,7)

© 2008 Health Level Seven, Inc.. All rights reserved. Page 75
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

() := SUBLIST 3 ELEMENTS STARTING AT 4 FROM 281471

(4) := SUBLIST 1 ELEMENTS STARTING AT 4 FROM (1, 2, 3,4,5,6,7)

(4) := SUBLIST —1 ELEMENTS STARTING AT 4 FROM (1, 2 ,3,4,5,6,7)

(2, 3, 4) := SUBLIST -3 ELEMENTS STARTING AT 4 FROM 1,2,3,4,5,6,7)
(1) := SUBLIST 1 ELEMENTS FROM (1, 2, 3,4,5,6, 7)

9.14.7 Increase (unary, right associative)

Theincreaseoperator returns a list of the differences betwaertessive items in a homogeneous numeric,
time, or duration list. There is one fewer itenthie result than in the argument; if the argumeani€mpty
list, thennull is returned. The primary time of the second itareach successive pair is kept. Its usage is:

<n:number> := INCREASE <m:number>
(4,-2,-1) := INCREASE (11,15,13,12)
() := INCREASE 3
null := INCREASE ()
<n: duration> := INCREASE <m:time s>
(1 day) := INCREASE (1990-03-01,1990-03-02)
(1 hour) := INCREASE (13:00:00,14:00:00)
<n:duration> := INCREASE <m:duration>
(1 day) := INCREASE (1 day, 2 days)

9.14.8 Decrease (unary, right associative)

Thedecreaseoperator returns a list of the negative differenisetween successive items in a homogeneous
numeric, time, or duration list. There is one feitem in the result than in the argument; if thguanent is

an empty list, thenull is returnedDecreases the additive inverse aficrease The primary time of the
second item in each successive pair is kept. Hgeiss:

<n:number> := DECREASE <m:number>
(-4,2,1) := DECREASE (11,15,13,12)
() := DECREASE 3
null := DECREASE ()
<n: duration> := DECREASE <m:time s>
((-1) day) := DECREASE (1990-03-01,1990-03-02)
((-1) hour) := DECREASE (13:00:00,14:00:00)
<n:duration> := DECREASE <m:duration>
((-1) day) := DECREASE (1 day, 2 days)

9.14.9 % Increase (unary, right associative)

The% increaseoperator has one synonypercent increase It returns a list of the percent increase
between items in successive pairs in a homogenaguber or duration list (the denominator is thstfir
item in each pair; if it is zero, themll is returned). The primary time of the second itereach successive
pair is kept. Its usage is:

<n:number> := % INCREASE <m:number>
(36.3636,-13.3333) := % INCREASE (11,15,13)
() := % INCREASE 3
null := % INCREASE ()

<n:number> := % INCREASE <m:duration>
(100) := % INCREASE (1 day, 2 days)

9.14.10 % Decrease (unary, right associative)

The% decreaseoperator has one synonypercent decreaselt returns a list of the percent decrease
between items in successive pairs in a homogenaguber or duration list (the denominator is thstfir
item in each pair, if it is zero, thenll is returned). The primary time of the second itereach successive
pair is kept. Its usage is:

<n:number> := % DECREASE <m:number>
(-36.3636,13.3333) := % DECREASE (11,15,13)

Page 76 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

() := % DECREASE 3
null := % DECREASE ()

<n:number> := % DECREASE <m:duration>
(-100) := % DECREASE (1 day, 2 days)

9.14.11 Earliest ... From (binary, right associative)

Theearliest ... fromoperator expects a number (call it N) as its fugiument and a list as its second
argument. It returns a list with the earliest Nrisefrom the argument list, in the order they appeane
argument list. The result raull if N is not a non-negative integer. If any of glements do not have
primary times, the result iwll (the argument can always be qualifiedidyere time of it is present if
this is not desired behavior). If there are notugtmitems in the argument list, then as many asiplesare
returned. This means thearliest 1 from x differs fromearliest xif x is empty; the former returr{ and
the latter returngull. The primary times of the argument are maintaiftsdusage is:

<n:any-type> := EARLIEST <l:number> FROM <m:any-typ e>
() := EARLIEST 2 FROM ()

Theearliest ... from operator can also be extended by the using mociielefined for the sort operator
(see 9.2.4) to allow more complex calculationshef ¢arliest value. For example:

<n:object> := earliest 2 from <n:object> using it.b irthday; //will return the
// two oldest persons from a list of persons (represented by objects)

9.14.12 Latest ... From (binary, right associative)

Thelatest ... from operator expects a number (call it N) as its furgjument and a list as its second
argument. It returns a list with the latest N itefinegn the argument list, in the order they appaahe
argument list. The result faill if N is not a non-negative integer. If any of #dlements do not have
primary times, the result iull (the argument can always be qualifiedAdyere time of it is present if
this is not desired behavior). If there are notugitmitems in the argument list, then as many asiplesare
returned. This means thatest 1 from x differs fromlatest xif x is empty; the former returr{y and the
latter returnswull. The primary times of the argument are maintaiftscusage is:

<n:any-type> := LATEST <1l:number> FROM <m:any-type>
() := LATEST 2 FROM ()

Thelatest ... from operator can also be extended by the using mocisielefined for the sort operator (see
9.2.4) to allow more complex calculations of thie&h value. For example:

<n:object> := latest 2 from <n:object> using it.bir thday; //will return the
/I two youngest persons from a list of person s (represented by objects)

9.14.13 Index Extraction Transformation Operators

These operators behave similarly to their non-ingldxacting counterparts with the exception thafth
return the value of the index of the element thatalmes the specified criteria rather than the eteritself.
These operators do not maintain primary times.

9.14.13.1 Index Minimum ... From (binary, right associative)

Theindex minimum ... from operator has one synonyimdex min ... from. It expects a number (call it
N) as its first argument and a homogeneous lisihabrdered type as its second argument. It retuliss
with the indices of the N smallest items from tihguanent list, in the same order that they are énstbcond
argument, and with any duplicates preserved. Thdtresnull if N is not a non-negative integer. If there
are not enough items in the argument list, themasy indices as possible are returned. If thegetis,
then it selects the latest of those elements tiet b primary time. The primary times of the argotrage
not maintained. Its usage is:

<n:number> := INDEX MINIMUM <1:number> FROM <m:orde red>
(1,4) := INDEX MINIMUM 2 FROM (11,14,13,12)
(3,4,6) := INDEX MINIMUM 3 FROM (3,5,1,2,4,2)
null := INDEX MIN 2 FROM (3, "asdf")

© 2008 Health Level Seven, Inc.. All rights reserved. Page 77
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

(,1) := INDEX MINIMUM 2 FROM 3
() := INDEX MINIMUM 0 FROM (2,3)

9.14.13.2 Index Maximum ... From (binary, right associative)

Theindex maximum ... from operator has one synonyimdex max ... from It expects a number (call it
N) as its first argument and a homogeneous lisinabrdered type as its second argument. It retuliss
with the indices of the N largest items from thguement list, in the same order that they are irsémnd
argument, and with any duplicates preserved. Thdtresnull if N is not a non-negative integer. If there
are not enough items in the argument list, themasy indices as possible are returned. If thegetis,
then it selects the latest of those elements tiet b primary time. The primary times of the argotrage
not maintained. Its usage is:

<n:number> := INDEX MAXIMUM <1:number> FROM <m:orde red>
(2,3) := INDEX MAXIMUM 2 FROM (11,14,13,12)
(2,3,5) := INDEX MAXIMUM 3 FROM (3,5,1,2,4,2)
null := INDEX MAX 2 FROM (3, "asdf")
(,1) := INDEX MAXIMUM 2 FROM 3
() := INDEX MAXIMUM 0 FROM (2,3)

9.14.13.3First... From; Last... From

There are no index extraction operator paralleldifst ... from andlast ... from as these can be
generated using either teeqtooperator (fofirst ... from) or the seqto andount operators (fotast ...
from). Thus if these functions are needed, use theviatig:

Index First x From y : 1 seqto X

Index Last x From y : (count(y)-x) seqto count(y)

9.15 Query Transformation Operator

9.15.1

9.15.2

General Properties

The query transformation operator does not follbevdefault list handling, or the default primamé
handling. It transforms a list, producing anothst. If the list argument is a single item, thersitreated as
a list of length one. The result is always a ligreif there is only one item (except if thererisearor, in
which case the result imull).

The query transformation operator can only be appib the result of a query, since it requires #hiiine
be associated with each item in the argumentNigH. is returned if it is used on other data.

The query transformation operator may optionallfd®wed byof.

Interval (unary, right associative)

Theinterval operator returns the difference between the pgiriares of succeeding items in a list. It is
analogous téncrease The primary times of the argument are lost. #sge is (assuming thdata is the
result of a query with these primary tim&é890-03-15T15:00:00, 1990-03-16T15:00:00, 1990-03-
18T21:00:00:

<n:duration> := INTERVAL <m:any-type>
(1 day, 2.25 days) := INTERVAL data
null := INTERVAL (3,4)

9.16 Numeric Function Operators

9.16.1

The numeric function operators are all unary fuorithat work with numbers. When an illegal operati
is attempted (for examplig 0) thennull is returned.

Arccos (unary, right associative)

Thearccosoperator calculates the arc-cosine (expresseatliams) of its argument. Its usage is:

Page 78

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<n:number> := ARCCOS <n:number>
0:=ARCCOS 1

9.16.2 Arcsin (unary, right associative)

Thearcsin operator calculates the arc-sine (expressed iamayof its argument. Its usage is:

<n:number> := ARCSIN <n:number>
0:=ARCSIN O

9.16.3 Arctan (unary, right associative)

Thearctan operator calculates the arc-tangent (expresselians) of its argument. Its usage is:

<n:number> := ARCTAN <n:number>
0:=ARCTANO

9.16.4 Cosine (unary, right associative)

Thecosineoperator has one synonyous It calculates the cosine of its argument (expéss radians).
Its usage is:

<n:number> := COSINE <n:number>
1:=COSINE O

9.16.5 Sine (unary, right associative)

Thesine operator has one synonysin. It calculates the sine of its argument (expregseddians). Its
usage is:

<n:number> := SINE <n:number>
0:=SINE O
9.16.6 Tangent (unary, right associative)

Thetangentoperator has one synonytan. It calculates the tangent of its argument (exgedsn
radians). Its usage is:

<n:number> := TANGENT <n:number>
0:= TANGENT 0
9.16.7 Exp (unary, right associative)

Theexp operator raises mathematical e to the power @rgament. Its usage is:

<n:number> := EXP <n:number>
1:=EXPO
9.16.8 Log (unary, right associative)

Thelog operator returns the natural logarithm of its anguat. Its usage is:

<n:number> := LOG <n:number>
0:=LOG 1
9.16.9 Logl0 (unary, right associative)

TheloglOoperator returns the base 10 logarithm of its met. Its usage is:

<n:number> := LOG10 <n:number>
1:=L0OG10 10

© 2008 Health Level Seven, Inc.. All rights reserved. Page 79
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.16.10 Int (unary, right associative)

Theint operator returns the largest integer less thagoal to its argument (truncates towards negative
infinity). It is synonymous witliloor (Section 9.16.11). Its usage is:

<n:number> := INT <n:number>
-2:=INT (-15)
-2:=INT (-2.0)

1:= INT (1.5)
-3:=INT (-2.5)
-4 = INT (-3.1)
-4 := INT (-4)

9.16.11 Floor (unary, right associative)

Thefloor operator is synonymous witht. It returns the largest integer less than or etjuat argument
(truncates towards negative infinity).

9.16.12 Ceiling (unary, right associative)

Theceiling operator returns the smallest integer greater ¢hagual to its argument (truncates towards
positive infinity). Its usage is:
<n:number> := CEILING <n:number>

-1:=CEILING (-15)

-1:=CEILING (-1.0)

2:=CEILING 1.5

-2 :=CEILING (-2.5)

-3 := CEILING (-3.9)

9.16.13 Truncate (unary, right associative)

Thetruncate operator removes any fractional part of a numtran¢ates towards zero). Its usage is:

<n:number> := TRUNCATE <n:number>
-1:=TRUNCATE (-15)
-1:= TRUNCATE (-1.0)
1:=TRUNCATE 1.5

9.16.14 Round (unary, right associative)
Theround operator rounds a number to an integer.

For positive numbers: If the fractional portiontbé operand is greater than or equal to 0.5, tleeabqr
rounds to the next highest integer. Fractionalipostless than 0.5 round to the next lowest integer

For negative numbers: If the absolute value offthetional portion of the operand is greater theeaual
0.5, the operator rounds to the next lower negatiteger. Fractional portions with absolute valless
than 0.5 round to the next highest integer.

Its usage is:
<n:number> := ROUND <n:number>
1:= ROUND 0.5
3:= ROUND 3.4
4:= ROUND 3.5
-4:=ROUND (-35)
-3:=ROUND (-34)
-4:=ROUND (-3.7)
Page 80 © 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.16.15 Abs (unary, right associative)

Theabsoperator returns absolute value of its argumésnudage is:

<n:number> := ABS <n:number>
1.5:=ABS (-1.5)

9.16.16 Sqrt (unary, right associative)

Thesqrt operator returns the square root of its argungetause imaginary numbers are not supported,
the square root of a negative number resultailh Its usage is:

<n:number> := SQRT <n:number>
2:=SQRT 4
null := SQRT(-1)

9.16.17 As Number (unary, non-associative)

Theas numberoperator attempts to convert a string or Booleaa nomber. If conversion to a number is
possible, the number is returned, otherwisk is returned. The primary time of the argumentréesprved.
The usual use for this will be to convert a strvigich contains a valid number representation 183"

into the represented number. If the string doe<antain a valid number then the result will bel.nul

Boolean values are translated at follows: Bookeaa is represented at 1 and Booldalseis represented
at 0.

<n:number> := <n:numeric string> AS NUMBER;
5:="5" AS NUMBER,;
null := "xyz" AS NUMBER,;
<n:number> := <n:Boolean> AS NUMBER;
1 :=True AS NUMBER;
0 := False AS NUMBER;
<n:number> := <n:number> AS NUMBER,;
6 := 6 AS NUMBER;

(7, 8, 230, 4100, null, null, 1, O, null, null, nu) := (7", 8,
"2.3E+2", 4.1E+3, "ABC", Null, True, False, 1997-10 -31T00:00:00, now, 3
days) AS NUMBER;

0:= () AS NUMBER;

9.16.18 As Time (unary, non-associative)

Theas time operator attempts to convert a given string ton@ tIf conversion to a time is possible, the
time is returned, otherwise null is returned. Thenpry time of the argument is preservétie common
use for this is to convert a string containing Bdvdate/time format as described in 1ISO 8601:1838(
e.g., "1999-12-12" or "1999-12-12T13:41", into radi.

<n:time> := <n:string> AS TIME;

<n:time> := <n:time> AS TIME;
1999-12-12 :="1999-12-12" AS TIME;
null := "xyz" AS TIME;

(1999-12-12, 1999-12-12, null, null, null, 1997-10- 31T00:00:00, null) :=
("1999-12-12", 1999-12-12, "ABC", Null, True, "1997 -10-31T00:00:00", 3
days) AS TIME;

():=() AS TIME;

9.16.19 As String (unary, non-associative)

Theas string operator attempts to convert any data type toirmgstf conversion to a string is possible, the
string is returned, otherwise null is returned. Phienary time of the argument is preserved.

<n:string> := <n:any-type> AS STRING;
"5":=5AS STRING;
"null" := null AS STRING;

© 2008 Health Level Seven, Inc.. All rights reserved. Page 81
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

"true" := True AS STRING;
"false" := False AS STRING;

("7","8", "4100", "ABC", "null", "true", "false", "1997-10-31T00:00:00",
"3 days") := ("7", 8, 4.1E+3, "ABC", Null, True, Fa Ise, 1997-10-
31T00:00:00, 3 days) AS STRING;

0:= () AS STRING;

9.17 Time Function Operator

9.17.1

9.17.2

The time function operator does not follow the défarimary time handling.

Time (unary, right associative)

Thetime operator returns the primary time (that is, tinfheacurrence) of the result of a value derived
from a query (see Section 8.8)ull is returned if it is used on data that has no arinime. The result of
time preserves the primary time of its argumenttis® time x is equivalent tdime x. Its usage is
(assuming thatlataO is the result of a query with one element whosmany time is:1990-03-
15T15:00:00:
<n:time> := TIME [OF] <n:any-type>

1990-03-15T15:00:00 := TIME OF data0

1990-03-15T15:00:00 := TIME TIME data0

(null,null) := TIME (3,4)

The inverse of théime operator (to set the primary time of a value) carmbhieved by usingme on the
left side of an assignment statement. For example:
TIME [OF] <n:any-type> := <n:time>;
TIME datal := time data2;

If the identifier on the left hand side of an assignt statement refers to a list, the behavioheftime
assignment is undefined. Future versions of theAr@yntax standard may formally define this behavio
If the right side of the assignment statement smtsefer to a time value, thiene operator assignsull to
the primary time of the identifier in the left hasidle.

Time of Objects

When an object is passed to thme operator, the result will be null if one or moté&iautes do not
reference a data item with a primary time, if tledcontain primary times but those times diffeiif the
object contains no attributes. If all the objedtsilautes refer to data items with primary timesdall those
times are equivalent, then this time is returnethagime of the object. If an attribute containsg then
the primary time of the object is not defined (retunull) since lists do not have a specific prigname.

LabResult := OBJECT [id, value];
result := new LabResult;

result.id := 123;

time of result.id := 2004-01-16T00:00:00;
result.value := 1.0;

time of result.value := 2004-01-16T00:00:00;

2004-01-16T00:00:00 := time of result; // all attri butes have same primary
time
2004-01-16T00:00:00 := time of result.id;

time of result.id := 2004-01-17T00:00:00;
null := time of result; Il primary times differ
2004-01-17T00:00:00 := time of result.id;

Page 82

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

9.17.3 Attime (binary, right associative)

Theattime operator constructs a time value from two time time-of-day arguments. The result consists
of the date of the time arguments and the timéetime-of-day argumeniull is returned if it is used
with other arguments than time and time-of-day. phimary times are lost.

<n:time> := <n:time> ATTIME <n:time-of-day>
2006-06-20T15:00:00 := now ATTIME 15:00:00
2001-01-01T14:30:00 := TIME OF intuitive_new_millen ium ATTIME 14:30:00

This operator was known as thtoperator in Arden Syntax 2.6. The change fairo attime was made
to resolve a conflict in context-free grammar (Axri¢ and remove the need for precedence rules to
properly parse write statements (12.2.1) thatagtitiestinations.

9.18 Object Operators

9.18.1 Dot (binary, right associative)

Thedot operator (".") selects an attribute from an objEted on the name following the dtittakes an
expression and an identifier. The expression tylyiexvaluates to an object or a list of objects.

<n:any-type> := <expr>"." <identifier>

If the expression does not evaluate to an objedt,tbe object does not contain the named attapthien
null is returned. If the expression evaluates listanormal Arden list handling is used and aist
returned. Therefore, if the expression is a lisblgjects, then a list (of the same length) of tiebaite
values named by the identifier is returned (a comomage).

NameType := object [FirstName, LastName];

/* Assume namelist contains a list of 2 NameType ob jects */
("John", "Paul") := namelist.FirstName;

("Lennon", "McCartney") := namelist.LastName;

"John" := namelist[1].FirstName;

null := namelist[1].Height;

(null, null) := namelist.Height;

The dot operator maintains the primary time ofdttebute it references.

chemistry_panel := object [albumin, calcium, phosph orusj;

/* assume patientResult is a single chemistry_panel object with albumin = 4.0
ir/wg/dL, calcium = 8.7 mg/dL and phosphorus = 3.0 mg/ dL on 15 December 2004

calciumPhosphorusProduct := patientResult.calcium * patientResult.phosphorus;

26.1 := calciumPhosphorusProduct;

2004-12-15T16:00:00 := time of patientResult.calciu m;

Dot operators may be used together, when objeetstared as attributes of other objects.

PatientInfo := object [Name, Birthdate];

/* Assume patient contains an object of type Patien tinfo, and the Name
attribute contains an object of type NameType */

"John" := patient.Name.FirstName;

9.18.2 Clone (unary, right associative)

Theclone operator returns a copy of its argument. Pradyicdlis only affects objects, because these are
the only data types which retain identity acrosdtipie operations. (See Annex A6 for details ofeutj
identity). When an object is copied, a new objédhe same type is created, and all its fieldsiritilized
by assigning values from corresponding fields imdhgument object. The fields, which may contain
objects, are themselves cloned, resulting in a depp. If any field contains a list, that list il®ced, and
any objects stored in the list are also cloned.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 83
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

Theclone operator insures that no objects are shared bettheeargument and the result. Tdiene
returns another, distinct object that has the sstnueture and value as the original object.

Effectively, clone works like this depending on the argument type:
Object A deep copy of the object is returned.

List A copy of the list is returned, which contamslone of each item in the original
list, in the same order.

Other types The original item is returned.

<n:any-type> := CLONE [OF] <n:any-type>

<Copy of Object> := CLONE OF <Object>

1990-03-15T15:00:00 := CLONE OF 1990-03-15T15:0 0:00
(1,2, <Copy of Object>) := CLONE (1,2, <Object>)

null := CLONE null

When theclone operator is applied, the resulting object will tin the same primary times as the
argument object. Application of the clone operatoa top level object or any embedded objects essur
that the fields in any new object have the sammaamy time as the original fields.

9.18.3 Extract Attribute Names ... (unary, right associative)

Theextract attribute namesoperator expects an object as its argument.tutne a list containing the
attribute names of the object argument. Only theaédiate attribute names of the argument are redurn
If an attribute is itself an object, the attribu@mes of the embedded object are not returnedid.eested
lists. If the argument is not an objeatyll is returned.

<n:string> := EXTRACT ATTRIBUTE NAMES <1:any-type>

(in data slot)
MedicationDose := OBJECT [Medication, Dose, Status] ;
dose := NEW MedicationDose with "Ampicillin“, "500m g", "Active";

(in data slot or logic slot)
dose_attributes := extract attribute names dose
dose_attributes = ("Medication”,"Dose","Status")

9.18.4 Attribute ... From ... (binary, right associative)

Theattribute ... from ... operator expects a string containing the name afttiibute and an object as
arguments. It returns the value of the namedbatiei If the named attribute is itself an objéwt, sub-
object is returned. If no attributes with the digghname exists within the named object, nulesimed.
This is analogous to referring to attributes ugdlngnotation. However, thetribute ... from ... operator
allows the name of the attribute to be suppliediattime rather than requiring knowing the attrioname
at design-time.

<n:any-type> := attribute <m:string> FROM <m:object >

(in data slot)

MedicationDose := OBJECT [Medication, Dose, Status] ;

dose := NEW MedicationDose with "Ampicillin, "500m g", "Active";

(in data slot or logic slot)

Page 84 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

medication_name := attribute "Medication" from dose
medication_name = "Ampicillin"

medication_name := dose.Medication
medication_name = "Ampicillin"

dose_attributes := extract attribute names dose
medication_name := attribute dose_attributes[1] fro m dose
medication_name = "Ampicillin"

© 2008 Health Level Seven, Inc.. All rights reserved. Page 85
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

10 LOGIC SLOT

10.1 Purpose

The logic slot uses data about the patient obtdiroed the data slot, manipulates the data, testeso
condition, and decides whether to execute the mslit. It is in this slot that most of the actbahlth logic
is obtained.

10.2 Logic Slot Statements

The logic slot is composed of a set of statements.

10.2.1 Assignment Statement

The assignment statement places the value of aiessipn into a variable. There are two equivalent
versions:

<identifier> := <expr> ;

LET <identifier> BE <expr>;

<identifier> is an identifier; it represents the name of thealde.<expr> is a valid expression as defined
in Section 7.2.2.

Any reference to the identifier that occurs aftex assignment statement will return the value vitzest
assigned from the expression (even if it is in haostructured slot; for example, the action skst).
subsequent assignment to the same variable witlgite the value. If a variable is referred to hefis
first assignmentpull is returned. However, it is poor programming piccto depend on this.

The following variables cannot be re-assignetside of the data slafter they have been assigned in the
data slotevent(Section 11.2.3/)Im (Section 11.2.4), anidterface (Section 11.2.16). Once defined in
the data slot, they should not change.

After executing these statements, the value obb#ivar? is 5:

varl = 1;
varl = 3;
var2 :=varl + 2;

10.2.1.1 Obiject Attribute Assignment

The identifier on the left side of an assignmeateshent may be specified by an object attributeresfce,
using the following form:

<identifier> . <attribute-name>

This allows the assignment to individual attribubésin object. The identifier should name a vagabl
When the statement is executed, if the variableregfces an object whose type contains an attrdfute
specified name, then that attribute value will bets the result of evaluating the expression erritpht
side of the assignment statement.

If at execution time the named variable does nfetr t® an object, or that object does not contain a
attribute of the specified name, then this stateamhstill evaluate the expression but will nasign the
result.

Rectangle := Object [Left, Top, Width, Height];
rect := new Rectangle;

/l assign attributes

rect.Left := 0;

rect.Top :=0;

rect.Width := 10;

rect.Height := 20;

Page 86 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

/I incorrect assignment
rect.Depth := 30;
null := rect.Depth

Note that objects in Arden retain their identityridg assignment, references, etc. If more than one
reference to an object exists, and that objectadified, other references to the same object wll b

affected.

rectl := new Rectangle;
/I assign attributes
rectl.Left := O;
rectl.Top :=0;
rectl.Width := 10;
rectl.Height := 20;

rect2 := rectl; Il references the same Rectangle
rectl.Width := 50;

50 : = rect2. Wdth; I/ rect2.width reflects change to shared object

10.2.1.2 Enhanced Assignment Statement

In addition to the basic assignment and simpleailgesignment statements described above, any
expression that ends withdat operation (Section 9.18.1) elementoperation (Section 9.12.18) may be
placed on the left hand side of an assignmentratie This does not apply for multiple-assignmérthe
left side contains a parenthesised list of vargltleen this arbitrary expression syntax may naidssl.

This enhancement streamlines the processing sfdistl objects. For example,

/Isimple example using index
my_list := 5, 10, 15;
my_list[3] := 20; //contents of my_list are now 5, 10, 20

/lcreate one object with three nested objects
message_type := OBJECT [id, msg];
my_collection_type := OBJECT [name, message_list];
message_list := ();
foriin 1 seqto 3 do
message_text := new message_type with i, "this is message
I
message_list := message_list, message_text;
enddo;

my_obj := new my_collection_type with "Reminders",
message_list;

/ltraditional syntax
n:=2;
objl := my_obj.message_list [n];

objl.msg := "this is a replacement message";

© 2008 Health Level Seven, Inc.. All rights reserved. Page 87
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

message?2 := new message_type with 10, "this is mess age 10";
my_obj.message_list ;= first (n-1) from my_obj.mes sage_list,
message2, last (count of my_obj.message_list - n) from

my_obj.message_list;

varl := first (n-1) from my_obj.message_list;

var2 := last (count of my_obj.message_list - n) fro m
my_obj.message_list;

/lenhanced syntax

n:=2,

my_obj.message_list[n].msg := "this is a replacemen t message";
/Imodify nth item

my_obj.message_list[n] := new message_type with 10, "this is

message 10"; //replace nth item

/ladditional examples

my_obj.message_list. msg := "This is a test"; //modi fies
message in all objects

my_var := my_obj.message_list.msg; //contents of my _var are
"This is a test", "This is a test", "This is a test "
my_list[1] := my_var; //contents of my_list change d to "This
is a test", "This is a test", "This is a test", 10, 20

10.2.2 If-Then Statement

Theif-then statement permits conditional execution based tipewalue of an expression. It tests whether
the expression<expr>) is equal to a single Booleame. If it is, then a block of statementsbiock>) is
executed. (A block of statements is simply a coibecof valid statements possibly including otHethien
statements; thus the if-then statement is a nestedture.) If the expression is a list, or iisitany single

item other thatrue, then the block of statements is not executed.flbireof control then continues with
subsequent statements. The if-then statement kasséorms:

10.2.2.1 Simple If-Then Statement

This form executesblock1> if <exprl>istrue:

IF <exprl> THEN
<block1>
ENDIF;

10.2.2.2 If-Then-Else Statement

This form executesblockl> if <exprl> istrue; otherwise it executesblock2>:

IF <exprl> THEN
<block1>
ELSE
<block2>
ENDIF;

Page 88 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

10.2.2.3 If-Then-Elseif Statement

This form sequentially tests each of the expressiexprl> to <exprN> (there may be any number of
them). When it finds one thattigie, its associated block is executed. Once one htekecuted, no other
expressions are tested, and no other blocks aceiexk If none of the expressions is true, thislockE>

is executed. Thelse <blockE>portion is optional. Its form is:

IF <exprl> THEN
<block1>

ELSEIF <expr2> THEN
<block2>

ELSEIF <expr3> THEN
<block3>

ELSEIF <exprN> THEN
<blockN>

ELSE
<blockE>

ENDIF;

10.2.2.4 Treatment of Null

It is important to emphasize that ntroe is different fromfalse That is, theelseportion of thef-then-else
statement is executed whether the expressifaisg or null, or anything other thatmue. Thus these two
if-then statements, which appear to be the same, prodffieeedt results whewarl is null.
IF varl THEN
var2 :=0;
ELSE
var2 :=45;
ENDIF;

IF not(varl) THEN

var2 := 45;
ELSE

var2 :=0;
ENDIF;

To avoid thenull problem, it is safer to test for existence fiteen test fotrue.
IF varl is Boolean THEN

IF varl THEN
var2 :="varl is true";
ELSE
var2 :="varl is false";
ENDIF;
ELSE
var2 :="varl is null or some other type";
ENDIF;

10.2.2.5 Treatment of Lists

Lists are always non-true; therefore using an esgio@ that contains a list will always produce shene
negative result. Instead, one of the Boolean agdi@y operators should be usedy, all, orno (see

Sections 9.12.13, 9.12.14, and 9.12.15). For exaniplexecute a statement if any of the elements in
Bool_listis true, use:

IF any(Bool_list) THEN

var2 :=0;
ENDIF;
© 2008 Health Level Seven, Inc.. All rights reserved. Page 89

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

10.2.3 Switch-Case Statement

The switch-casestatement permits conditional execution basedervalue of an expression. It tests
whether an expressioréxprl>, <expr2>, <expr3> ..) is equal to the value of the provided variable
(<var>). If they are equal, the corresponding block afenents<{block1>, <block2>, <block3> ..) is
executed. A block of statements is simply a caltecof valid statements, possibly including otkeiitch-
casestatements; thus thesvitch-casestatement is a nested structure. If the expresiies not match the
value of the provided variable, then the correspunblock of statements is not executed. The fléw o
control then continues with subsequent statements.

The switch-case statement has several forms:
10.2.3.1 Simple Switch-Case Statement

This form executesblockl1> if the value okvar> equals<exprl>and<block2> if the value is equal to
<expr2>:

SWITCH <var>
CASE <exprl>
<block1>
CASE <expr2>
<block2>
ENDSWITCH,;

The following example will set the variable “retial” to 7 if the value of the incoming variable \fal” is
equal to 1 and to 9 if the value of the incomingafale “inVal” is equal to 2.

switch inVval
casel
returnval :=7;
case 2
returnval := 9;
endswitch;

10.2.3.2 Switch-Case-Default Statement

This form executesblockl1> if the value okvar> equals<exprl>and<block2> if the value is equal to
<expr2>. If none of the both match with the value<sfar> then the default blockblock3>is executed:

SWITCH <var>
CASE <exprl>
<block1>
CASE <expr2>
<block2>
DEFAULT
<block3>
ENDSWITCH

The following example will set the variable “retial” to 7 if the value of the incoming variable \fal” is
equal to 1, to 9 if the value of the incoming vht&‘inVal” is equal to 2 and to 0 otherwise.

switch inVal
case 1
returnVal := 7;
case 2
returnval := 9;
default
returnVal := 0; //error state
endswitch;

10.2.4 Conclude Statement

Theconcludestatement ends execution in the logic slot. Ifékpression<{expr>) in the conclude
statement is a singteue then the action slot is executed immediately. @tise the whole MLM

Page 90 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

terminates immediately. No further execution inlihgic slot occurs regardless of the expressioeré&h
may be more than ore®ncludestatement in the logic slot, but only one willdecuted in a single run of
the MLM. Its form is:

CONCLUDE <expr>;

The cautions for thié-then statement abourtull and list (in Section 10.2.1.2) also hold for teadude
statement.

If no concludestatement is executed, then the logic slot tertamatfter it executes its last statement, and
the action slot is not executed. In effect, thead&fisconclude false

These are validonclude statements:

CONCLUDE false;
CONCLUDE potas > 5.0;

10.2.5 Call Statement

Thecall statement permits nesting of MLMs. Given an MLMfiame, the MLM can be called directly
with optional parameters and return zero or mosealts. Given an event definition, all the MLMs tlaae
normally evoked by that event can be called; tHedd&LMs can be given optional parameters and
optionally return results. Given an interface diifam, the foreign function can be called direatlith
optional parameters and return zero or more resilitsre are two basic forms (the pairs represent
equivalent versions):

<var> := CALL <name>;
LET <var> BE CALL <name>;

<var> := CALL <name> WITH <expr>;
LET <var> BE CALL <name> WITH <expr>;

(<var>, <var>, ...) := CALL <name> WITH <expr>;
LET (<var>, <var>, ...) BE CALL <name> WITH <expr>;

<var> := CALL <name> WITH <expr>, ..., <expr>;
LET <var> BE CALL <name> WITH <expr>, ..., <expr>;

(<var>, <var>, ...) := CALL <name> WITH <expr>, ..., <e Xpr>;
LET (<var>, <var>, ...) BE CALL <name> WITH <expr>, ... , <expr>;

10.2.5.1 Commas

Because arguments to a call are separated by cofsemmgument, Section 11.2.5), and comma is also
an operator (list construction, see Section 9.2hExe is an apparent ambiguity. This ambiguityesolved
in favor of comma as a parameter separator. Anyraegit expression containing the comma operator or
another operator of the same or lower precedenat lpeuenclosed in parentheses. For example,

This call passes three arguments:
x := CALL xxx with (a,b),(c merge d),e+f;
This call passes two arguments:
y := CALL yyy WITH exprl, expr2;
This call appears similar to the one above, bohly passes one argument :
z := CALL zzz WITH (expr3, expr4);
10.2.5.2 <name>

<name>is an identifier that must represent either advBILM variable as defined by the MLM statement
in the data slot (see Section 11.2.4), a valid evariable as defined by the event statement irdéta slot
(see Section 11.2.3), a valid interface variabldedmed by the interface statement in the data(ske

© 2008 Health Level Seven, Inc.. All rights reserved. Page 91
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

Section 11.2.16), or an MLM, event, or interfaceatale defined through the use of an include stateém
(Section 11.2.19).

10.2.5.3 <exprs>

<expr>s are optional parameters, which may be of any, tyypbuding list and null. Primary times
associated with the parameter are maintained.

10.2.5.4 <var>
<var> is an identifier that represents the local vagabhkt will be assigned the result.
10.2.5.5 MLM Call

If <name>is an MLM variable, then when tloall statement is executed, the main MLM (that is,adhe
issuing the call) is interrupted, and the named MkMalled. If the called MLM haargument
statement(s) in its data slot (see Section 11.thBj the values of theexpr>s are assigned. If a called
MLM's argument statement has more variables (parameters) thartgehe call statement, thewll is
assigned to the extra variable(s). If the callestant passes more variables (parameters) thamltbd c
MLM is expecting, the additional parameters arerglly dropped. The called MLM is executed, and when
it terminates, execution of the main MLM resuméghé called MLM concludes true and there is anretu
statement in the called MLM's action slot (see iBect2.2.2), then the value of its expression Sged
to <var>. If the return statement has more values thacaheg MLM can accept, then the extra return
values are silently dropped. If the return staterhas fewer values than the calling MLM is expegtin
then the extra return values awdl. If there is no return statement, or if the cal@dM concludes false,
thennull is assigned tevar>. Examples:

varl := CALL my_mim1 WITH param1, param2;

(var2, var3, var4) := CALL my_mIm2 WITH param1l, par am2;
10.2.5.6 Event Call

If <name>is aneventvariable, then execution is similar. The main MlisMnterrupted, and all the MLMs
whose evoke slots refer to the named event arautea@¢see Section 13). They each receive the pseasne

if there are any via their argument statement(sg fesults of all called MLM's return statements ar
concatenated together into a list; called MLMs withreturn statement and called MLMs that return a
singlenull are not included in the result. The order of #temed values is implementation dependent. The
result is assigned tvar>, and execution continuesvar> will always be a list, even if it has one item.
Example:

varl := CALL my_event WITH param1, param2;
10.2.5.7 Interface Call

If <name>is an interface variable, then when tiadl statement is executed, the MLM (that is, the one
issuing the call) is interrupted, and the namedrfate is called. If the called interface functi@tsept
variables (parameters), then the values oktiagr>s are assigned. If a called interface's functiqreets
more variables (parameters) than sent by the téiment, thenull is assigned to the extra variable(s).
The called function is executed, and when it fiaishexecution of the MLM resumes. If the calledction
returns one or more values, then the values aigneskto the<var>s. If the function returns more values
than the calling MLM can accept, then the extramretalues are silently dropped. If the interfacection
returns fewer values than the calling MLM is expegtthen the extra values arell. If the function does
not return any values, thewll is assigned tewvar>. Examples:

varl := CALL my_interface_functionl WITH paraml, p aramz;

(varl, var2, var3) := CALL my_interface_function2 W ITH paraml, param2;
10.2.5.8 Example: Call Statement

Here is a validall statement:

/* Define find_allergies MLM */
find_allergies := MLM ‘find_allergies';

Page 92 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

/* Lists two medications and their allergens */
med_orders:= ("PEN-G", "aspirin");
med_allergens:= (“penicillin”, "aspirin");

/* Lists three patient allergies and their reaction s *
patient_allergies:= ("milk", "codeine", "penicillin ")
patient_reactions:= ("hives", NULL, "anaphylaxis");

/* Passes 4 arguments and receives 3 lists as value s *

(meds, allergens, reactions):= call find_allergies with med_orders,

med_allergens,
patient_allergies,
patient_reactions;

10.2.5.9 Example: Interface Statement

Here is a validnterface statement:

/* Define find_allergies external function*/

find_allergies := INTERFACE
{\RuleServenAllergyRules\my_institution\find_alle rgies.exe};

/* Lists two medications and their allergens */
med_orders:= ("PEN-G", "aspirin");
med_allergens:= ("penicillin”, "aspirin");

/* Lists three patient allergies and their reaction s*
patient_allergies:= ("milk", "codeine", "penicillin ")
patient_reactions:= ("hives", NULL, "anaphylaxis");

/* Passes 4 arguments and receives 3 lists as value s*

(meds, allergens, reactions):= call find_allergies with med_orders,

med_allergens,
patient_allergies,
patient_reactions;

10.2.5.10 Enhanced Assignment in Call Statement

The call statement also supports the same enhassgghment syntax described in the assignment
statement (Section 10.2.1.2)

10.2.6 While Loop

A simple form of looping is provided by thehile loop. Its form is:

WHILE <expr> DO
<block>
ENDDO;

Thewhile loop tests whether an expressigeXpr>) is equal to a single Booleame (similar to the
conditional execution introduced in the.. then syntax - see Section 10.2.1.2). If it is, the klo€
statements<gblock>) is executed repeatedly untiéxpr> is nottrue. If <expr>is nottrue, the block is
not executedThe <block> may contain dreakloop statement. If the execution reaches subkeakloop
statement, the direct superior loop will be abortechediatelyBreakloop statements are only allowed
inside of loops.

Authors should take care when usimfile loops in MLMs, since it is possible to createmiti loops. It is
the author's responsibility, not the compiler, ¥oid infinite looping.

Here is an example:

/* Initialize variables */

a_list:= ();

m_list:= ();

r_list:= ();

num:=1;

/* Checks each allergen in the medications to deter mine if the patient is
allergic to it */

while num <= (count med_allergen) do

© 2008 Health Level Seven, Inc.. All rights reserved. Page 93
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

allergen:= last(first num from med_allergens);

allergy_found:= (patient_allergies = allergen);

reaction:= patient_reactions where allergy_found;

medication:= med_orders where (med_allergens = alle rgen);

/* Adds the allergen, medication, and reaction to v ariables that will */
/* be returned to the calling MLM */

If any allergy_found then

a_list:= a_list, allergen;

m_list:= m_list, medication;

r_list:= r_list, reaction;

endif;

/* Increments the counter that is used to stop the while-loop */
num:=num+1;

enddo;

10.2.7 For Loop

Another form of looping is provided by tifier loop. Its form is:

FOR <identifier> in <expr> DO
<block>
ENDDO;

The<expr> will usually be a list generator. #fexpr> is empty or null, the block is not executed.
Otherwise, the block is executed with thidentifier> taking on consecutive elementsiexpr>. The
<identifier> cannot be assigned to inside ttidock> (the compiler must produce a compilation error if
this is attempted). After thenddq the<identifier> becomes undefined and its value should not be ésed
compiler may flag this as an errdhe<block> may contain &reakloop statement. If the execution
reaches suchlareakloop statement, the direct superior loop will be abdbrtemediatelyBreakloop
statements are only allowed inside of loops.

Here is an example:

/* Initialize variables */

a_list:= ();

m_list:= ();

r_list:= ();

/* Checks each allergen in the medications to deter mine if the patient is
allergic to it */

for allergen in med_allergens do
allergy_found:= (patient_allergies = allergen);
reaction:= patient_reactions where allergy_found;
medication:= med_orders where (med_allergens = alle rgen);
/* Adds the allergen, medication, and reaction to v ariables that will */
/* be returned to the calling MLM */
If any allergy_found then
a_list:= a_list, allergen;
m_list:= m_list, medication;
r_list:=r_list, reaction;
endif;
enddo;

Here is an example using a set number of iterations
foriin (1 seqto 10) do
enddo;
10.2.8 New Statement

Thenew statement causes a new object to be created sarghsa it to the named variable.

<var> := NEW <object-identifier>;

Page 94 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<var> := NEW <object-identifier> WITH <expr 1>, <ex pr 2>, <expr n>;
LET <var> BE NEW <object-identifier>;
LET <var> BE NEW <object-identifier> WITH <expr 1>, <expr 2>, <expr n>;

<object-identifier> is a name which represents an object type decfamdously by arobject declaration
(see Section 11.2.17).

MedicationDose := OBJECT [Medication, Dose, Status] ;
dose := NEW MedicationDose with "Ampicillin”, "500m g", "Active";

In the simple case (without thrdth clause) all attributes of the object are initiaizo null. In the full
statement, a set of 1 or more comma-separatedsstpns should follow theith reserved word. Each
expression is evaluated and assigned as a vahlre atribute of the object. They are assignedérotider
the attributes were declared in thigect statement. If the number of expressions is lems the number of
attributes, remaining attributes are initializechtdl. If the number of expressions is greater ttren
number of attributes, the extra expressions arkiaied but the results are silently discarded.

As with acall statement, commas between expressions will bedenesl as separating successive attribute
initializer expressions rather than as definingsta If you want to initialize an attribute withliat you need
to enclose the list in parentheses. See Sectiéh5L0.for detailed information.

dose := NEW MedicationDose with "Ampicillin”, (*500 ", "700"), "Active";
10.2.8.1 New Statement with Named Initializer

There are times when the MLM author may wish ttatize one or more fields explicitly, not necesdlyar
in the order they are declared. It is desirableasioe an easy way to initialize certain fields (htites)
directly by name. Allowing field initialization bgame is clearer in the MLM code, especially when th
object has a large number of fields.

my_var := NEW <object-type>
{ WITH <expr_1>, <expr_2>, ..., <expr_n>}
{ WITH [attribute_1 := <expr_1>, attribute_2 :=< expr_2>, ...,
attribute_3 := <expr_3>] };

The first WITH clause is optional, and allows omermre Arden expressions to be specified. Theygdtl
evaluated in order and initialize attributes of thigect beginning with the first field specifiedtime
OBJECT declaration.

The second WITH clause is also optional, and usesdquare braces [,] to distinguish itself from th
ordered parameters of the first WITH clause. Thebatte 1,... should be declared names of object
attributes. The attribute names may occur in adgigrand allow the MLM author to indicate that ame
more attributes should be set following the ordextbdbute initialization (the first WITH clausdh many
cases this may be clearer and more succinct, Sualhen you wish to set one of the last fields & th
attribute list and allow previous fields to havdadst (null) values.

Note that although both WITH clauses are optioifihey both occur, the ordered attribute list must
precede the named initializer list. The namedaliter list will also take precedence in the cédm &in
attribute gets initialized in both the ordered &sd the named list.

Example:

obj_def := object [x, v, z];
testobj := NEW obj_def with [z:=10, y:= "roger"];

© 2008 Health Level Seven, Inc.. All rights reserved. Page 95
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

10.3 Logic Slot Usage

The general approach in the logic slot is to useofirerators and expressions to manipulate thenpatiea
obtained in the data slot in order to test for samoradition in the patient. Once sufficient datasifive or
negative, has been amassed the conclude statesvexgduted. If there is no conclude statementen th
logic slot, then it will never concludeue, and the action slot will never be executed. Stogi slots are
simple (for example, test whether the serum patas$s greater than 5.0), and some are complex (for
example, calculate a diagnosis score).

Page 96 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

11 DATASLOT

11.1 Purpose

The purpose of the data slot is to define locailades used in the rest of the MLM. The goal isstate
institution-specific portions to one slot. Withimet data slot, the institution-specific portions pl@ced in
mapping clauses (see Section 7.1.8) so that thitutimn-specific part does not interfere with tkie.M

syntax. To simplify maintenance, it is recommentted, in the absence of conditional assignments,
include, object, mim, interface, andeventstatements appear before read statements withidata slot.

11.2 Data Slot Statements

The following variables cannot be re-assigned éltlyic slot after they have been assigned in #ta d
slot: event(Section 11.2.3)nlm (Section 11.2.4)nterface (Section 11.2.16), ansbject (Section
11.2.17). Once defined in the data slot, they shaot change.

11.2.1 Read Statement

The main source of data is the patient databas#h iBatitution will need to do its own queries; alzses
may be hierarchical, relational, object oriented, €he vocabulary used to represent entitiesen th
database will vary from institution to institutiofNo attempt was made to select a standard voaghbnla
this version of this specification.) Thead statement is designed to isolate those partdatabase query
that are specific to an institution from those gdinat are universal.

There is no restriction thatraad statement must derive its input from the patiextadase. A read
statement might access a medical dictionary, farrgle; or it might interactively request informatifsom
somebody (and, if the compiler does on-demand aépdition, the interaction might happen only if ned)de
How this is done is implementation defined.

11.2.11

The database query itself is divided into thre¢spéine aggregation or transformation operatorithe
constraint, and the rest of the query. For backwardpatibility, parentheses may be placed aroued th
<mapping> where <constraint>part. The general form of the read statemenhiré are two equivalent
versions):

<var> := READ <aggregation> <mapping> WHERE <constr aint>;
LET <var> BE READ <aggregation> <mapping> WHERE <co nstraint>;

11.2.1.2 Definitions
<var> is a variable that is assigned that result ofjhery.

<aggregation>is an aggregation operator (see Section 9.12Ym@anaformation operator (see Section
9.14), which is applied after the query constrailitsaggregation>is omitted, then all the data that satisfy
the constraints are returned. Only the followingragation and transformation operators are perditte

exist

sum
average
avg
minimum
min
maximum
max

last

first
earliest
latest
minimum ... from

© 2008 Health Level Seven, Inc.. All rights reserved. Page 97
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

min ... from

max ... from
maximum ... from
last ... from

first ... from
earliest ... from
latest ... from

In the default sort ordering, first and last araiealent to earliest and latest.

<constraint> is any occur comparison operator (see Sectionvéitii)it (or they) as the left argument. In
this casat refers to the body of the query. The comparisceratpr specifies the time constraints for the
query. If<constraint> is omitted, then there are no constraints on tiExamples of valid constraints are:

they occurred within the past 3 days
it occurred before the time of surgery

<mapping> is a valid mapping clause (see Section 7.1.8)¢clwbontains the institution-specific part of the
query enclosed in curly brackets. It contains amgabulary terms and any query syntax that is nacg#s
the institution to perform a query, except thatadlggregation and time constraints are missingapping>

is required.

11.2.1.3 Examples

These are validead statements (the portions within curly bracketsaatstrary):

varl := READ {select potassium from results where s pecimen = ‘serum’};

varl := READ last {select potassium from results};

LET varl BE READ {select potassium from results} WH ERE it occurred within the
past 1 week;

varl := READ first 3 from {select potassium from re sults} WHERE it occurred

within the past 1 week;
11.2.1.4 Effect

The effect of theead statement is to execute a query, mapping theidake patient database to a variable
that can be used elsewhere in the MLM. The executfdheread statement will be institution-specific.
The time constraints must be added to whatever athvestraints are within the mapping clause, aed th
aggregation or transformation operator must alsadaked to complete the query.

11.2.1.5 Result Type

The result of a query includes the primary timedach item that is returned (see Section 8.9). If
<aggregation>is an aggregation operator, then the query retasisgle item. Ikaggregation>is a
transformation operator or it is absent, then thergreturns a list. Thus even if the query recgiast
entity that is usually singular, such as the biatiecbf the patient, a list is assumed unless areggtion
operator is applied (but the list might containyoalsingle value, in which case it would be
indistinguishable from a scalar). The reason far ihthat a patient database may have multipleegafor
a birthdate; it may be that the last one is assuimég correct. For example,

birthdate := READ last {select birthdate from demog raphics};
11.2.1.6 Multiple Variables

A query may return more than one result at a tifinés is useful for batteries of tests in order ¢efi the
corresponding tests within one blood sample coatdith The two versions are equivalent (the pareethe
around the where are optional):

(<var>, <var>, ...) :== READ <aggregation> <mapping> WHERE <constraint> ;
LET (<var>, <var>, ...) BE READ <aggregation> (<map ping> WHERE <constraint>);

This is the only situation where a "list of lists"allowed. The where constraint (if any) is apglie
separately to each of the resulting lists. Quearast always return the same number of elementh,thé
same primary times.

Page 98 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden S

yntax for Medical Logic Systems

11.2.1.7

11.2.1.8

There may be one or mos@ar> within the parenthesesaggregation> <constraint>, and<mapping>
are defined as above. The fact that multiple estitire being queried at once is represented in the
institution-specific partsmapping>. The<aggregation>and<constraint> are performed separately on
the individual variables; it is institution-defin@thether the<mapping> returns all the values with
matching primary times. For example,

/* in this example three anion gaps are calculated */
(Na,CI,HCO3) := read last 3 from {select sodium, ch loride, bicarb from
electro};

anion_gap := Na - (Cl + HCO3) ;

The order in which read mappings are evaluateddefined, except that an implementation must
guarantee that a read mapping is evaluated bdferfirst time that its value is needed. An impletagon
may optimize code to avoid executing a read mapgngn if the read mapping has side effects.

11.2.2 Read As Statement
Theread asstatement is very similar to thead statement (11.2.1.1). However, rather than retgrguery
results as a set of lists, where each list reptesenollection of values for a particular quesidi(or
column), it returns a single list of objects, eathvhich consist of named attributes (fields) aatlies. The
attribute names are specified in thtgect declaration, which should have been declared pusly (see
Section 11.2.17).
<var>:= READ AS <object-type> <aggregation> <mappi ng> WHERE <constraint>;
LET <var> BE READ AS <object-type> <aggregation> <m apping> WHERE
<constraint>;
<object-type>is a name which represents an object type dectamdously by armbject declaration (see
Section 11.2.17).
MedicationDose := object [Medication, Dose, Status]
med_doses := read as MedicationDose
{ select med, dosage, status from client where st atus !="inactive" };
It is often easier to manipulate data in this forrbacause it allows associated values to stayliegevhen
lists of data are appended or otherwise manipulated
It is up to the MLM author to assure that the innpdmtation-specific contents of the curly bracesipoes
the values to be assigned to attributes, and icdhect order.
The following example shows two ways to retrievethanion gap values, first usirepd and then using
read as Note that the text of the implementation-dependention (curly braces) did not need to change in
this example, although of course this standard doéspecify anything about this section. The pbite
is that the same data is retrieved in each casd, isyust returned in a different form.
/* in this example the data to calculate three anio n gaps are retrieved */
(Na,Cl,HCO3) := read last 3 from {select sodium, ch loride, bicarb from
electro};
/* using READ AS */
AnionGap := Object [Na, Cl, HCO3];
gaps := read as AnionGap last 3 from {select sodium , chloride, bicarb from
electro};
11.2.3 Event Statement
The event statement assigns an institution-spesifnt definition to a variable. An event can be an
insertion or update in the patient database, oroéimgr medically relevant occurrence. The variable
currently used in the evoke slot (see Sectiond8part of the call statement to call other MLMese(s
Section 10.2.5), and as a Boolean valuelogé or action slot.. There are two equivalent versions:
<var>:= EVENT <mapping>;
© 2008 Health Level Seven, Inc.. All rights reserved. Page 99

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

LET <var> BE EVENT <mapping>;
11.2.3.1 Definitions

<var> is a variable that represents the event to baefilt can only be used in the evoke slot or &s pa
of a call statement.

<mapping> is a valid mapping clause (see Section 7.1.8) kvbantains the institution-specific event
definition. How the event is defined and used igauthe institution.

The variable that represents the event can besttdiie a Boolean in thiegic or action slots.The Boolean
value of the variable is false until the MLM is leal by the referred event.

Thetime operator (see Section 9.16.18) can be applied &vant variable. It yields the clinically relevant
time of the event. This may be different from gwenttime variable, which refers to the time that the event
was recorded in the database (see Section 8.4.4).

The order in which event mappings are evaluatethdefined, except that an implementation must
guarantee that an event mapping is evaluated btferfirst time that its value is needed.

11.2.3.2 Example

eventl := EVENT {storage of serum potassium};

11.2.4 MLM statement

The MLM statement assigns a valid mimname to aatéei That variable is currently used only as pért
the call statement to call another MLM, as defime8ection 10.2.5. There are two basic forms (tesp
represent equivalent versions):

<var> := MLM <term>;

LET <var> BE MLM <term>;

<var> := MLM <term> FROM INSTITUTION <string>;
LET <var> BE MLM <term> FROM INSTITUTION <string>;

11.2.4.1 Examples
LET MLM1 BE MLM ‘my_mim1';
mim2 := MLM 'my_mim2.mim' FROM INSTITUTION "my inst itution";

11.2.4.2 Definitions
<var> is a variable that represents the MLM to be calledan only be used as part of a call statement.

<term> is a valid constant term as defined in Section77 It is the mimname of the MLM to be called.
mlim_self (case insensitive) is a special constant thatsgmts the name of the current MLM.

<string> is a valid constant string as defined in Sectidn6? If specified, it is the institution name falin
in the institution slot of the MLM to be called.

If the institution is specified, then a unique MLisfound using the institution name, the mimnanme, a
the latest version number. If the institution i¢ specified, then a unique MLM is found using thene
institution as the main (calling) MLM, the mimnantkee MLM's validation, and the latest version numbe
Although the exact form of the version is institutispecific, within an institution it is possible t
determine the latest version of an MLM (see Sedbidm4).

11.2.4.3 Examples
mim1 := MLM 'mim_to_be_called’;
mim2 := MLM 'diagnosis_score' FROM INSTITUTION "LDS Hospital";

11.2.5 Argument Statement

Theargument statement is used by an MLM that is called by heoMLM, as defined in Section 10.2.5.
If the main MLM passes parameters to the called Mtién the called MLM retrieves the parameters via
the argument statement. TAyument statements access the corresponding passed argufiems, the

Page 100 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

first variable <varl> refers to the first passeguanent, the second variable <var2>to the secondaegt,
etc.

If there is a mismatch of variables where the nunob@ariables is greater than the number of arqutme
passed from the CALLyull is assigned to the extra left-hand-side variaplé{she MLM is evoked
instead of called, all the arguments are treatetiliqjust like any other uninitialized variable).

There are two basic forms (the pairs representatgrit version). One receives a single parametelrtlze
other receives multiple parameters:

<var>:= ARGUMENT;
LET <var> BE ARGUMENT;

(<varl>,<var2>,...) := ARGUMENT;
LET (<varl>,<var2>,...) BE ARGUMENT;

<var> is a variable that is assigned whatever expregsitowedwith in the main MLM's call statement.
If there was no such expression, or if the MLM waas called by another MLM, themull is assigned.

11.2.5.1 Example

In the calling MLM:

varl := CALL my_mIm WITH paraml, (item1, item2);
In the called MLM, namedrtly_mim":

(argl, listl) := ARGUMENT;

11.2.6 Message Statement

The message statement assigns an institution-8peatsage (for example, an alert) to a variable. |
allows an institution to write coded messages énghtient database (see Section 12.2). There are tw
equivalent versions:

<var> := MESSAGE <mapping>;

LET <var> BE MESSAGE <mapping>;

<var> is a variable that represents the message toftreedelt can only be used in a write statement.

<mapping>is a valid mapping clause (see Section 7.1.8)¢lwvbontains the message definition. How the
message is defined and used is up to the institutio

11.2.6.1 Example
messagel := MESSAGE {pneumonia~23 45 65};

11.2.7 Message As Statement

Themessage astatement is very similar to tineessagestatement (11.2.5). However, rather than returning
a variable, it returns a single object, which cstssof named attributes (fields) and values. Théate

names are specified in tbject statement, which should have occurred previousthé MLM (see

Section 11.2.13). If the mapping clause is emptydy be omitted in this statement. However, itpgo

the implementation if a non-empty mapping clausalswved.

<var> := MESSAGE AS <object-type> <mapping>;
<var> := MESSAGE AS <object-type>;

LET <var> BE MESSAGE AS <object-type> <mapping>;
LET <var> BE MESSAGE AS <object-type>;

<object-type>is a name which represents an object type decfaedously by arobject statement (see
Section 11.2.17).

11.2.7.1 Example
message_obj := OBJECT [subject, text];

high_PTT_msg := MESSAGE AS message_obj {Elevated PT T}
def_msg := MESSAGE AS message_obj; // default mappi ng clause
© 2008 Health Level Seven, Inc.. All rights reserved. Page 101

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

11.2.8 Destination Statement

Thedestination statement assigns an institution-specific destingb a variable. It allows one to write a
message to an institution-specific destination Geetion 12.2.1). There are two equivalent versions

<var> := DESTINATION <mapping>;
LET <var> BE DESTINATION <mapping>;

<var> is a variable that represents the destinatioretddfined. It can only be used in a write statement

<mapping> is a valid mapping clause (see Section 7.1.8)rdp@Eesents an institution-specific destination.
How the destination is defined and used is up édriktitution.

11.2.8.1 Example
In this example, the destination is an electrongil mddress:

destinationl := DESTINATION {email: user@cuasdf.bit net};
destination2 := DESTINATION { attending_physician(P tid) };
destination3 := DESTINATION { "primary physician em ail"};

11.2.9 Destination As Statement

Thedestination asstatement is very similar to tldestination statement (11.2.6.1). However, rather than
returning a variable, it returns a single objedtjcli consists of named attributes (fields) and esldThe
attribute names are specified in titgect statement, which should have occurred previoustpé MLM
(see Section 11.2.17). If the mapping clause istgritpnay be omitted in this statement. Howeveis up
to the implementation if a non-empty mapping clagsalowed.

<var> := DESTINATION AS <object-type> <mapping>;
<var>:= DESTINATION AS <object-type>;

LET <var> BE DESTINATION AS <object-type> <mapping>
LET <var> BE DESTINATION AS <object-type>;

<object-type>is a name which represents an object type decfaedously by arobject statement (see
Section 11.2.17).

It is up to the MLM author to assure that the innpémtation-specific contents of the mapping prodtles
values to be assigned to attributes, and in theecborder.

11.2.9.1 Example
dest_obj := object [dest_method, recip_name, recip_ address];
email_attending := DESTINATION AS dest_obj {Attendi ng Phys Email};
def_destination := DESTINATION AS dest_obj;

11.2.10 Assignment Statement
The assignment statement, defined in Section 1d&dlso permitted in the data slot.

11.2.11 If-Then Statement
Theif-then statement, defined in Section 10.2.1.2, is alsmjtted in the data slot.

11.2.12 Switch-Case Statement
Theswitch-casestatement, defined in Section 10.2.3, is also figgdhin the data slot.

11.2.13 Call Statement
Thecall statement, defined in Section 10.2.5, is also figxdhin the data slot.

Page 102 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

11.2.14 While Loop
Thewhile loop, defined in Section 10.2.5.10, is also peediin the data slot.

11.2.15 For Loop

Thefor loop, defined in Section 10.2.7, is also permiitethe data slot.

11.2.16 Interface Statement

Theinterface statement assigns an institution-specific fordigrction interface definition to a variable.
Theinterface statement permits specification of a foreign fiorgti.e., a function written in another
programming language. Sometimes medical logic regunformation not directly available from the
database (vieead statements). It may be desirable to call operagysgem functions or libraries obtained
from other vendors. A foreign function, when spiedif can then be called with the call statemerg (se
Section 10.2.5). Curly brace§) are used to specify the foreign function. Thectfiation within the

curly braces is implementation specific. Theretar@ equivalent versions:

<var> := INTERFACE <mapping>;
LET <var> BE INTERFACE <mapping>;

<var> is a variable that represents the interface tddfimed. It can only be used as part of a calestant.

<mapping>is a valid mapping clause (see Section 7.1.8) kvbantains the institution-specific event
definition. How the function interface is defineddaused is up to the institution.

11.2.16.1 Example

data:
/* Declares the third-party drug-drug interaction f unction */
/* The implementation within the {}-braces shows th at a string (char*)
will be returned */
/* when the third-party API (ThirdPartyAPl) is used to call */
/* the drug-drug interaction function (DrugDruginte raction) */
/* The function expects that two medicaion strings (char*, char*) will be
passed */
func_drugint := INTERFACE {
char* ThirdPartyAPI:DrugDruglnteraction (char*, cha r*)
b
evoke:
logic:
[* Calls the drug-drug interaction function */
alert_text := call func_drugint with "terfenadine”, "erythromycin";

11.2.17 Object Statement

Theobject statement assigns object declaration to a varidblis variable should not be reassigned in
another statement, and the variable name becoraebjbct type name (as used iread asstatement
(Section 11.2.2) onew statement (Section 10.2.8). The object statemembips specification of the
attributes and attribute ordering of an object type

<var>:= OBJECT "[" <attribute-name-1>, <attribute- name-2> ... "";
LET <var> BE OBJECT "[" <attribute-name-1>, <attrib ute-name-2> ... "T";
MedicationDose := OBJECT [Medication, Dose, Status] ;

Object attributes follow the same rules as varialalees regarding allowed characters. As with véeiab
names, character case is not significant.

11.2.18 New Statement

Thenew statement, defined in Section 10.2.8, is also fiezdhin the data slot.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 103
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

11.2.19 Include Statement

The include statement is analogous to the incltatersient in C-based languages in that indicates an
external MLM may be consulted for objedILM, event, interface variabland resource definitions. The
include statement references a variable previously asgigman MLM statement (11.2.3). When object
definitions or resource definitions occur in bdtle focal MLM and a remote MLM, the definition ineth
local scope always takes precedence. If two reiatds define objects or resource definitions witle t
same name or key, the definitions in MLMs refert@thter in the local MLM take precedence. Thedbas
form of the statement is

INCLUDE <var>;

11.2.19.1 Example
mim2 := MLM 'my_mim2.mim' FROM INSTITUTION "my inst itution";
INCLUDE mim2;

11.3 Data Slot Usage

The data slot is used to map institution-specifititees to variables used locally in the MLM. Keegithe
mappings in one slot facilitates modifying an MLBF fuse in another institution.

Although the data slot can perform assignment staigs andf-then statements like the logic slot, it is
recommended that most of the logic be left in tged slot. For example, it would be possible toteven
MLM with all its mappings and health logic in thatd slot, leaving only a simple conclude statenrent
the logic slot; but this defeats the purpose ofisajing the data slot and the logic slot. Assignimen
statements anifithen statements should be used in the data slot ondyevhecessary to support database
queries (for example, to calculate a time constrairto handle details of database semantics, asich
handling missing data).

12 ACTION SLOT

12.1 Purpose

Once the MLM has concluded that the condition djetin the logic slot holds true, the action skt
executed, performing whatever actions are apprigptiathe condition. Typical actions include segdin
message to a health care provider, adding an nettaitipn to the patient record, returning a resu#t
calling MLM, and evoking other MLMs. Good progranmgipractice is for an MLM's action slot to
contain only return statements, or to contain @ally and write statements. If an MLM is called fram
action slot (see Section 12.2.5) or evoked by dereal event (see Section 13), the only effect itarn
statement is to terminate execution of the action s

12.2 Action Slot Statements

12.2.1 Write Statement

Thewrite statement is the main statement in the action lslsénds a text or coded message (for example,
an alert) to a destination. It has several forms:

WRITE <expr>;

WRITE <expr> AT <destination>;
WRITE <message>;

WRITE <message> AT <destination>;

<expr> is any valid expression, which usually containg te be read by the health care provider or
variables defined in the logic slot.

<destination>is a destination variable as defined in Sectio2.81 The format and implementation of the
destination is institution-specific. Typical destiions include the patient record, a printer, dasal, and
electronic mail addresses. When the destinatiomigted, the message is sent to the default deéstma

Page 104 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

This is generally the health care provider or thggmt record, but the implementation is institntio
specific.

<message3s a message variable as defined in Section 1ITA&message variable permits institutions to
write institution-specific coded MLM messages toati@ses that will not accommodate texpr> form.

<expr> is often a string. If a particular implementatmndeployment of Arden Syntax needs to use XML
to structure messages, a string expression casdgeta compose this message. Appendix X1 shows the
recommended DTD for structured messages.

The effect of the write statement is to send trecdigd message either to the default destinatidridh is
usually a health care provider or the patient réor the destination that is specified.

Within a single MLM, the effect of grouping writéasements is unspecified, and depends on the
implementation of the syntax.

If an MLM is called by another MLM's action blockdge Section 12.2.5), its write statements are ¢atpu
a separate group from the calling MLM's. Howeviee trder of the groupings is unspecified and depend
on the implementation of the syntax.

Note that embedding the AT operator (Section 9)1in.8 WRITE statement can introduce ambiguitye Th
use of the operator in this context is implementaspecific.

12.2.1.1 Examples<expr>

In these exampleserum_potis a variable assigned in the logic skail_destis a destination variable
defined in the data slot, almd messagés a message variable defined in the data slot.

WRITE "the patient's potassium is" || serum_pot;
WRITE "this is an email alert"” AT email_dest;
WRITE a_message;

12.2.1.2 Examples<message>

An institution can store coded messages withoutgugie message variable. For example, the following
message could be stored not as a free text stihgsa unique code that symbolizes the messagg alo
with a single field that holds the serum potassuatue, which is variable:

WRITE "the patient's potassium is " || serum_pot;

WRITE CK0023 || serum_pot;
CK0023 would be the institution-specific code represemtitne patient's potassium is.

The message must be explicitly assigned to thétitisn-specific code before the code is used write
statement. Generally, this assignment should tieepn the data slot.

12.2.2 Return Statement

The return statement is used in MLMs that are ddieother MLMSs. It returns a result back to th#icg
MLM; the result is assigned to the variable in tlaél statement (see Section 10.2.5). One or matse
can be returned by the MLM. Its form is:

RETURN <expr>;
RETURN <expr>, ..., <expr>;

<expr> is any valid expression, which may be a singlmite a list. Primary times are maintained.
When a return statement is executed, no furthérsents in the MLM are executed.

12.2.2.1 Examples:
RETURN (diagnosis_score,diagnosis_name);
RETURN diagnosis_score, diagnosis_name;

The first example returns one expression, whichlist. The second example returns two expressions.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 105
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

12.2.3

12.2.4

12.2.5

If-then Statement

Theif-then statement, defined in Section 10.2.1.2, is alsmited in the action slot.

Switch-Case Statement

Theswitch-casestatement, defined in Section 10.2.3, is also figgdhin the action slot.

Call Statement

Thecall statement in the action slot permits an MLM td otther MLMs conditionally based upon the
conclusion in the logic slot. It is similar to thall statement in the logic slot defined in Sectior21®).the
arguments can be accessed withaigument statement in Section 11.2.5. Given an mimnamelithi
can be called directly with an optional delay. Gian event definition, all the MLMs that are noriyal
evoked by that event can be called with an optide&dy. If the call statement is used to evokeweang
any arguments are ignored. Its forms are:

CALL <name>;

CALL <name> DELAY <duration>;

CALL <name> WITH <expr>;

CALL <name> WITH <expr> DELAY <duration>;

CALL <name> WITH <expr>, ..., <expr>;
CALL <name> WITH <expr>, ..., <expr> DELAY <duratio n>;

<name>is an identifier that must represent either advBILM variable as defined by an MLM statement
in the data slot (see Section 11.2.4), or a val@hevariable as defined by an event statemetttdrdata
slot (see Section 11.2.3).

<duration> is a valid expression whose value is a duration.

12.2.5.1 Operation

If <name>is an MLM variable, then when the main MLM ternties, the named MLM is called. If
<name>is an event variable, then all the MLMs whose evslots refer to the named event are executed
(see Section 13). If a delay is present, then tieewgion of the called MLMs is delayed by the sfpedi
duration. Whereas the call statement in the loigicis synchronous, the call statement in the acsiot is
asynchronous. The order of execution of called MLislisnplementation dependent.

12.2.5.2 Example

12.2.6

12.2.7

12.2.8

(wheremlmx has been assigned a suitable value in the ddtsaipobymimx := MLM 'my_mIm'):
CALL mimx DELAY 3 days ;

While Loop
Thewhile loop, defined in Section 10.2.5.10, is also peediin the action slot

For Loop

Thefor loop, defined in Section 10.2.7, is also permiitethe action slot.

Assignment Statement

Theassignmentstatement, defined in Section 10.2.1, is also figdhin the action slot. Note that with
Arden versions prior to 2.&assignmentstatements were not permitted in the action Stois capability
was added in 2.5 to allow increased flexibility things likewhile loops, which are not usable without
assignment. MLM authors should remember to keepotlie to the logic slot, as much as possible. Refe
to Section 12.3, below, for details.

Page 106

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

12.3 Action Slot Usage

The action slot is usually simple, containing agnmessage to be written or a single value tehemed
to a calling MLM. Multiple actions can be performiegllisting several action statements. The slotlman
made more complex by using its if-then statemesttect among alternative actions. While this efuls
it is recommended that the amount of health lagithe action slot be kept to a minimum.

© 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06

Page 107
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

13 EVOKE SLOT

13.1 Purpose
The evoke slot defines how an MLM may be triggefadMLM may be triggered by any of the following:

13.1.1 Occurrence of Some Event
For example, on the storage of a serum potassilue wathe patient database, in order to checkétwes
that are far out of range.

13.1.2 A Time Delay After an Event
For example, five days after ordering gentamicina@atient, in order to check renal function.

13.1.3 Periodically After an Event
For example, every five days after ordering gentémfor a patient, in order to check renal functaer a
period of time.

13.1.4 A Constant Time Trigger
For example, on 07-27-2007 at 12:00:00.

13.1.5 A Constant Periodic Time Trigger
For example, start on Friday at 18:00:00, trigggia every week for one year.

13.2 Events
Events are distinct from data. An event may begate or insertion in the patient database, a raligic
relevant occurrence, or an institution-defined oce. Examples include the storage of a serum
potassium level, the ordering of a medication tthesferring of a patient to a new bed, and therding
of a new address for a patient.

13.2.1 Event Properties
The main attribute of an event is the time thatiturred, which must be an instant in time. Evéat#ge no
values. Note the distinction between events anal. dta have values and have primary times, whieh a
the times that are medically most relevant. Fongla, a serum potassium result may have a valge0of
and a primary time that is the time that it wasadrdrom the patient. But th&torage of serum potassium
event has no value, and its time is the time thafbtassium was stored in the patient database.

13.2.2 Time of Events
Thetime of operator (see Section 9.16.18) applied to an eesuoits in the time that the event occurred.
For exampletime of storage_of potassiumieturns the time that the potassium was storeid. Vidiue
might be different from the time of the correspaorgddata value that is retrieved by a read mapphmey (
data value typically uses a clinically relevantgimvhich would often be different from the timestéring
the data)Eventtime (see Section 8.4.4) is the time of the eventefraked the MLM.

13.2.3 Declaration of Events
Events are declared in the data slot as defin&gation 11.2.3.

Page 108 © 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

13.3 Evoke Slot Statements:

13.3.1 Simple Trigger Statement

A simple trigger statement specifies an event or a set of everttenViiny of the events occurs, the MLM
is triggered. Its form is:

<event-expr>

<event-expr>is an expression that contains only event vargabtedefined in Section 11.2.3, tire
operator (see Section 9.4.1), tirey operator (see Section 9.12.13), and parenthebekdywordcal |
may also be present, to indicate that the MLM magélled by another MLM.

13.3.1.1 Operation

Although events do not have values, they are usés statement as if they were syntactically Baal
Thus one ends up with a statement like thi®ntl OR event2 OR event3rhe MLM is triggered
whenever an event occurs and any of the evokenstaits evaluate tisue. If more than one event occurs,
the MLM may be triggered. No additional triggerteria must be satisfied for the MLM to be evoked.

13.3.1.2 Examples

In the following examples, all the variables aremwariables defined in the data slot.

penicillin_storage
penicillin_storage OR cephalosporin_storage

ANY OF (penicillin_storage,cephalosporin_storage,am inoglycoside_storage)
data:
penicillin_storage := event {store penicillin order }
cephalosporin_storage := event {store cephalosporin order}
evoke:

penicillin_storage OR
cephalosporin_storage;;
13.3.2 Delayed Event Trigger Statement

A delayed event triggerstatement permits the MLM to be triggered sometafter an event occurs. It is
of this form:

<time-expr> AFTER TIME [OF] <event>
<time-expr> is an expression that contains only times exptease@ne of the following.
» time constants (see Section 7.1.5),

» astime-of-day constants applied to the at operatoombination with a day-of-week keyword or
the reserved wordeday, andtomorrow using theattime reserved word to combine a day-of-
week with a time-of-day in the form <day of weeKFTAME <time of day>

* aduration constant formed by using a number cahstih a duration operator
combined using the OR keyword
<event>is an event variable.
<day of week>is a day-of week-variable (see Section 8.12) oréiserved wordsoday or tomorrow.
<time of day>is a time-of-day variable (see Section 8.11)

For example:
TODAY ATTIME 15:00 AFTER TIME OF penicillin_storage

The MLM execution is delayed until 15:00 of the dag penicillin_storage event occurs. If the tinielay
is after 15:00 the MLM will execute immediately aa$ the evoke slot contains another time constaet (

© 2008 Health Level Seven, Inc.. All rights reserved. Page 109
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

subsection "use of or"). If the MLM has to be exed.the following day, tomorrow can be used as time
constant, for example:

TOMORROW ATTIME 02:30 AFTER TIME OF penicillin_stor age

Here, the MLM execution is delayed until 02:30loé next day. If the execution of the MLM has
scheduled for a given day of the week, that daybeaalso specified within the evoke slot:

MONDAY ATTIME 13:00 AFTER TIME OF penicillin_storag e

The day-of-week is one of the literals Sunday, Monduesday etc. The MLM execution is delayed until
13:00 of the designated day. If the day of weetegEnttime" is the same as the designated day and
eventtime is later than 13:00, the MLM executiodésayed until the following week.

13.3.2.1 Use of OR

Time expressions for the delayed trigger can bebtoed using OR. In this case the whole expression i
evaluated to find the next earliest trigger timer Example:

MONDAY ATTIME 13:00 OR FRIDAY ATTIME 12:00 AFTER TI ME OF penicillin_storage

This triggers the MLM on Monday if the event occhetween Friday after 12:00 and Monday before
13:00. If the event occurs outside of this timeimal, the MLM is triggered on Friday.

13.3.2.2 Operation

The MLM is triggered at the time specified in theda/ed trigger statement. This is usually someifipdc
duration after the occurrence of an event. In ffezi&l case, that the delay time is given as acolafes
point in time, the triggering is delayed to thiméistamp, as soon as the event occurs. If the ecents
after this timestamp, the MLM triggers immediately.

13.3.2.3 Examples

In the following examples, all variables are eveariables:

3 days after time of penicillin_storage
1992-01-01T00:00:00 AFTER TIME OF penicillin_storag e
TOMORROW ATTIME 02:00 AFTER TIME OF penicillin_stor age

If time expressions are combined with OR, the MLM e executed at the next scheduled time.
TODAY ATTIME 13:00 OR TOMORROW AT 02:00 AFTER TIME OF penicillin_storage

13.3.3 Constant Time Trigger Statement

A constant time trigger statementpermits the MLM to be triggered at a specific ims&in time. It has
two forms:

<time-expr>
<duration-expr> AFTER <time-expr- simple>

<duration-expr> is a duration constant formed by using a numbastamt (see Section 7.1.4) with a
duration operator (see Section 9.10.4).

<time-expr> as defined for the delayed event trigger staterakave
<time-expr-simple> is defined as <time-expr> but whout <duration-expr>
13.3.3.1 Operation

The MLM is triggered at the time specified by three expression. This is either an absolute poitinie,
or a relative date (such as tomorrow or simply &tion). A relative date is always evaluated rekato the
timepoint when the MLM becomes executable in theteay. If a time expression evaluates to a point in
time which lies in the past, the MLM is triggeredmediately.

For example:
TOMORROW ATTIME 02:30

Page 110 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

The MLM is triggered the day after it got execueaht 02:30.
20 hours

The MLM is triggered 20 hours after it got execugab

13.3.3.2 Examples

13.3.4

In the following examples, variables are eventalslgs:

1992-01-01T00:00:00
3 days AFTER 01-01-2007
TOMORROW ATTIME 02:30

If used with time-of-day-constants and more thae ttme constant is specified in the evoke slot,Mhé/
will be executed at the next scheduled time.

TODAY ATTIME 13:00 OR TOMORROW AT 02:00

Periodic Event Trigger Statement

A periodic event trigger statement permits the MLM to be triggered at dpegttime intervals after an
event occurs. The cycles may continue for a sptiiuration, and they may be terminated by a Boolea
condition. It has two forms:

EVERY <duration-expr> FOR <duration-expr> STARTING <delayed-event-trigger>

EVERY <duration-expr> FOR <duration-expr> STARTING <delayed-event-trigger>
UNTIL <Boolean-expr>

<duration-expr> is a duration constant formed by using a numbastamt (see Section 7.1.4) with a
duration operator (see Section 9.10.4).

<Boolean-expr>is any valid expression. It is usually a Boole&pression that becomésie when the
MLM triggering should stop.

<delayed-event-trigger>is adelayed event triggeras defined above.

Simple trigger statements not using a delayed avigiger also are supported. Example:
EVERY 1 day FOR 14 days STARTING time of event2

13.3.4.1 Operation

The MLM is first triggered at the time specifiedeafthestarting word. It is then triggered repeatedly in
cycles of length equal to the duration specifigdraheevery word. These cycles continue for the duration
specified after théor word. Thefor duration is inclusive, severy 1 day for 1 day starting 3 days after
time of eventlwould trigger the MLM twice: at three days andair days after the event.

13.3.4.2 Until

If there is aruntil clause, then it is evaluated as soon as the MLiiggered; the clause may contain
references to the patient database unrelated tevird. If it istrue then the MLM exits immediately, and
no further triggering occurs. Otherwise, the MLMebdgecuted, and it is triggered again afterdery
duration (assuming tHfer duration has not run out).

13.3.4.3 Examples

In the following examples, variables beginning wétrentare event variables:

every 1 day for 14 days starting 1992-01-01T00:00:0 0 after time of eventl
every 1 day for 14 days starting time of event2

every 2 hours for 1 day starting today at 12:00 aft er time of event3
every 1 week for 1 month starting 3 days after time of event4 until

last(serum_potassium) > 5.0

© 2008 Health Level Seven, Inc.. All rights reserved. Page 111
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

13.3.5 Constant Periodic Time Trigger Statement

A constant periodic time trigger statement permits the repeatedly execution of &ML specific
instances of time, independent of events. It hasfosms:

EVERY <duration-expr> FOR <duration-expr> STARTING <constant-time-trigger>

EVERY <duration-expr> FOR <duration-expr> STARTING <constant-time-trigger>
UNTIL <Boolean-expr>

<duration-expr> as defined for the periodic event trigger statemen
<Boolean-expr>as defined for the periodic event trigger statemen
<constant-time-trigger>is aconstant time trigger as defined above.

Consider the following evoke slot:
EVERY 1 DAY FOR 5 months STARTING 2008-10-01T06:30;

This evoke slot could be used to run an influentga every day for the five months of the 2008 #ason.
13.3.5.1 Operation

As defined for thgeriodic event trigger statement, but the first execution is determingd bonstant
time trigger statement.

13.3.5.2 Until
As defined for theeriodic event trigger statement.
13.3.5.3 Examples

In the following examples, variables beginning wétrentare event variables:

every 1 day for 14 days starting 1992-01-01T00:00:0 0
every 2 hours for 1 day starting today at 12:00
every 1 week for 1 month starting 3 days after 1992 -01-01T00:00:00 until

last(serum_potassium) > 5.0

13.4 Evoke Slot Usage

The evoke slot usually contains a single staterthattspecifies when an MLM is triggered. If the kso
slot has more than one statement, then the MLMo&ed whenever any of the criteria in any of the
statements occurs.

Page 112 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

Annexes
(Mandatory Information)

Al BACKUS-NAUR FORM

The MLM syntax is defined using Backus-Naur FornNEB (3). In the interest of readability and computabilityet
context free grammar is expressed in Backus-NatmFather than in the more compact Extended Bablais-
Form (EBNF)(3). The following definitions hold:

<expression> - represents the non-terminal exmessi
"IF" — represents the termind, iF, If, orlF
".=" — represents the termina
::= - is defined as
[*...*/ - a comment about the grammar
| - or
Terminals are listed in uppercase, but the langisgase insensitive outside of character strigstructured slots,

space, carriage return, line feed, horizontal valtjcal tab, and form feed are considered whitecemnd are
ignored. In addition, the termintide is treated as white space (that is, the wbeds ignored).

With minor modifications, the following grammar cha processed by an LALR(1) parser generator, ¢éxcepre
noted by comments against individual rules

[Fx+xx physical file containing one or more MLMs * Fkkokk |
[*x*xx file of individual MLMs *****x/
<mlms> ::=
<mlm>
| <mlm> <mims>
/****** Categol’les ******/
<mlm> ::=
<maintenance_category>
<library_category>
<knowledge_category>
<resources_category>
"END:"

<maintenance_category> ::=
"MAINTENANCE:" <maintenance_body>

© 2008 Health Level Seven, Inc.. All rights reserved. Page 113
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<maintenance_body> ::=
<title_slot>
<mimname_slot>
<arden_version_slot>
<version_slot>
<institution_slot>
<author_slot>
<specialist_slot>
<date_slot>

<validation_slot>

<library_category> ::=
"LIBRARY:" <library_body>
<library_body> ::=
<purpose_slot>
<explanation_slot>
<keywords_slot>
<citations_slot>
<links_slot>
<knowledge_category> ::=
"KNOWLEDGE:" <knowledge_body>
<knowledge_body> ::=
<type_slot>
<data_slot>
<priority_slot>
<evoke_slot>
<logic_slot>
<action_slot>

<urgency_slot>

<resources_category> ::=
[* empty */
| "RESOURCES:" <resources_body>
<resources_body> ::=
<default_slot>

<language_slots>

/****** SI ots ******/

[F***% maintenance slots **x***/

<title_slot> ::=
"TITLE:" <text>"};"

Page 114
Revision date: 2008-05-06

© 2008 Health Level Seven, Inc.. All rights reserved.
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

< <mlmname_slot> ::=
"MLMNAME:" <mImname_text>";;"
| "FILENAME:" <mImname_text>";;"
/* the "FILENAME:" form is only valid */
/* combination with the empty version */

[* of <arden_version_slot> */

<mimname_text> ::=
<letter>

| <mImname_text><mImname_text_rest>

<mlmname_text_rest> ::=
<letter>
| <digit>
[
[

<arden_version_slot> ::=
"ARDEN:" <arden_version>";;"
| Fempty*/
/* the empty version is only valid */
/* combination with the "FILENAME" */
[* form of < mlmname_slot > */

<arden_version> ::=
"VERSION" "2"
| "VERSION" "2.1"
| "VERSION" "2.5"
| "VERSION" "2.6"
| "VERSION" "2.7"
| "VERSION" "2.8"

<version_slot> ::=

"VERSION:" <mIm_version> "::"

<mlm_version> ::=

<text>

<institution_slot> ::=

"INSTITUTION:" <text>";;" /* text limited to 8 0 characters */

<author_slot> ::=

"AUTHOR:" <text>";;" /* see 6.1.6 for details
<specialist_slot> ::=

"SPECIALIST:" <text>";;" /* see 6.1.7 for deta
<date_slot> ::=

"DATE:" <mlm_date>";;"
<mlm_date> ::=

<iso_date>

| <iso_date_time>

ils */

© 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06

Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<validation_slot> ::=
"VALIDATION:" <validation_code>";;"

<validation_code> ::=
"PRODUCTION"
| "RESEARCH"
| "TESTING"
| "EXPIRED"

[reexs* Jibrary slots ******/

<purpose_slot> ::=
"PURPOSE:" <text>";;"
<explanation_slot> ::=
"EXPLANATION:" <text>";;"

<keywords_slot> ::=
"KEYWORDS:" <text>";;"

/* May require special processing to handle bathdind text versions */

<citations_slot> ::=
/* empty */
| "CITATIONS:" <citations_list> ";;"
| "CITATIONS:" <text>";;'/* deprecated —
/* supported for backward compatibility */
<citations_list> ::=
[* empty */
| <single_citation>
| <single_citation> ";" <citations_list>
<single_citation> ::=
<digits> "." <citation_type> <citation_text>
| <citation_text>

[* This is a separate definition to allow for futuexpansion */

<citation_text> ::=
<string> /* see ANSI/NISO Z39.88 */
[* for preferred OpenURL format */
<citation_type> ::=
[* empty */
| "SUPPORT"
| "REFUTE"

/* May require special processing to handle bathdind text versions */

*/

Page 116 © 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06

Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<links_slot> ::=
/* empty */
| "LINKS:" <links_list>";;"
| "LINKS:" <text>";;" /* deprecated — */
/* supported for backward compatibility */
<links_list> ::=
/* empty */

| <single_link>

| <links_list> ";" <single_link>
<single_link> ::=

<link_type> <link_name> <link_text>
<link_type> ::=

[* empty */

| "URL_LINK"

| "MESH_LINK"

| "OTHER_LINK"

| "EXE_LINK"
<link_name> ::=

/* empty */
| <string>

[* This is a separate definition to allow for futuexpansion */

<link_text> ::=
<term> /* see ANSI/NISO 739.88 */
/* for preferred OpenURL format */

[rexxsx knowledge slots *xxs**/

<type_slot> ::=
"TYPE:" <type_code>";;"

[* This is a separate definition to allow for futuexpansion */

<type_code> ::=

"DATA_DRIVEN"
| "DATA-DRIVEN" /* deprecated — supported for back wards */
[* compatibility */
<data_slot> ::=

"DATA:" <data_block> ";;"

<priority_slot> ::=

[* empty */

| "PRIORITY:" <number>";;"

<evoke_slot> ::=

"EVOKE:" <evoke_block> ";;"
<logic_slot> ::=

"LOGIC:" <logic_block>";;"

© 2008 Health Level Seven, Inc.. All rights reserved. Page 117
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<action_slot> ::=
"ACTION:" <action_block>";;"

<urgency_slot> ::=
* empty */
| "URGENCY:" <urgency_val>";;"
<urgency_val> ::=
<number>

| <identifier>
[F¥**%* rasource slots ******/

<default_slot> ::=
"DEFAULT:" <is0639-1>";;" [* 2-character lang uage code */

<language_slots> ::=
<language_slots> <language_slot>
| <language_slot>
<language_slot> ::=
"LANGUAGE:" <is0639-1>

<resource_terms>

<resource_terms> ::=
<resource_terms> ";" <term>":" <string>

| <term>":" <string>
/****** |Og|C block ******/

<logic_block> ::=
<logic_block>*;’ <logic_statement>
| <logic_statement>

<logic_statement> ::=
/* empty */
| <logic_assignment>
| "IF" <logic_if_then_else2>
| "FOR" <identifier> "IN" <expr> "DO" <logic_block >"""ENDDO"
| "WHILE" <expr> "DO" <logic_block> ";" "ENDDO"
| <logic_switch>
| "BREAKLOOP"
| "CONCLUDE" <expr>
<logic_if then_else2> ::=
<expr>"THEN" <logic_block> ";" <logic_elseif> " h
<logic_elseif> ::=
"ENDIF"
| "ELSE" <logic_block>";" "ENDIF"
| "ELSEIF" <logic_if_then_else2>

Page 118 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<logic_assignment> ::=
<identifier_becomes> <expr>
| <time_becomes> <expr>

| <identifier_becomes> <call_phrase>

| "(" <data_var_list>")" ":=" <call_phrase>
| "LET" (" <data_var_list>")" "BE" <call_phrase>
| <identifier_becomes> <new_object_phrase>
<identifier_becomes> ::=
<identifier_or_object_ref> ":="
| "LET" <identifier_or_object_ref>"BE" |"NOW"":
<logic_switch> ::=
"SWITCH" <identifier>""
<logic_switch_cases>
"ENDSWITCH" "}"
<logic_switch_cases> ::=
[* empty */
| "CASE" <expr_factor> <logic_block> <logic_switch

| "DEFAULT" <expr_factor> <logic_block>

<identifier_or_object_ref> ::=
<identifier>
| <identifier_or_object_ref> "[* <expr>"1"

| <identifier_or_object_ref> "." <identifier_or_ob

<time_becomes> ::=
"TIME" "OF" <identifier> ":="
| "TIME" <identifier> ":="
| "LET" "TIME" "OF" <identifier> "BE"
| "LET" "TIME" <identifier> "BE"

<call_phrase> ::=
"CALL" <identifier>
| "CALL" <identifier> "WITH" <expr>

/****** expreSS|onS ******/

<expr> =
<expr_sort>
| <expr>"," <expr_sort>

| "," <expr_sort>

_cases>

ject_ref>
/* field reference */

© 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06

Page 119
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<expr_sort> ::=
<expr_add_list>
| <expr_add_list> "MERGE" <expr_sort>
| "SORT" <sort_option> <expr_sort>
| <expr_add_list> "MERGE" <expr_sort> "USING" <ex
| "SORT" <sort_option> <expr_sort> "USING" <exp

<sort_option> ::=
[*empty*/
| "“TIME"
| "DATA"
<expr_add_list> ::=
<expr_remove_list>
| "ADD" <expr_where> "TO" <expr_where>
| "ADD" <expr_where> "TO" <expr_where> "AT" <expr_
<expr_remove_list> ::=
<expr_where>
| "REMOVE" <expr_where> "FROM" <expr_where>

<expr_where> ::=
<expr_range>
| <expr_range> "WHERE" <expr_range>
<expr_range> ::=
<expr_or>
| <expr_or>"SEQTO" <expr_or>
<expr_or> ;=
<expr_or>"OR" <expr_and>
| <expr_and>
<expr_and> ::=
<expr_and> "AND" <expr_not>

| <expr_not>

<expr_not> ::=
"NOT" <expr_comparison>
| <expr_comparison>
<expr_comparison> ::=
<expr_string>
| <expr_find_string>
| <expr_string> <simple_comp_op> <expr_string>
| <expr_string> <is> <main_comp_op>
| <expr_string> <is> "NOT" <main_comp_op>
| <expr_string> <in_comp_op>
| <expr_string> "NOT" <in_comp_op>
| <expr_string> <occur> <temporal_comp_op>
| <expr_string> <occur> "NOT" <temporal_comp_op>
| <expr_string> <occur> <range_comp_op>
| <expr_string> <occur> "NOT" <range_comp_op>
| <expr_string> "MATCHES" "PATTERN" <expr_string>

pr_function>

r_function>

where>

Page 120

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06

Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<expr_find_string> ::=
"FIND" <expr_string> "IN" "STRING" <expr_string>
<string_search_start>
| "FIND" <expr_string> "STRING" <expr_string> <str
<expr_string> ::=
<expr_plus>
| <expr_string> "||" <expr_plus>
| <expr_string> "FORMATTED" "WITH" <format_string>
| <expr_string> "FORMATTED" "WITH" <expr_plus>
| "TRIM" <trim_option> <expr_string>
| <case_option> <expr_string>
| "SUBSTRING" <expr_plus> "CHARACTERS" <string_sea
<expr_string>

<format_string> ::=

<format_specification> /* The format strin

ing_search_start>

rch_start> "FROM"

gisatrue */

/* Arden Syntax string, enclosed */

/*in a single pair of double */
/* quotes (")
<format_specification> ::= /* See Section 9.8.2 and Annex 5 for */
/* explanation of valid combination and thei r*/
/* meanings. */
<format_specification> <format_specification_sin gle>
| <format_specification_single>
<format_specification_single> ::=
"%"<format_options><format_flag><width><precisio n>
/* No spaces are permitted between elements in a bove form */
| <text>
<format_options> ::=
[* empty */
"
[
| 0"
|"" I* space */
| "#"
© 2008 Health Level Seven, Inc.. All rights reserved. Page 121

Revision date: 2008-05-06

Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<format_flag> ::= /* Format flags
ner
|c"
| d"
|
| 0"
|
g
S
| e
| "E"
|
["g"
|"G"
|
["p"
|"s"
|t
<width> ::=
[* empty */
| <digits>
<precision> ::=
I* empty */
| "."<digits>
<trim_option> ::=
[* empty */
| "LEFT"
| "RIGHT"
<case_option> ::=
"UPPERCASE"
| "LOWERCASE"

<string_search_start> ::=
/* empty */

| "STARTING" "AT" <expr_plus>

<expr_plus> ::=

<expr_times>

| <expr_plus> "+" <expr_times>

| <expr_plus> "-" <expr_times>

| "+" <expr_times>
| "-" <expr_times>
<expr_times> ::=

<expr_power>

| <expr_times> "*" <expr_power>

| <expr_times> "/" <expr_power>

ar e case sensitive */

Page 122

Revision date: 2008-05-06

© 2008 Health Level Seven, Inc.. All rights reserved.
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<expr_power> ::=

<expr _attime >

| <expr_function> "**" <expr_function>

[* exponent (second argument) must be an expres
/* that evaluates to a scalar number

<expr_attime> ::=

<expr_before>

| <expr_before> "ATTIME" <expr_attime>

<expr_before> ::=

<expr_ago>
| <expr_duration> "BEFORE" <expr_ago>
| <expr_duration> "AFTER" <expr_ago>
| <expr_duration> "FROM" <expr_ago>

<expr_ago> ::=

<expr_function>
| <expr_function> "AGO"
| <expr_duration>
| <expr_duration> "AGQO"

<expr_duration> ::=

<expr_function>

| <expr_function> <duration_op>

<expr_function> ::=

<expr_factor> | <of_func_op> <expr_function>
| <of_func_op> "OF" <expr_function>
| <from_of_func_op> <expr_function>
| <from_of_func_op> "OF" <expr_function>
| <from_of_func_op> <expr_factor> "FROM" <expr_fun

| "REPLACE" <timepart>"OF" <expr_function> "WITH"
| "TREPLACE" <timepart> <expr_function> "WITH" <exp
| <from_of_func_op> <expr_function> "USING" <expr_
| <from_of_func_op> "OF" <expr_function> "USING" <

| <from_of_func_op> <expr_factor> "FROM" <expr_fun

<expr_function>

| <from_func_op> <expr_factor> "FROM" <expr_functi

| <index_from_of_func_op> <expr_function>

| <index_from_of_func_op> "OF" <expr_function>

| <index_from_of_func_op> <expr_factor> "FROM" <ex
| <at_least_most_op> <expr_factor> "FROM" <expr_fu
| <at_least_most_op> <expr_factor>"ISTRUE" "FROM"
| <at_least_most_op> <expr_factor>"ARETRUE" "FROM
| "INDEX" "OF" <expr_factor> "FROM" <expr_function

| <index_from_func_op> <expr_factor>"FROM" <expr_
| <expr_factor> "AS" <as_func_op>

| <expr_attribute_from>

| <expr_sublist_from>

sion */
*/

ction>

<expr_factor>
r_factor>
function>
expr_function>
ction> "USING"

on>

pr_function>
nction>
<expr_function>
" <expr_function>
>

function>

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06

Page 123
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<expr_attribute_from> ::=
"ATTRIBUTE" <expr_factor>"FROM" <expr_factor>
<expr_sublist_from> ::=
"SUBLIST" <expr_factor> "FROM" <expr_factor>
| "SUBLIST" <expr_factor> "STARTING" "AT" <expr_fa ctor> "FROM"

<expr_factor>

<expr_factor> ::=
<expr_factor_atom>
| <expr_factor_atom> "[" <expr>"]" /* number [<e xpr>] is not */
/* avalid construct ~ */
| <expr_factor>"." <identifier> /* object d ot notation */

<expr_factor_atom> ::=
<identifier>
| <number>
| <string>
| <time_value>
| <boolean_value>
| <weekday_literal>

| "TODAY"

| "TOMORROW"

| "NULL"

| <it> /* Value of <it> is NULL outside of a */
/* where clause and may be flagged as an * /
[* error in some implementations. * /

[

| (" <expr>")"

[k for readability **x****/
<it> = "IT" | "THEY"
[FERRRE comparison Synonyms *rxkxx/

<is>:="IS" | "ARE" | "WAS" | "WERE"
<occur> :="OCCUR" | "OCCURS" | "OCCURRED"

/****** o p e rato rs ******/

<simple_comp_op> ::=

| "EQr
e T
e |GT
ezt | HLE"
e | "GE"
v | "NE"

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<main_comp_op> ::=
<temporal_comp_op>
| <range_comp_op>
| <unary_comp_op>
| <binary_comp_op> <expr_string>

/* the WITHIN TO operator will accept any ordered p arameter, */

/* including numbers, strings (single characters), times, Boolean /*

<range_comp_op> ::=
"WITHIN" <expr_string> "TO" <expr_string>
<temporal_comp_op> ::=
"WITHIN" <expr_string> "PRECEDING" <expr_string>
| "WITHIN" <expr_string> "FOLLOWING" <expr_string>
| "WITHIN" <expr_string> "SURROUNDING" <expr_strin
| "WITHIN" "PAST" <expr_string>
| "WITHIN" "SAME" "DAY" "AS" <expr_string>
| "BEFORE" <expr_string>
| "AFTER" <expr_string>
| "EQUAL" <expr_string>
| "AT" <expr_string>
<unary_comp_op> ::=
"PRESENT"
| "NULL"
| "BOOLEAN"
| "NUMBER"
| "TIME"
| "DURATION"
| "STRING"
| "LIST"

| "OBJECT"

| <identifier> /*names an object i.e. left side
| “TIME" "OF" "DAY"
<binary_comp_op> ::=
"LESS" "THAN"
| "GREATER" "THAN"
| "GREATER" "THAN" "OR" "EQUAL"
| "LESS" "THAN" "OR" "EQUAL"
| "IN"
<of_func_op> ::=
<of_read_func_op>
| <of_noread_func_op>
<in_comp_op> ::=
NG

g>

of OBJECT statement*/

© 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06

Page 125
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<of_read_func_op> ::=

"AVERAGE'| "AVG"
| "COUNT"
| "EXIST" | "EXISTS"
| "SUM"
| "MEDIAN"

Page 126
Revision date: 2008-05-06

© 2008 Health Level Seven, Inc.. All rights reserved.
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<of_noread_func_op> ::=
"ANY"
| "ANY" "ISTRUE"
| "ALL"
| "ALL" "ARETRUE"
| "NO"
| "NO" "ISTRUE"
| "SLOPE"
| "STDDEV"
| "VARIANCE"
| "INCREASE"
| "PERCENT" "INCREASE" | "%" "INCREASE"
| "DECREASE"
| "PERCENT" "DECREASE" | "%" "DECREASE"
| "INTERVAL"
| "TIME"
| "TIME" "OF" "DAY"
| "DAY" "OF" "WEEK"
| "ARCCOS"
| "ARCSIN"
| "ARCTAN"
| "COSINE" | "COS"
| "SINE" | "SIN"
| "TANGENT'| "TAN"
| "EXP"
| "FLOOR"
| "INT"
| "ROUND"
| "CEILING"
| "TRUNCATE"
| "LOG"
| "LOG10"
| "ABS"
| "SQRT"
| "EXTRACT" "YEAR"
| "EXTRACT" "MONTH"
| "EXTRACT" "DAY"
| "EXTRACT" "HOUR"
| "EXTRACT" "MINUTE"
| "EXTRACT" "SECOND"
| "EXTRACT" "TIME" "OF" "DAY"
| "STRING"
| "EXTRACT" "CHARACTERS"
| "REVERSE"
| "LENGTH"
| "CLONE"
| "EXTRACT" "ATTRIBUTE" "NAMES"

© 2008 Health Level Seven, Inc.. All rights reserved. Page 127
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<from_func_op> ::=
"NEAREST"
<index_from_func_op> ::=
"INDEX" "NEAREST"
<from_of_func_op> ::=
"MINIMUM'| "MIN"
| "MAXIMUM'| "MAX"
| "LAST"
| "FIRST"
| "EARLIEST"
| "LATEST"
<index_from_of_func_op> ::=
"INDEX" "MINIMUM" | "INDEX" "MIN"
| "INDEX" "MAXIMUM" | "INDEX" "MAX"
| “INDEX" "EARLIEST"
| “INDEX" "LATEST"
<as_func_op> ::=
"NUMBER"
| "TIME"
| "STRING"

<at_least_most_op> ::=
"AT" "LEAST"
| "AT" "MOST"

<duration_op> ::=
"YEAR" | "YEARS"
| "MONTH" | "MONTHS"

| "WEEK" | "WEEKS"
| "DAY" | "DAYS"
|"HOUR" | "HOURS"

| "MINUTE" | "MINUTES"
| "SECOND" | "SECONDS"
<timepart> ::=
"YEAR"
| "MONTH"
| "DAY"
| "HOUR"
| "MINUTE"
| "SECOND"

/****** factors ******/

Page 128 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<string> ;=
<plainstring>
| "LOCALIZED" <term> <localize_option>
<localize_option> ::=
[* empty */
| "BY" <plainstring>
| "BY" <identifier>
<boolean_value> ::=
"TRUE"
| "FALSE"

<time_value> ::=
"NOw"
| <iso_date_time>
| <iso_date>
| "EVENTTIME"
| "TRIGGERTIME"
| "CURRENTTIME"
| <time_of_day>

/****** data blOCk ******/

<data_block> ::=
<data_block> ";" <data_statement>
| <data_statement>

<data_statement> ::=
/* empty */
| <data_assignment>
| "IF" <data_if_then_else2>
| "FOR" <identifier> "IN" <expr> "DO" <data_block> """ "ENDDO"
| "WHILE" <expr> "DO" <data_block>";" "ENDDQO"
| <data_switch>
| "BREAKLOOP"
| "INCLUDE" <identifier>
<data_if then_else2> ::=
<expr>"THEN" <data_block> ";" <data_elseif>
<data_elseif> ::=
"ENDIF"
| "ELSE" <data_block> ";" "ENDIF"
| "ELSEIF" <data_if_then_else2>
<data_switch> ::=
"SWITCH" <identifier> ":"
<data_switch_cases>
"ENDSWITCH" "}"

© 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date

Page 129
1 3/11/2011

Arden Syntax for Medical Logic Systems

<data_switch_cases> ::=
/* empty */
| "CASE" <expr_factor> <data_block> <data_switch_c ases>
| "DEFAULT" <expr_factor> <data_block>

<data_assignment> ::=
<identifier_becomes> <data_assign_phrase>
| <time_becomes> <expr>

| "(" <data_var_list> ")" ":=" "READ" <read_phrase >
| "LET" "(" <data_var_list>")" "BE" "READ" <read_ phrase>
| "(" <data_var_list>")" ":=" "READ" "AS" <identi fier> <read_phrase>

| "LET" "(" <data_var_list> ")" "BE" "READ"

"AS" <identifier> <read_phrase>
| "(" <data_var_list>")" ":=" "ARGUMENT"
| "LET" "(" <data_var_list>")" "BE" "ARGUMENT"
<data_var_list> ::=
<identifier>

| <identifier> "," <data_var_list>

<data_assign_phrase> ::= "READ" <read_phrase>
| "MLM" <term>
| "MLM" <term> "FROM" "INSTITUTION" <string>
| "MLM" "MLM_SELF"
| "INTERFACE" <mapping_factor>
| "EVENT" <mapping_factor>
| "MESSAGE" <mapping_factor>
| "MESSAGE" "AS" <identifier> <mapping_factor>
| "MESSAGE" "AS" <identifier>
| "DESTINATION" <mapping_factor>
| "DESTINATION" "AS" <identifier> <mapping_factor>
| "DESTINATION" "AS" <identifier>
| "ARGUMENT"

| "OBJECT" <object_definition>
| <call_phrase>

| <new_object_phrase>

| <expr>

<read_phrase> ::=
<read_where>
| <of_read_func_op> <read_where>
| <of_read_func_op> "OF" <read_where>
| <from_of_func_op> <read_where>
| <from_of_func_op>"OF" <read_where>
| <from_of_func_op> <expr_factor> "FROM" <read_whe re>

Page 130 © 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<read_where> ::=
<mapping_factor>
| <mapping_factor> "WHERE" <it> <occur> <temporal_

| <mapping_factor> "WHERE" <it> <occur> "NOT" <tem
| <mapping_factor> "WHERE" <it> <occur> <range_com

| <mapping_factor> "WHERE" <it> <occur> "NOT" <ran
| "(" <read_where>")"

<mapping_factor> ::=
"{" <data_mapping>"}"
<object_definition> ::=
"[" <object_attribute_list>"]"
<object_attribute_list> ::=
<identifier>
| <identifier> "," <object_attribute_list>

<new_object_phrase> ::=
"NEW" <identifier>
| "NEW" <identifier> "WITH" <expr>
| "NEW" <identifier> "WITH" "[" <object_init_list>
| "NEW" <identifier> "WITH" <expr> "WITH" "[" <obje

comp_op>
poral_comp_op>
p_op>
ge_comp_op>

T

ct_init_list>"]"

© 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06

Page 131
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<object_init_list> ::=
<object_init_element>

| <object_init_list>"," <object_init_element>

<object_init_element> ::=

<identifier> ":=" <expr>
/****** evoke b|OCk ******/

<evoke_block> ::=
<evoke_statement>
| <evoke_block>";" <evoke_statement>

<evoke_statement> ::=
/* empty */
| <event_or>
| <evoke_time>
| <delayed_evoke>
| <qualified_evoke_cycle>

| "CALL" /* deprecated — kept for backward compa tibility */
<event_list> ::=
<event_or>
| <event_list>"," <event_or>
<event_or> =
<event_or> "OR" <event_any>
| <event_any>
<event_any> ::=
"ANY" "(" <event_list>")"
| "ANY" "OF" "(" <event_list>")"
| "ANY" <identifier>
| "ANY" "OF" <identifier>
| <event_factor>
<event_factor> ::=e
"(" <event_or>")"
| <identifier>
<delayed_evoke>::=
<evoke_time_expr_or> "AFTER" <event_time>
|<evoke_time_expr_or>
|<evoke_duration> "AFTER" <evoke_time_or>
<event_time> ::=
"TIME" <event_any>
| "TIME" "OF" <event_any>
<evoke_time_or>::=
Page 132 © 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06

Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<evoke_time>

| <evoke_time> "OR" <evoke_time_or>

<evoke_time_expr_or> ::=
<evoke_time_expr>

| <evoke_time_expr>"OR" <evoke_time_expr_or>

<evoke_time_expr>::=
<evoke_duration>

| <evoke_time>

<evoke_time> ::=
<iso_date_time>
| <iso_date>

| <relative_evoke_time_expr>

<evoke_duration> ::=

<number> <duration_op>

<relative_evoke_time_expr>::=
"TODAY" "ATTIME" <time_of_day>
| "TOMORROW" "ATTIME" <time_of_day>

| <weekday_literal> "ATTIME" <time_of_day>

<weekday_literal> ::=
"SUNDAY"
| "MONDAY"
| "TUESDAY"
| "WEDNESDAY"
| "THURSDAY"
| "FRIDAY"
| "SATURDAY"

<qualified_evoke_cycle> ::=
<simple_evoke_cycle>

| <simple_evoke_cycle> "UNTIL" <expr>

<simple_evoke_cycle> ::=

© 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06

Page 133
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

"EVERY" <evoke_duration> "FOR" <evoke_duration> "STARTING"
<starting_delay>

<starting_delay>::=
<event_time>
| <delayed_evoke>
[****xx gction block *xxx+*/

<action_block> ::=
<action_statement>
| <action_block> ";" <action_statement>

<action_statement> ::=

[* empty */
| "IF" <action_if_then_else2>
| "FOR" <identifier> "IN" <expr> "DO" <action_bloc k>";" "ENDDO"

| "WHILE" <expr> "DO" <action_block>";" "ENDDO"
| <action_switch>

| "BREAKLOOP"

| <call_phrase>

| <call_phrase> "DELAY" <expr>

| "WRITE" <expr>

| "WRITE" <expr> "AT" <identifier>

| "RETURN" <expr>

| <identifier_becomes> <expr>

| <time_becomes> <expr>
| <identifier_becomes> <new_object_phrase>
<action_if_then_else2> ::=
<expr>"THEN" <action_block> ";" <action_elseif>
<action_elseif> ::=
"ENDIF"
| "ELSE" <action_block>";" "ENDIF"
| "ELSEIF" <action_if_then_else2>

<action_switch> ::=
"SWITCH" <identifier> ":"
<action_switch_cases>
"ENDSWITCH" ;"
<action_switch_cases> ::=
[* empty */
| "CASE" <expr_factor> <action_block> <action_swit ch_cases>

| "DEFAULT" <expr_factor> <action_block>

[F**xx% Jaxical constructs **x***/

/* Unless otherwise specificed, characters are the printable ASCII */
[* characters (ASCII 33 through and including 126) , (Seeb5.2) */
Page 134 © 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

/* The space, carriage return, line feed, horizont
/* and form feed are collectively referred to as w
/* See also Section 7.1.10.

hite space.

<plainstring> ::=
/* any string of characters enclosed in double g
/* with nested "™
/* (character set limitations do not apply here
/* one possible regular expression to match Ard
A (e
<identifier> ::=
/* up to 80 characters total (no reserved words al

<letter> <identifier_rest>

<identifier_rest> ::= /* no spaces are permitted
[* empty */
| <letter> <identifier>
| <digit> <identifier>
| "_" <identifier>
<text> =
/* any string of characters without ";;" */

<format_text> ::=
/* any string of characters */

<number> ::= /* no spaces are permitted betwee
<digits> <exponent>

| <digits> "." <exponent>

| <digits> "." <digits> <exponent>

| "." <digits> <exponent>

<exponent>::= /* no spaces are permitted betwe
/* null */

| <e> <sign> <digits>

<e>:=
ngn
|"e"
<sign> ;=
/null */
"
[
<digits> ::= /* no spaces are permitted betwee
<digit>

| <digit> <digits>

al tab, vertical tab, */

*
*/

uotes (" ASCII 22) */
*/

) *!

en Syntax strings: */
*/

lowed) */

between elements */

n elements */

en elements */

n elements */

© 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06

Page 135
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<digit> ::=
nge
|
|2
|"3"
|4
|"5"
| 6"
|7
| 8"
|"o"
<letter> ::=
"a' |"b" |"c" |"d"
["e" " |"g" |"h"

EAEESEE
I"'m |t |t |
KRS

|"U" |"V" "w" |"X"
Iy 1z

|*A" |"B" |"C" |"D"
I"E" PG|
KRS RS
|"M" "N Ot | P
I"Q" ['R" |"s" |"T"
RUNRER RN
Iy vz
<iso_date> ::= /* no spaces are permitted betwe
<digit> <digit> <digit> <digit> "-" <digit> <digit
<iso_date_time> ::= /* no spaces are permitted b
<digit> <digit> <digit> <digit> "-" <digit> <digit
<t>
<digit> <digit> ":" <digit> <digit> ":" <digit> <d
<fractional_seconds>

<time_zone>

<time_of_day> ::= /* no spaces are permitted bet
<digit> <digit> ":" <digit> <digit>
<seconds>

<time_zone>

<seconds> ::= /* no spaces are permitted betwe
"" <digit> <digit> <fractional_seconds>
| 7* empty */
<t>:=
v
|t

en elements */
> " <digit> <digit>

etween elements */
> """ <digit> <digit>

igit>

ween elements */

en elements */

Page 136 © 2008 Health Level Seven, Inc.. All rights reserved.
Print date: 3/11/2011

Revision date: 2008-05-06

Arden Syntax for Medical Logic Systems

<fractional_seconds> ::= /* no spaces are permitt
""" <digits>
| I* empty */
<time_zone> ::= /* no spaces are permitted betw
/* null */
| <zulu>
| "+" <digit> <digit> ":" <digit> <digit>
| "-" <digit> <digit>":" <digit> <digit>
<zulu> =
nz
|z
<term> ;=
/* any string of characters enclosed in single quo
without ";;" */
<data_mapping> ::=
/* any balanced string of characters enclosed in c
/* (ASCII 123 and 125, respectively) without ";;"
/* does not include the curly bracket characters
<multi_line_comment> ::=
/* any string of characters enclosed between pairs
/* (character set limitations do not apply here)
<single_line_comment> ::=
[* any string of characters located between "//" a
/* an end-of-line markner (CR, LF, or CR/LF pair)
/* (character set limitations do not apply here)
<is0639-1> ::=
[* 2-letter character code as defined by standard

ed between elements */

een elements */

tes (*, ASCII 44)

urly brackets { } */
the data mapping */

*

of "/*" and™/" */

*

*
*/
*

1ISO 639-1 *

© 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06

Page 137
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

A2 RESERVED WORDS

Listed here in alphabetic order are all the restwerds. None of these words may be used as vaneahes.

Abs cos expired last

action cosine explanation latest

add count extract le

after clone false least

ago currenttime filename left

alert data find length

all data_driven first less

and data-driven floor let

any date following library

arccos day for links

arcsin days formatted list

arctan decrease friday localized

arden default from log

are delay ge log10

aretrue destination greater logic

argument do gt lowercase

as duration hour It

at earliest hours maintenance

attribute elements if matches

author else in max

average elseif include maximum

avg enddo increase median

be endif index merge

before end institution message

Boolean eq int min

breakloop equal interface minimum

by event interval minute

call eventtime is minutes

case every istrue mim

ceiling evoke it mlimname

characters exist keywords mim_self

citations exists knowledge month

conclude exp language monday
Page 138 © 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

months purpose string truncate
most read substring tuesday
names refute sublist type
ne remove sum unique
nearest replace sunday until
new research support uppercase
no resources surrounding urgency
not return switch using
now reverse tan validation
null right tangent variance
number round testing version
object same than was
occur saturday the wednesday
occurred second then week
occurs seconds they weeks
of seqto thursday were
or sin time where
past sine title while
pattern slope to with
percent sort today within
preceding specialist tomorrow write
present sqrt triggertime year
priority starting trim years
production stddev true
The following identifiers are reserved for futurgeu
union intersect excluding citation stle
A3 SPECIAL SYMBOLS
Listed here are all the special symbols.
I = , = >=
> <= < { (
[- <> % +
})] ; #
/ * *% "
I* * 1 ‘ "
© 2008 Health Level Seven, Inc.. All rights reserved. Page 139

Revision date: 2008-05-06

Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

A4
A4.1

A4.2

A4.3

OPERATOR PRECEDENCE AND ASSOCIATIVITY

The operators for the structured slots are showa gi@uped by precedence. Groups are separated by
horizontal lines. Within groups, operators haveatguecedence. Groups are arranged from lowest to
highest precedence.

Synonyms are listed on the same line, separatédTe symbol [of] means that the waflis optional,
and does not affect the logic of the operator. 3yrabol [in] means that the woik is optional, and does
not affect the logic of the operator.

The position of the arguments relative to the operia indicated by the ellipsis The operator’
associativity is shown in italics after each operabome operators have both a unary form (onenzegt)
and a binary form (two arguments); each form ietisseparately.

[...] (non-associative)

.. (non-assaciative)

, ... (left associative)

. merge ... (left associative)

merge ... using ... (left-associative)

sort ... (non-associative)
sort ... using ...(non-associative)

add ... to ... (non-associative)
add ...to ... at ... (non-associative)
remove ... from ... (non-associative)

... where ... (non-associative)

.. or ... (left associative)

..and ... (left associative)

not ... (non-associative)

.=...%..eq..%..isequal ... (hogessative)
..<>..%..ne..°..is not equal nor(-associative)

<. 02t 0. is less than ... 9s not greater than or equal ... (non-assivelpt
..<=..%.le..°.. isless than oraqu ° ... is not greater than ... (non-assiv&a
o> %00t 2L is greater thaR ... is not less than or equal ... (non-assiveipt
.. >= ... %, ge... ... is greater thaegual ... ° ... is not less than ... (hon-assioeln
... Is within ... to ... (non-associative)

... iIs not within ... to ... (non-associative)

... Is within ... preceding ... (non-associative

... Is not within ... preceding ... (non-asstee

... is within ... following ... (non-associatjve ... is not within ... following ... (non-assative)
... IS within ... surrounding ... (non-assodsiaji

.. Is not within ... surrounding ... (non-asstive)

Page 140 Health Level Seven © 2008. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

... is within past ... (non-associative)

... Is not within past ... (non-associative)

... is within same day as ... (non-associative)

... IS not within same day as ... (non-asso@ati
... Is before ... (non-associative)

... is not before ... (non-associative)

... is after ... (non-associative)

... Is not after ... (non-associative)

... occur equal ... ° ... occur at ... (non-assd@ER
... occur within ... to ... (non-associative)

... occur not within ... to ... (non-associafive

... occur within ... preceding ... (non-assoeet

... occur not within ... preceding ... (non-asative)
....occur within ... following ... (non-assodva)

... occur not within ... following ... (non-assative)
... occur within ... surrounding ... (non-asstigi)
... occur not within ... surrounding ... (nors@siative)
... occur within past ... (non-associative)

... occur not within past ... (non-associative)

... occur within same day as ... (non-asso@ativ
... occur not within same day as ... (non-asgive)
... occur before ... (non-associative)

... occur not before ... (non-associative)

... occur after ... (non-associative)

... occur not after ... (non-associative)

..isin... ° ...in ... (non-associative)
..isnotin... ° ... notin ... (hon-associajive

... is present ° ... is not null (non-assocegtiv

... is not present ° ... is null (non-assocgtiv

... iIs Boolean (non-associative)

... is not Boolean (non-associative)

... is number (non-associative)

... is not number (non-associative)

... istime (non-associative)

... iIs not time (non-associative)

... iIs time of day (non-associative)

... is not time of day (non-associative)

... iIs duration (non-associative)

... is not duration (non-associative)

... Is string (non-associative)

... IS not string (non-associative)

... is list (non-associative)

..is not list (non-associative)

... Is object (non-associative)
... is not object (non-associative)
.. is <object-name> (non-associative)

... IS not <object-name> (non-associative)

.|| ... (left-associative)

... formatted with ... (non- associative)

uppercase ... (right associative)
lowercase ... (right associative)

© 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06

Page 141
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

trim ... (right associative)
trim left ... (right associative)

trim right ... (right associative)

substring ... characters from ... (right associative)
substring ... characters from ... starting at ... (rigbsociative)
localized ... by ... (right associative)

localized ... (non-associative)

+ ... (non-associative)
- ... (non-associative)

... +... (left-associative)
... - ... (left-associative)

.. *... (left associative)
... [... (left associative)

.. ** .. (non-associative)

... before ...
.. after ...

(non-associative)

° ... from ... (non-associative)

.. ago (non-associative)

... year° ... years (non-associative)

... month ° ... months (non-associative)
... week ° ... weeks (non-associative)

... day° ... days (non-associative)

... hour ° ... hours (non-associative)

... minute ° ... minutes (non-associative)
... second ° ... seconds (non-associative)
.. matches pattern ... (non-associative)

find ... [in] ... (right-associative)
find ... [in] ... starting at ... (right-associative)

count [of] ..

. (right associative)

exist [of] ... (right associative)

avg [of] ... © average [of] ... (right assooiali
median [of] ... (right associative)

sum [of] ... (right associative)

stddev [of] ... (right associative)

variance [of] ... (right associative)

any [of] ... (right associative)

all [of] ... (right associative)

no [of] ... (right associative)

slope [of] ... (right associative)

min ... from © minimum ... from ... (right assatove)
min [of] ... © minimum [of] ... (right associa#)

min ... from ... using ° minimum ... from ...
min [of] ... using °© minimum [of] ... using ...ight-associative)
max ... from ... ° maximum ... from ... (riglstsaciative)

max [of] ... © maximum [of] ... (right associa)
max ... from ... using ...° maximum ... from ..ingg... (right-associative)

ugin. (right-associative)

Page 142

Revision date: 2008-05-06

Health Level Seven © 2008. All rights reserved.
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

max [of] ... using ... © maximum [of] ... usingig(nt-associative)
index min ... from © index minimum ... from .right associative)
index min [of] ... © index minimum [of] ... (fig associative)
index max ... from ... ® index maximum ... from (right associative)
index max [of] ... °© index maximum [of] ... (ligassociative)
last ... from ... (right associative)

last [of] ... (right associative)

first ... from ... (right associative)

first [of] ... (right associative)

latest ... from ... (right associative)

latest ... from ... using (right-associative)

sublist ... elements from ... (right-associative)

sublist ... elements starting at ... from ... (rigksociative)
latest [of] ... (right associative)

latest [of] ... using ...(right-associative)

earliest ... from ... (right associative)

earliest [of] ... (right associative)

earliest ... from ... using ... (right-associative)

earliest [of] ... using ...(right-associative)

nearest ... from ... (right associative)

index nearest ... from ... (right associative)

index of ... within ... (right-associative)

at least ... from ... (right-associative)

at most ... from ... (right-associative)

increase [of] ... (right associative)

decrease [of] ... (right associative)

percent increase [of] ... ° % increase [of|(right associative)
percent decrease [of] ... ° % decrease [offright associative)
interval [of] ... (right associative)

time [of] ... (right associative) time of dayf[o. (right associative)
day of week [of] ... (right associative)

arccos [of] ... (right associative)

arcsin [of] ... (right associative)

arctan [of] ... (right associative)

cos [of] ... © cosine [of] ... (right associa)v

sin [of] ... ° sine [of] ... (right associative)

tan [of] ... ° tangent [of] ... (right associeg)

exp [of] ... (right associative)

floor [of] ... (right associative)

ceiling [of] ... (right associative)

truncate [of] ... (right associative)

round [of] ... (right associative)

log [of] ... (right associative)

log10 [of] ... (right associative)

int [of] ... (right associative)

abs [of] ... (right associative)

sqrt [of] ... (right associative)

extract year [of] ... (right associative)

extract month [of] ... (right associative)

extract day [of] ... (right associative)

extract hour [of] ... (right associative)

extract minute [of] ... (right associative)

extract second [of] ... (right associative)

replace year [of] ... with ... (right-associative)

replace month [of] ... with ... (right-associafive

© 2008 Health Level Seven, Inc.. All rights reserved. Page 143
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

replace day [of] ... with ... (right-associative)
replace hour [of] ... with ... (right-associative)
replace minute [of] ... with ... (right-associa)v
replace second [of] ... with ...(right-associative)
reverse [of] ... (right associative)

extract characters [of] ... (right associate)
string [of] ... (right associative)

length [of] ... (right associative)

... (right associative)

attribute ... from ... (right associative)

extract attribute names ... (right associative)
clone ... (right associative)

... seqto ... (non-associative)

... as number (non-associative)
... as time (non-associative)
... as string (non-associative)

Page 144 Health Level Seven © 2008. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

A5 FORMAT SPECIFICATION (SEE 9.8.2)

A5.1 The following is a complete description of supported types within the format specification:

type Required character that determines whetleassociated argument is interpreted as a
character, a string, or a number.
Table A5-1
Character Type Output Format
c number The number is assumed to represent actbacade to be output as a character.
C number The number is assumed to represent actbiacade to be output as a character.
D number Signed decimal integer.
| number Signed decimal integer.
(0] number Unsigned octal integer.
U number Unsigned decimal integer.
X number Unsigned hexadecimal integer, using "albjcde
X number Unsigned hexadecimal integer, using "ABEDE
e number Signed value having the form [—]d.dd¢slgn]ddd where d is a single decimal digit,
dddd is one or more decimal digits, ddd is exattige decimal digits, and sign is + or —.
number Identical to the e format, except thather than e, introduces the exponent.
double Signed value having the form [— Jdddddjddhere dddd is one or more decimal digits.

The number of digits before the decimal point delsern the magnitude of the number,
and the number of digits after the decimal poirmtatels on the requested precision.

g double Signed value printed in f or e format, ett@ver is more compact for the given value and
precision. The e format is used only when the erpoof the value is less than —4 or
greater than or equal to the precision argumentlifig zeros are truncated, and the
decimal point appears only if one or more digittofa it.

G double Identical to the g format, except thataiher than e, introduces the exponent (where
appropriate).

N Not supported. Not supported.

P Not supported. Not supported.

S string Specifies a character. Characters aréegrimtil the precision value is reached.

T time A time is printed based on the user's envinent settings and the precision value.

A5.2 The optional fields, which appear before the type character, control other aspects of the
formatting, as follows:

flags Optional character or characters that copustification of output and printing of signs,
blanks, decimal points, and octal and hexadecimedi¥es. More than one flag can appear in
a format specification.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 145
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

Table A5-2
Flag Meaning Default
- Left align the result within the given field widt Right align.
+ Prefix the output value with a sign (+ or —)hittoutput value is of Sign appears only for
a signed type. negative signed values (-).
0 If width is prefixed with 0, zeros are added Lifteé minimum No padding.

width is reached. If 0 and — appear, the 0 is igdolf 0 is specified
with an integer format (1, u, x, X, o, d) the Ggwored.

Space Prefix the output value with a space if ttput value is signed No space appears.
and positive; the space is ignored if both the sad + flags
appear.

When used with the o, X, or X format, the # fegfixes any No blank appears.
nonzero output value with 0, 0x, or 0X, respectivel

When used with the e, E, or f format, the # flages the output Decimal point appears only

value to contain a decimal point in all cases. if digits follow it.
When used with the g or G format, the # flag ferttee output Decimal point appears only
value to contain a decimal point in all cases amdgnts the if digits follow it. Trailing
truncation of trailing zeros. zeros are truncated.

Ignored when used with c, d, i, u, or s.

The second optional field of the format specifioatis the width specification. The width argumisra
nonnegative decimal integer controlling the minimoomber of characters printed. If the number of
characters in the output value is less than theifspe width, blanks are added to the left or tighr of the
values — depending on whether the — flag (fordéfinment) is specified — until the minimum widh i
reached. If width is prefixed with 0, zeros areedldntil the minimum width is reached (not usebrl Ieft-
aligned numbers).

The width specification never causes a value tyurecated. If the number of characters in the augplue
is greater than the specified width, or if widtmis given, all characters of the value are prirfsedbject to
the precision specification).

If the width specification is an asterisk (*), artdger argument from the argument list supplies/tiee.
The width argument must precede the value beingdtied in the argument list. A nonexistent or small
field width does not cause the truncation of adfiéfi the result of a conversion is wider than tieéd
width, the field expands to contain the conversesult.

Width Optional number that specifies the minimuamier of characters output.

Precision Optional number that specifies the maxmmumber of characters printed for all or part of
the output field, or the minimum number of digiténped for integer values.

Page 146 Health Level Seven © 2008. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

Table A5-3
Type Meaning Default

c,C The precision has no effect. Character istgain

u, The precision specifies the minimum number of digit Default precision is 1.
0, X, X to be printed. If the number of digits in the argmnis

less than precision, the output value is paddetthen

left with zeros. The value is not truncated when th

number of digits exceeds precision.

E,E The precision specifies the number of digitbe Default precision is 6; if precision is 0,
printed after the decimal point. The last printégitds or the period (.) appears without a
rounded. number following it, no decimal point

is printed.
F The precision value specifies the number of sligiter Default precision is 6; if precision is 0,

the decimal point. If a decimal point appearseast or if the period (.) appears without a
one digit appears before it. The value is roundeti¢ number following it, no decimal point

appropriate number of digits. is printed.

G, G The precision specifies the maximum number of Six significant digits are printed, with
significant digits printed. The last printed digit any trailing zeros truncated.
rounded.

S The precision specifies the maximum number of Characters are printed until a null

characters to be printed. Characters in excess of character is encountered.
precision are not printed.

T The precision specifies how many of the datetand Al fields are printed.
fields are printed. The order and format of thé&difeare
implementation specific. Non-printed fields are
truncated (rounded down).

0: Year only
1: Year, Month

2: Date (Year, Month, Day)

3: Date, hour

4: Date, hour, minute

5: Date, hour, minute, second

© 2008 Health Level Seven, Inc.. All rights reserved. Page 147
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

A6 OBJECTS IN ARDEN SYNTAX
A6.1 Rationale

Objects were introduced in Arden 2.5. These haes laglded as an enhancement to the Arden Syntax to
address user and vendor concerns about Arden fiorisa and to dramatically increase the capalslite
the syntax. This is an evolutionary step towatdsfupport for receiving data in HL7 V3 messages.

Arden Syntax was originally designed to be veryménand was limited to a single method of comhgnin
data: the ordered list. To simplify list handliregyd avoid complexities of things like lists contamlists,
the syntax specifies that lists contain only indal items. This has some significant limitations.

Repository data, which typically is representagidally as tables, is returned by the READ staterasra
set of columnar lists which are then assigned pausgely named variables. After a READ, it can be
difficult to maintain the links between values whiare naturally associated with each other. Fomgka,

the last item ofirstnames and the last item dastnamesmay correspond, but what happens if a new item
is added to one of the lists, or one of the listebrdered? The correspondence is lost.

As MLMs evolve, they typically gain features, semed complexity via successive refinement. Declaring
new variables for every temporary computation ifvliM clutters the MLM name space with names
which often have little meaning. MLM authors tendstart using lists as ad-hoc data structures, eviier
first, second etc. items, rather than represemtioljiple instances of a piece of data, insteadewsgmt
several different types of data which are uniteclmpmmon relationship. In most computer languages
these would be stored in a specialized data steictith a declared name for each item. Itemslist@an
only be referred to via their index (a number) vhig not easy to read or understand.

Structured data is actually a simplifying concéptroducing structured data types, while allowirgnplex
structures, tends to make any given usage simplause of the ability to declare names and relstips.
The addition of Objects to the 2.5 standard ackadges this, and this enhances the Arden Syntax in a
number of ways:

« Database queries can be returned as a list of emeh, of which contains named attributes and values

* Object domain models, such as the HL7 models, madapted to Arden and referenced in a natural
way as objects by MLMs.

» Complex data structures, as needed, may be craatethanipulated easily. Object attributes can
contain lists or other object instances, allowingjteary depth.

A design goal, in incorporating objects into Ardesas full backward compatibility, and to introdues few
reserved words and as little new syntax as posdi@es reserved words cause a compatibility problem
because existing MLMs may use those reserved vaxdsriable names. We have only added two more
reserved words. Syntax changes are summarized:

* New reserved wordsnew, object

* New syntax (special characters): doffdr object reference, square bradgstp denote attributes in
an object declaration statement.

* New operatorsdot (.) operatorjs object, is not object, read as

A6.2 Object Details

The termobject is used in the domain model sense, rather thanpasgramming language artifact. In
Arden an object is a structured data type, whiché&hmame, and an ordered collection of attribuEash of
these attributes may refer to any valid Arden data, or be null. Each of these data items may lsave
primary time associated with it, but the objectlitsloes not have a primary time independent of its
attributes. For convenience, if all attributes onfadject share a common primary time, tinge of operator
will return that time when applied to the object.

Page 148 Health Level Seven © 2008. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

A6.3 Object Identity

Objects in Arden have an identity, which is presérwhen assigned or used as an argument to arnt@pera
added to lists or extracted from lists. Objecty@rk created when tmew statement is called (from either
the data slot or logic slot) or via thead asstatement in the data slot. An MLM may also refeeeobjects
which are passed as arguments or returned from tcatither MLMs. Object identity is not maintained
when passed as an argument to an MLM call or adioiiaterface, or returned from MLMs. That is, an
object is always copied when passed to or retufiroed an MLM (objects are passed by value to other
MLMs, not by reference).

Objects allow an MLM to create structured datarestbin a list, modify it while it still exists ithe list,
and later reference it as part of the list. WHilis tnay sound complicated, it is an important featit
allows Arden syntax to remain fairly simple whildlsallowing the easy reference and manipulatién o
query results.

/I Assume a list of order objects, with attributes including status and
/I message.
/I This MLM wants to set the message based on the s tatus.

For order_obj in order_obj_list do
if order_obj.status = "Cancel" then

order_obj.message = "This order has been cancel led.";
elseif order_obj.status = "Modify" then
order_obj.message = "This order has been modifi ed.";
elseif order_obj.status = "Suspend" then
order_obj.message = "This order has been suspen ded.";
endif;
enddo;

This code only works correctly because of objeentdy. The order_obj in the loop corresponds ® th
order referenced in the list of order objects. Withobject identity it would not be possible totd type
of manipulation on lists of items.

At this time it is not possible to determine in Ardif two variables refer to the same object. Thathe
equality operator is not defined for objects, amet¢ is no substitute method defined. This may be a
something to add in a future version.

A6.4 Objects In Expressions

If an object is passed to a standard Arden ope(atprality operator, addition, etc) which does not
explicitly define behavior with objects, the resoiltthe operation will be null. To effectively uaa object
as an argument to these standard operators, yourefieience a particular field within the objecsiflg the
dot operator) so that the resulting type is not arachj

© 2008 Health Level Seven, Inc.. All rights reserved. Page 149
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

A6.4 Creating Objects

Thenew statement can be used to create object instanitesall attributes initialized to null. Using
attribute assignment statements (Section 10.2itlispossible to set these fields explicitly afteeating
the object. Sometimes however it is preferable¢ate an MLM which acts as a constructor, to craate
object and initialize attributes to the desiredaddifvalues. Any time one of these objects needieto
created, that MLM can be called. Here is an exarmaplesing an MLM as a constructor:

Create_field_mlm := MLM ‘create_form_field’;
Form_field := Call Create_field_mlm with name, valu e, status;

/* MLM ‘create_form_field’ segment */
Data:
form_field_type :=
Object [name, value, status];
field := new form_field_type;
field.name :=argument 1;
field.value := argument 2;
field.status := argument 3;;

Evoke: /* called directly */ ;;
Logic: conclude true;;
Action: return field;;

Page 150 Health Level Seven © 2008. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

Appendices

(Nonmandatory Information)

X1 STRUCTURED WRITE STATEMENT SUGGESTED SCHEMA

X1.1 Structured Message

The <structured.message> should be parsed angreted as an XML document. This message is
distinguished from other coded messages by thielifies

<?xml version="1.0"?>
X1.2 Usage Notes

Structured messages are created by concatenaiimg Ierals and variables in the same mannettiasro
strings. This means that if double quotes (") ared used within the XML message, they must be
"escaped" by using two double quotes (). Likewf9¢ML reserved symbols (e.g., <, >) are desired
within the structured write statement, CDATA esctgleens must be placed at the beginning and end of
the element.

X1.3 Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSole' elementFormDefault="qualified">
<xs:.element name="structured.message">
<xs:complexType>
<xs:sequence>
<xs:element name="body" maxOccurs="unbounded">
<xs.complexType>
<xs:sequence>
<xs:element name="subject" type="xs:stringhOccurs="0"/>
<xs:element name="context" type="xs:stringhiOccurs="0" maxOccurs="unbounded"/>
<xs:element name="conclusion" type="xs:gftn
<xs:element name="recommendation" minOcc@smaxOccurs="unbounded">
<xs.complexType>
<xs:segquence>
<xs:element name="instruction" type="xsmg"/>
<xs:element name="choice.list" minOccués=
<xs:.complexType>
<xs:sequence>
<xs:element name="choice" maxOccurabbunded">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="id" type="xsrsy"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute name="type">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">

© 2008 Health Level Seven, Inc.. All rights reserved. Page 151
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<xs:enumeration value="at.least"/>
<xs:enumeration value="at.most"/>
<xs:enumeration value="exactly"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name="number" type="xsmg}"/>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="citation" minOccurs="0"x@acurs="unbounded">
<xs.complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="position">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="support"/>
<xs:enumeration value="refute"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="distribution.list" minOccul@>
<xs:.complexType>
<xs:sequence>
<xs:element name="distribution" maxOccurs®ounded">
<xs:.complexType>
<xs:sequence>
<xs:element name="recipient" maxOccurssbunded">
<xs.complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute name="role" type="xsargy"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="workflow" minOccurs=*0"
<xs:.complexType>
<xs:sequence>
<xs:element name="closure.select" #yge:boolean" minOccurs="0"/>
<xs:element name="forwarding.selegget="xs:boolean" minOccurs="0"/>
<xs:element name="coverage.selec&typs:boolean" minOccurs="0"/>
<xs:element name="timers.select" mia®s="0">
<xs:complexType>
<xs:sequence>
<xs:element name="timeout" maxOsetiunbounded">

Page 152 Health Level Seven © 2008. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<xs:complexType>
<xs:simpleContent>
<xs:.extension base="xs:string">
<xs:attribute name="type">
<xs:simpleType>
<xs:restriction base="xs:NMKBEN">
<xs:enumeration value="sugian.ack"/>
<xs:enumeration value="detiwack"/>
<xs.enumeration value="dégphck"/>
<xs:enumeration value="clesack"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

X1.4 Description of elements and attributes
The elements and attributes utilized in the <stmext.message> are described below:

X1.4.1 <structured.message>
This element is the root element of the XML-bastedcsured MLM output message. The element
represents all the information that can be defimgthe MLM author in the structured message. The
element contains one or more <body> sub-elemesitsywfed by an optional <distribution.list> sub-
element.

X1.4.2 <body>
This element encompasses the main textual porfitimedvVILM message output. The element contains an
optional <subject> sub-element, followed by zeronmre <context> sub-elements, followed by a
<conclusion> sub-element, followed by zero or marecommendation> sub-elements, followed by zero
or more <citation> sub-elements.

X1.4.3 <subject>
This element is the subject of the MLM message wufphe element indicates the nature of the MLM
output (e.g. "Panic Lab Result".) The element aimst character data.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 153

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X1.4.4 <context>

This element is contextual information relevantie MLM conclusion or the associated patient, idcig
previous lab results, existing allergies, etc. €ment contains character data.

X1.4.5 <conclusion>

This element is the main conclusion statementeMhM after the condition specified in the MLM lagi
slot is evaluated as true (e.g. "Glucose levelsigisficantly dropped”.) The element contains eloser
data.

X1.4.6 <recommendation>

This element encompasses the MLM author’'s recomegtnesponse to the detected condition in the
MLM logic slot. The element contains an <instruotiosub-element, followed by an optional <choicelis
sub-element.

X1.4.7 <instruction>

This element is a recommended action item possitily instruction to select one of the subsequent
options (e.g. "Select a treatment”.) The elementains character data.

X1.4.8 <choice.list>

This element encompasses the selectable optiomspjgie for the instruction. The element containe

or more <choice> sub-elements. The element haatitibutes named type and number. These attributes
allow the MLM author to indicate the nature and temof the selections of the subsequent optioncesoi
The value of the type attribute must be the stfatdeast", "at.most", or "exactly." The valuetbé

number attribute can be any string of characterslfding reserved characters "<", ">", "&"—unlebgt
XML CDATA escape notation is used); it ishoweveeigpected to be a natural number. If the attribute
values are not supplied, interpretation of thedeesis left to the discretion of the message cowesu

X1.4.9 <choice>

This element is an action option. The element dnsteharacter data. The element typically idergifie
single option (e.g. "50% dextrose intravenous"},dan also be utilized to identify an aggregatién o
options (e.g. "All of the above") or no optionsg€'None of the above".) The element has an atieib
named id. The attribute is a unique identifier gissd to the action option that can be subsequas#y to
reference a selected choice. The value of théat&ican be any string of characters (excludingries
characters "<", ">", "&"—unless XML CDATA escapetation is used). If the id value is not supplied,
interpretation of the value is left to the disapetof the message consumer.

X1.4.10 <citation>

This element is reference information for the altfpon provided in the MLM logic slot as described in
Section 6.2.4. The element contains character @a@element has an attribute named position. Bheev
of the attribute must be either the string "suppfnidicating a citation that verifies the algorithin the
logic slot) or "refute” (indicating a citation thegfutes the algorithm in the logic slot.) If thesition value
is not supplied, interpretation of the value ig tefthe discretion of the message consumer.

X1.4.11 <distribution.list>

This element consists of the MLM author prefererfoeslisseminating the message. Multiple distribusi
can be utilized concurrently, each with its ownipamnt list and distribution workflow. The element
contains one or more <distribution> sub-elements.

X1.4.12 <distribution>

This element consists of information about theefisimation of the message. The distribution incluties
message recipients and the associated workflowghatbe used in disseminating the message te thes
recipients. The element contains one or more <ietip sub-elements, followed by an optional
<workflow> sub-element.

Page 154 Health Level Seven © 2008. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X1.4.13 <recipient>

This element identifies a message recipient. Temeht contains character data. The element has an
attribute named type. The value of the attributetnbe the string "person”, "role", "group", or
"unspecified."” "Person" designates that the spgetifecipient is a person. "Group” designatesttiat
specified recipient is a group. This group mussiblesequently resolved into its individual member
persons. "Role" designates that the specified ietijis a role. This role must be subsequentlylvesioto
determine which of the persons provisioned in the is "filling" the role. "Unspecified" designatdsat
the appropriate message recipient is unknown tdMhlé author. In this case the contents of this etem
should be ignored. The dynamic nature of patientdgler relationships and coverage schedules incakdi
institutions may prevent the MLM author from spgitify the recipient. "Unspecified" indicates thag th
appropriate recipient will be subsequently ideatifby an external system with knowledge of appederi
patient coverage. In the absence of a value forye attribute the default value of "person” isdis

X1.4.14 <workflow>

This element consists of the MLM author specifieatkfiow to be employed in delivering the message to
the recipients of the distribution, including therious acknowledgment timers associated with the
distribution. The element contains an optional sgle.select> sub-element, followed by an optional
<forwarding.select> sub-element, followed by ani@pdl <coverage.select> sub-element, followed by an
optional <timers.select> sub-element.

X1.4.15 <closure.select>

Closure is the indication of completion of the witolv by the recipient(s) associated with the messag
delivery. This element does not contain anythirgyéver the element has an attribute named required.
The attribute specifies that the MLM author regsiicosure for all deliveries originating from this
distribution. The value of the attribute must kthei the string "true" or "false." In the absen€a value
for the required attribute the default value ofitt is used.

X1.4.16 <forwarding.select>

Forwarding is the redirection of a message delitergnother recipient. This element does not cantai
anything, however the element has an attribute daemebled. The attribute specifies that the MLMhaut
allows deliveries originating from this distributido be forwarded to other recipients. The valuthef
attribute must be either the string "true” or "&alsIn the absence of a value for the enableatt the
default value of "true" is used.

X1.4.17 <coverage.select>

Coverage indicates that a message will be deliviereah alternate recipient if the specified disttibn
recipient is not available. This element does mottain anything, however the element has an at&ibu
named enabled. The attribute specifies that the MiLthor requires alternate recipients be identifi¢ide
distribution recipients are unavailable. The vadfihe attribute must be either the string "true"false."
In the absence of a value for the enabled attrithe@elefault value of "true" is used.

X1.4.18 <timers.select>

This element specifies the timeout values utilimethe management of the delivery process. Theaiém
contains one or more <timeout> sub-elements.

X1.4.19 <timeout>

This element is the time utilized as a timeoutdoraspect of the delivery process. The elemenaomnt
character data. The element has an attribute ngypedThe attribute indicates the timeout type. Valele
of the attribute must be the string "submission.dakknowledgement of message submission from the
delivery network), "delivery.ack" (acknowledgemefimessage delivery from the delivery device),
"display.ack" (acknowledgement of message predentfiom the delivery device) or "closure.ack"
(acknowledgement of workflow completion.) If thgé value is not supplied, interpretation of thkigds
left to the discretion of the message consumer.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 155
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X1.5 Example

<?xml version="1.0"?>
<IDOCTYPE structured.message SYSTEM " StructuredMes
<structured.message>
<body>
<subject>Critical Lab Result</subject>
<context>Mary Smith had a blood sugar of 120 two

<conclusion>Mary Smith's blood sugar is critical
</conclusion>

<citation>See Pharmacy and Therapeutics committee
abnormal lab studies.</citation>

</body>
<distribution.list>
<distribution>
<recipient role="personal physician">Dr. John Jo
<workflow>
<closure.select required="true"/>
<forwarding.select enabled="true"/>
<coverage.select enabled="false"/>
<timers.select>
<timeout type="closure.ack"/>
</timers.select>
</workflow>
</distribution>
</distribution.list>
</structured.message>

sage.dtd">

weeks ago.</context>
at 435 mg/dl.

standard criteria for

nes</recipient>

Page 156 Health Level Seven © 2008. All rights reserved.

Revision date: 2008-05-06

Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X2 XML SCHEMA FOR MLMS

The following sections detail a sample schemartet be used to represent MLMs in XML. Later vensid
Arden Syntax may include alternate, non-textuatesentations of medical logic modules as part ef th
normative standard. This informative appendixsiiiates one possible coded form.

The XML schema included in this appendix represarttgh-level decomposition of a textual MLM intd/X
elements that the Arden Syntax SIG could justifpaimg useful for MLM management functions such as
indexing, searching, and retrieval of specific MLIMsm a knowledge base library in XML-centric infioation
systems or databases.. Although some Arden SBiGmembers argued for greater detail, the consenfsu
the SIG was that additional decomposition couldb®justified within the scope of the current Ardgymtax.

X2.1 Graphic Representation of Schema

" Institution
—E

e m | T T s 1‘:7 ot
File Containing one o more 1. = 0.0
MLMz
—facion
L-urgency |
Figure X2.1 Graphic Representation of XML Schemadr Arden Syntax MLMs
© 2008 Health Level Seven, Inc.. All rights reserved. Page 157

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X2.2 Textual Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSole' elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:complexType name="Citation">
<xs:sequence>
<xs:element name="Citation_Number" type="xs:pesInteger" minOccurs="0"/>
<xs:element name="Citation_Type" minOccurs="0">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:enumeration value="support"/>
<xs:enumeration value="refute"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Citation_Text" type="xs:stlirg
</xs:sequence>
</xs:complexType>
<xs:complexType name="Link">
<xs:sequence>
<xs:element name="Link_Type" type="xs:string'n®@iccurs="0"/>
<xs:element name="Link_Description" type="xdgrggt' minOccurs="0"/>
<xs:element name="Link_Text" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:element name="Arden_MLM_File">
<xs:annotation>
<xs:documentation>File Containing one or moreNi4k/xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="MLM" maxOccurs="unbounded">
<xs:complexType>
<xs:seguence>
<xs:element name="Maintenance">
<xs:.complexType>
<xs:seguence>
<xs:element name="Title">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:whiteSpace value="preserve"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="MLMName">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:minLength value="1"/>
<xs:maxLength value="80"/>
<xs:whiteSpace value="collapse"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Arden_Version">
<xs:simpleType>

Page 158 Health Level Seven © 2008. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<xs:restriction base="xs:string">

<xs:enumeration value="Version 2.0"/>
<xs:enumeration value="Version 2.1"/>
<xs:enumeration value="Version 2.5"/>

</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Version">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:maxLength value="80"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Institution">
<xs:simpleType>
<xs:restriction base="xs:string">
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Author">
<xs:.complexType>
<xs:sequence>

<xs:element name="Person" type="PerguexOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="Specialist" type="Petbo

<xs:element name="Date">
<xs:simpleType>

<xs:union memberTypes="xs:dateTime aetd>

</xs:simpleType>
</xs:element>
<xs:element name="Validation">
<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="Production"/>
<xs:.enumeration value="Research"/>

<xs:enumeration value="Testing"/>
<xs:enumeration value="Expired"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Library">
<xs:.complexType>
<xs:seguence>
<xs:element name="Purpose">
<xs:simpleType>
<xs:restriction base="xs:string">
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Explanation">

© 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06

Page 159
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<xs:simpleType>
<xs:restriction base="xs:string">
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Keywords">
<xs.complexType>
<xs:sequence>
<xs:element name="Keyword" type="xs$rg}" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Citations" minOccur$="0
<xs:.complexType>
<xs:sequence>
<xs:element name="Citation" type="@aa" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Links" minOccurs="0">
<xs:.complexType>
<xs:sequence>
<xs:element name="Link" type="Link" m@ccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="Knowledge">
<xs:.complexType>
<xs:seguence>
<xs:element name="Type">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value=""/>
<xs:enumeration value="data-driven"/>
<xs:enumeration value="data_driven"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Data" type="xs:strirg"/
<xs:element name="Priority" default="58fnOccurs="0">
<xs:simpleType>
<xs:restriction base="xs:decimal">
<xs:mininclusive value="0"/>
<xs:maxlInclusive value="99"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Evoke" type="xs:strirg"
<xs:element name="Logic" type="xs:strifg"
<xs:element name="Action" type="xs:sttitxg
<xs:element name="Urgency" default="50h@ccurs="0">
<xs:simpleType>
<xs:restriction base="xs:decimal">

Page 160 Health Level Seven © 2008. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

<xs:mininclusive value="0"/>
<xs:maxinclusive value="99"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:.complexType nhame="Person">

<xs:annotation>
<xs:documentation>Name and degree of the perthroptional email address -- Use / derive froanstard RIM

-derived XML schema for person. Must include e{radiress.</xs:documentation>

</xs:annotation>
</xs:complexType>
</xs:schema>

X2.3 Description of Elements

X2.3.1 elemenfrden_MLM_File
children MLM

annotation documentation File Containing one or more MLMs

The <Arden_MLM_File> element is the root elemefhe <Arden_MLM_File> element may
contain one or more of element <MLM>, each of whigbuld be a specific Arden MLM

X2.3.2 elemenfArden_MLM_File/MLM

children MaintenanceLibrary Knowledge
Each <MLM> element would contain a single sequasfalements namely one <Maintenance>
containing elements describing slots in maintenaategory, one <Library> containing elements
describing slots in the library category, and oKeewledge> containing elements describing
slots in the Knowledge category of the MLM.

X2.3.2.1 elemerkrden_MLM_File/MLM/Maintenance

children Title MLMName Arden Version Version Institution Author SpecialistDate Validation
The <Maintenance> element contains a definite sarpief elements defining the sequence
of slots of Maintenance category of an Arden MLWhe <Maintenance> element contains a
definite sequence of elements as described inghieits below.

Page 161
Print date: 3/11/2011

© 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06

Arden Syntax for Medical Logic Systems

X2.3.2.1.1 elememrden_MLM_File/MLM/Maintenance/Title
type restriction oks:string

facets whiteSpace preserve

pattern

The <Title> element corresponds to the Title sfairo Arden MLM and describes the title of the
MLM. <Title> is a required element. CDATA tags yneeed to be placed around the text within
the Title element if XML-reserved symbols (e.g>)are used within the text.

X2.3.2.2.2elementirden_MLM_File/MLM/Maintenance/MLMName

type restriction oks:string

facets minLength 1
maxLength 80
whiteSpace collapse

pattern

The <MLMName> is an element corresponding to MLMMNeasiot of an Arden MLM. It contains
the Name of the MLM and has similar characteristieslefined for a MLMName slot, i.e. length
between 1 and 80 characters and without any whees. <MLMName> is a required element.

X2.3.2.2.3 elememirden_MLM_File/MLM/Maintenance/Arden_Version

type restriction oks:string
facets pattern
enumeration Version 2.0
enumeration Version 2.1

enumeration Version 2.5

The <Arden_Version> element corresponds to theeéArdersion’ slot of an Arden MLM.

<Arden_Version> gives the version of Arden Syntéan8ard in which that particular MLM is
written. <Arden_Version> is a required element.

X2.3.2.2.4 elememrden_MLM_File/MLM/Maintenance/Version
type restriction oks:string

facets maxLength 80

pattern

The <Version> element corresponds to the ‘Versgbot of an Arden MLM. <Version> element tells
the version of the particular Arden MLM. It is gested that version should start at 1.0, incredsing
0.1 for minor revision and by 1.0 for major revisio<Version> is a required element.

Page 162
Revision date: 2008-05-06

Health Level Seven © 2008. All rights reserved.
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X2.3.2.2.5 elememirden_MLM_File/MLM/Maintenance/Institution

type restriction oks:string
facets pattern

The <Institution> element corresponds to ‘Institatislot of an Arden MLM. <Institution>
contains name of the institution in which the MLMKGeing used. <Institution> is a required
element.

X2.3.2.2.6 elemerden_MLM_File/MLM/Maintenance/Author

children Person
The <Author> element corresponds to ‘Author’ slbain Arden MLM. <Author> contains one or
more <Person> elements that enumerate the nanfefs BILM authors. <Author> is a required
element.
X2.3.2.2.6.1 elemerirden_MLM_File/MLM/Maintenance/Author/Person

type Person

The <Person> element contains the name of one Mlifiloa. <Person> is a required element.
X2.3.2.2.7 eleme{rden_MLM_File/MLM/Maintenance/Specialist

type Person

The <Specialist> element corresponds to ‘Specialist of an Arden MLM. <Specialist>
contains information about the person responsiienaintenance and implementation of the
Arden MLM in a particular element. <Specialist=aisequired element

X2.3.2.2.8 elemertrden_MLM_File/MLM/Maintenance/Date

type union of Xs:dateTime xs:date)

The <Date> element corresponds to ‘Date’ slot ofesen MLM. <Date> contains the date on
which the MLM was last modified. <Date> is a regqd element

X2.3.2.2.9 elememtrden_MLM_File/MLM/Maintenance/Validation

type restriction oks:string

facets pattern

enumeration Production
enumeration Research
enumeration Testing

enumeration Expired

The <Validation> element corresponds to ‘Validatislot of an Arden MLM. <Validation>
contains the string indicating validation statushaf Arden MLM. <Validation> is a required
element.

X2.3.3.3elemenfrden_MLM_File/MLM/Library

children PurposeExplanation Keywords Citations Links

The <Library> element corresponds to the <Librargitegory of an Arden MLM. <Library>
contains elements pertaining to slots in a libtegory in a particular sequence as described in
the contents below. <Library> is a required eletnen

© 2008 Health Level Seven, Inc.. All rights reserved. Page 163
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X2.3.3.3.1 elemerden_MLM_File/MLM/Library/Purpose

type restriction oks:string

facets pattern

The <Purpose> element corresponds to the ‘Purmbsiedf an Arden MLM. <Purpose> contains
information as to the purpose of the Arden MLM. ugsbse> is a required element.

X2.3.3.3.2 elemertrden_MLM_File/MLM/Library/Explanation
type restriction oks:string

facets pattern

The <Explanation> element corresponds to the ‘Exgtian’ slot of an Arden MLM.
<Explanation> contains the explanation as to tigeclof the Arden MLM. The explanation can
be used to show user as to why the MLM came tcceside. <Explanation> is a required
element.

X2.3.3.3.3 eleme{rden_MLM_File/MLM/Library/Keywords

Children Keyword

The <Keywords> element corresponds to the ‘Keywaslig of an Arden MLM. <Keywords>
contains zero or more <Keyword> elements each septang a single keyword. <Keywords> is a
required element.

X2.3.3.3.3.1 elementArden_MLM_File/MLM/Library/Keywords/Keyword

Type xs:string

Each <Keyword> element corresponds to one of tiyevéeds from the semi-colon delimited list
in a textual MLM.

X2.3.3.3.4 elemerden_MLM_File/MLM/Library/Citations

children Citation

The <Citations> element corresponds to the ‘Citatislot of an Arden MLM. <Citations>
contains zero or more <Citation> elements. <GQitegk is an optional element.
X2.3.3.3.4.1 elemerArden_MLM_File/MLM/Library/Citations/Citation
type Citation

children Citation Number Citation Type Citation Text

Each <Citation> element contains the informatioscti®ing a single citation to the literature.
The Citation complex type is described below.

X2.3.3.3.5 elemerden_MLM_File/MLM/Library/Links

children Link

The <Links> element corresponds to the ‘Links’ gibban Arden MLM. <Links> contains zero or
more <Link> elements. <Links> is an optional etgm

Page 164 Health Level Seven © 2008. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X2.3.3.3.5.1 elemerArden_MLM_File/MLM/Library/Links/Link
type Link

children Link Type Link Description Link Text

The <Link> element contains an individual link. eThink complex type is described below.

X2.3.3.4 elemenmirden_MLM_File/MLM/Knowledge

children Type Data Priority Evoke Logic Action Urgency

The <Knowledge> element corresponds to the ‘Knogéeglot of an Arden MLM. The
<Knowledge> element contains a sequence of elengentssponding to the slots in Knowledge
category, as described in the contents below. wHeunge> is a required element.

X2.3.3.4.1 elemerden_MLM_File/MLM/Knowledge/Type

Type restriction oks:string

Facets pattern

enumeration data-driven

enumeration data_driven

The <Type> element corresponds to the ‘Type’ st@rmArden MLM. The <Type> element
contains the type indicating the type of Arden MLKurrently, only one type is defined, i.e.
data-driven or data_driven. <Type> is a requirlethent.

X2.3.3.4.2 elemetrden_MLM_File/MLM/Knowledge/Data
Type xs:string

The <Data> element corresponds to the ‘Data’ dlaincArden MLM. The <Data> element
contains the data variables used in the Arden Miol their mapping to the local database of the
institution. <Data> is a required element. CDA®4s should be placed around the text in this
element to avoid problems with XML reserved chaex{e.g. <, >) occurring within the text.

X2.3.3.4.3 eleme{rden_MLM_File/MLM/Knowledge/Priority

Type restriction oks:decimal

Facets mininclusive 0

maxinclusive 99

The <Priority> element corresponds to the ‘Prioript of an Arden MLM. The <Priority>
element contains a number between 0 to 99 indigdltia priority of execution of the MLM with O
indicating least priority and 99 indicating highesibrity. The priority is to be used when more
than one MLM is fired by a particular event. <Pityr is an optional element.

X2.3.3.4.4 elemetrden_MLM_File/MLM/Knowledge/Evoke
Type xs:string

The <Evoke> element corresponds to the ‘Evoke’ sla@n Arden MLM. The <Evoke> element
specifies the condition under which the MLM woulel éwvoked or called. Evoke is a required
element. CDATA tags should be placed around tkieinethis element to avoid problems with
XML reserved characters (e.g. <, >) occurring wittiie text.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 165
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X2.3.3.4.5 elemerden_MLM_File/MLM/Knowledge/Logic
Type xs:string

The <Logic> element corresponds to the ‘Logic’ elbain Arden MLM. The <Logic> element
contains main decision making logic of the ArdenNMiwritten using Arden Syntax. It can
conclude true or false only. <Logic> is a requiedeiment. CDATA tags should be placed around

the text in this element to avoid problems with Xkiserved characters (e.g. <, >) occurring
within the text.

X2.3.3.4.6 elemerden_MLM_File/MLM/Knowledge/Action
Type xs:string

The <Action> element corresponds to the ‘Actiomtsif an Arden MLM. The <Action> element
specifies the action to be taken if the Logic cadek true. <Action> is a required element. CDATA
tags should be placed around the text in this eitteeavoid problems with XML reserved characters
(e.g. <, >) occurring within the text.

X2.3.3.4.7 elemetrden_MLM_File/MLM/Knowledge/Urgency

Type restriction oks:decimal

Facets mininclusive 0

maxinclusive 99

The <Urgency> element corresponds to the ‘Urgeslt of an Arden MLM. The <Urgency>
element contains the number indicating the urgefi@xecution of action of the MLM. The number
can be between 0 (least urgent) to 99 (highest legent). <Urgency> should be used to decide the
order of execution of various actions when more thiae MLMs, are executed at the same time.
<Urgency> is an optional element.

X2.4 Defined Complex Types

X2.4.1 complexTyp&€itation

[T —
Citation_Text

enum |

Children Citation Number Citation Type Citation Text

used by element Arden MLM_File/MLM/Library/Citations/Citation

The Citation complexType represents the individu@tions as described in 6.2.4

X2.4.1.1 elemenCitation/Citation_Number

Type xs:positivelnteger

Page 166
Revision date: 2008-05-06

Health Level Seven © 2008. All rights reserved.
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X2.4.1.2 elemenCitation/Citation_Type

Type restriction oks:string

Facets enumeration support

enumeration refute

X2.4.1.3 elemenCitation/Citation_Text

Type xs:string

X2.4.2 complexTypéink

Link [-]

Link_Text

Children Link Type Link Description Link Text

used by element Arden MLM_File/MLM/Library/Links/Link

The Link complexType represents the individual $irdls described in 6.2.5

X2.4.2.1 elementtink/Link_Type

Type xs:string

X2.4.2.2 elementtink/Link_Description

Type xs:string

X2.4.2.3 elementtink/Link_Text

Type xs:string

X2.4.3 complexTypéerson

used by elements Arden MLM File/MLM/Maintenance/Author/Person Arden MLM File/MLM/Maintenance/Specialist

Annotation documentation Name and degree of the person with optional endalitess -- Use / derive from standard RIM -derivédLX
schema for person. Must include e-mail address.

The Person complex type is a stub definition toXML ITS representation of the
Entity>LivingSubject>Person class from the HL7 VB/R

© 2008 Health Level Seven, Inc.. All rights reserved. Page 167
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X2.5 Example MLM

<Arden_MLM_File xmins:xsi="http://www.w3.0rg/2001/X
xsi:noNamespaceSchemalocation="Arden Syntax 2.5 Sch
<MLM>
<Maintenance>
<Title>Dosing for gentamicin in renal failure
<MLMName>gentamicin_dosing</MLMName>
<Arden_Version>Version 2.5</Arden_Version>
<Version>1.0</Version>
<Institution>Columbia-Presbyterian Medical Ce
<Author>
<Person>
<Entity.Attrs>
<name>
</delimiter>
<family>Hripcsak</family>
<given>George</given>
<prefix/>
<suffix/>
</name>
<telecom value="mailto:george.hripcsak@
</Entity.Attrs>
<Person.Attrs>
<educationLevelCode>MD</educationLevelC
</Person.Attrs>
</Person>
</Author>
<Specialist/>
<Date>1991-03-18</Date>
<Validation>Testing</Validation>
</Maintenance>
<Library>
<Purpose>
Suggest an appropriate gentamicin dose in t
insufficiency. (This MLM demonstrates a man
</Purpose>
<Explanation>
Patients with renal insufficiency require t
gentamicin as those with normal renal funct
daily dose. The creatinine clearance is cal
age, and weight. If it is less than 30 ml/m
calculated based on the clearance. If the o
calculated dose by more than 20 %, then an
</Explanation>
<Keywords>
<Keyword>gentamicin</Keyword>
<Keyword>dosing</Keyword>
</Keywords>
</Library>
<Knowledge>
<Type>data-driven</Type>
<Data>
<I[CDATA[
/* an order for gentamicin evokes this MLM
gentamicin_order := event {medication_order
/* gentamicin doses */
(loading_dose,periodic_dose,periodic_interva
{medication_order initial dose, periodic d
/* serum creatinine mg/dl */
serum_creatinine := read last {serum_creatin
where it occurred within the past 1 week ;

MLSchema-instance"
ema 20040804.xsd">

<[Title>

nter</Institution>

columbia.edu"”

ode>

he setting of renal
agement suggestion.)

he same loading dose of

ion, but they require a reduced
culated by serum creatinine,
in, then an appropriate dose is
rdered dose differs from the
alert is generated.

*/
where class = gentamicin} ;

I) :=read last
ose, interval} ;

ine}

Page 168
Revision date: 2008-05-06

Health Level Seven © 2008. All rights reserved.
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

/* birthdate */
birthdate := read last {birthdate} ;
/* weight kg */

weight := read last {weight} where it occurr ed within the past 3 months ;
1>
</Data>
<Priority>50</Priority>
<Evoke>gentamicin_order;</Evoke>
<Logic>
<I[CDATA[
age := (now - birthdate)/1 year ;
creatinine_clearance := (140 - age) * (wei ght)/ (72 * serum_creatinine) ;
/* the algorithm can be adjusted to handle higher clearances */

if creatinine_clearance < 30 then
calc_loading_dose := 1.7 * weight ;

calc_daily_dose := 3 * (0.05 + creatinine _clearance / 100) ;
ordered_daily_dose := periodic_dose * p eriodic_interval/(1 day) ;
/* check whether order is appropriate */
if (abs(loading_dose - calc_loading_dose) /calc_loading_dose > 0.2)
or
(abs(ordered_daily_dose - calc_daily_d ose)/calc_daily_dose > 0.2)then
conclude true ;
endif ;
endif ;
1>
</Logic>
<Action>
<I[CDATA[
write "Due to renal insufficiency, the dos e of gentamicin " ||
"should be adjusted. The patient's ¢ alculated " ||
"creatinine clearance is " || creati nine_clearance ||
" ml/min. A single loading dose of "
calc_loading_dose || " mg should be given, followed by " ||
calc_daily_dose || " mg daily. Note that dialysis may " ||
"necessitate additional loading dose s."
11>
</Action>
<Urgency>50</Urgency>
</Knowledge>
</MLM>

</Arden_MLM_File>

© 2008 Health Level Seven, Inc.. All rights reserved. Page 169
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X3 LANGUAGE AND COUNTRY CODES FOR HL7 INTERNATIONAL
AFFILIATE COUNTRIES

X3.1

This appendix lists language and country codesefisatl by ISO 639.1 and ISO 3166 for countries with
HL7 Affiliates. Languages and country codes araraged in alphabetic order by their English-languag
name. For additional language and country codasutbthe appropriate 1ISO language / country regist
via ISO (www.iso.ch).

X3.2 Language codes

Language Code Language Code
Assamese as Kannada kn
Basque eu Kashmiri ks
Bengali bn Korean ko
Catalan; Valencian ca Kurdish ku
Chinese zh Malayalam ml
Croatian hr Maori mi
Czech cs Marathi mr
Danish da Oriya or
Dutch; Flemish nl Portuguese pt
English en Punjabi; Panjabi pa
Faroese fo Russian ru
Finnish fi Sanskrit sa
French fr Sindhi sd
Gaelic; Scottish Gaelic gd Slovak sk
Galician gl Slovenian sl
German de Spanish; Castilian es
Greek, Modern (1453-) el Swedish sv
Greenlandic; Kalaallisut ki Tamil ta
Guijarati gu Telugu te
Hindi hi Turkish tr
Irish ga Urdu ur
Italian it Welsh cy
Japanese ja

X3.3 Country codes

Country Code Country Code
Argentina Ar Italy It
Australia Au Korea, Republic Of Kr
Brazil Br Mexico Mx
China Cn Netherlands NI
Croatia (Local Name: Hrvatska) Hr New Zealand Nz
Czech Republic Cz Spain Es
Denmark Dk Sweden Se
Finland Fi Switzerland Ch
France Fr Taiwan Tw
Germany De Turkey Tr
Greece Gr United Kingdom Gb
India In United States Us
Ireland le

Page 170 Health Level Seven © 2008. All rights reserved.

Revision date: 2008-05-06

Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X4 SAMPLE MLMS

The following are sample MLMs to be used only tondestrate the syntax. They have not been testedthay
have not been used in clinical care.

X4.1 Data Interpretation MLM

maintenance:

title: Fractional excretion of sodium;;

mimname: fractional_na;;

arden: Version 2;;

version: 1.00;;

institution: Columbia-Presbyterian Medical Center;
author:George Hripcsak, M.D.

(hripcsak@cucis.cis.columbia.edu);;

specialist: ;;
date: 1991-03-13;;
validation: testing;;

library:

purpose:

Calculate the fractional excretion of sodium when
electrolytes are stored. (This MLM demonstrates d
interpretation across independent laboratory resu

explanation:

The fractional excretion of sodium is calculated
sodium and creatinine and the most recent serum s
creatinine (where they occurred within the past 2
value less than 1.0 % is considered low.;;

keywords: fractional excretion; serum sodium; azot

citations:

knowledge:

1. Steiner RW. Interpreting the fractional excret
Am J Med 1984;77:699-702.;;

type: data-driven;;

data:

evoke:

logic:

let (urine_na, urine_creat) be read last

({urine electrolytes where evoking}

where they occurred within the past 24 hours) ;
let (serum_na, serum_creat) be read last

({serum electrolytes where they are not null}

where they occurred within the past 24 hours) ;
let urine_electrolyte_storage be event

{storage of urine electrolytes}

urine_electrolyte_storage;;

[* calculate fractional excretion of sodium */

let fractional_na be 100 * (urine_na / urine_crea
(serum_na / serum_creat) ;

[* if the frational Na is invalid (e.g., if the *

[* urine or serum sample is QNS) then stop here *

if fractional_na is null then

conclude false ;

endif ;

/* check whether the fractional Na is low */

let low_fractional_na be fractional_na <1.0;

/* send the message */

conclude true ;

emia;;

ever urine
ata
Its.);;

from the urine
odium and
4 hours). A

ion of sodium.

1/

© 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06

Page 171
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

action:

if low_fractional_na then

write

else
write

endif;

end:

"The calculated fractional excretion of so

|| fractional_na ||). If the patient is az

"this number may indicate: volume depletion,
"hepatic failure, congestive heart failure, a
"glomerulonephritis, oliguric myoglobinuric o
"hemoglobinuric renal failure, oliguric contr
"nephrotoxicity, polyuric renal failure with
"burns, renal transplant rejection, 10 % of ¢
"with non-oliguric acute tubular necrosis, an
"several other forms of renal injury.";

"The calculated fractional excretion of so

"not low (" || fractional_na ||). If the pa

'is azotemic, this may indicate: acute renal
"‘parenchymal injury, volume depletion coexist
"with diurectic use or pre-existing chronic r
"disease, and up to 10 % of cases of uncompli
'volume depletion.";

dium is low ("

otemic, " ||
cute " ||

b

ast"” ||
severe " ||
ases " ||

da |l

diumis " ||

tient" ||
ing " ||
enal " ||
cated " ||

Page 172
Revision date: 2008-05-06

Health Level Seven © 2008. All rights reserved.

Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X4.2 Research Study Screening MLM

maintenance:

title: Screen for hypercalcemia for Dr. B.'s study
mimname: hypercalcemia_for_b;;

arden: Version 2;;

version: 2.02;;

institution: Columbia-Presbyterian Medical Center;
author: George Hripcsak, M.D.;;

specialist: ;;

date: 1990-12-04;;

validation: research;;

library:

purpose:

Screen for hypercalcemia for Dr. B.'s study. (Thi
screening patients for clinical trials.);;

explanation:

The storage of a serum calcium value evokes this
albumin is available from the same blood sample a
then the corrected calcium is calculated, and pat
or corrected calcium greater than or equal 11.5 a
such a serum albumin is not available, then patie
calcium greater than or equal 11.0 are accepted.
serum creatinine greater than 6.0 are excluded fr

keywords: hypercalcemia;;
citations: ;;

knowledge:

type: data-driven;;

data:

evoke:

/* the storage of a calcium value evokes this MLM

storage_of_calcium := event {{06210519’,'06210669

/* total calcium in mg/dL */

calcium := read last {{06210519’,'06210669’;'"CALC

[* albumin in g/dL */

evoking_albumin := read last {{06210669’;’ ALBUMIN

/* albumin in g/dL; not necessarily from same tes

last_albumin := read last ({106210669'; ALBUMIN’}
where it occurred within the past 2 weeks) ;

[* creatinine in mg/dL; not necessarily from same

creatinine := read last ({'06210669’,'06210545’,’

where it occurred within the past 2 weeks) ;

storage_of_calcium;;

s MLM demonstrates

MLM. If a serum
s the calcium,
ients with actual
re accepted; if
nts with actual
Patients with
om the study.;;

*/

i

UM%} ;

" where evoking} ;
tas Ca*/

testas Ca */

06000545’;'CREAT'}

© 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06

Page 173
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

logic:

/* make sure the Ca is present (vs. hemolyzed, ..)
IF calcium is not present THEN
conclude false ;

ENDIF ;

[* if creatinine is present and greater than 6, t hen stop now */
IF creatinine is present THEN
IF creatinine is greater than 6.0 THEN

conclude false ;

ENDIF ;

ENDIF ;

/* is an albumin present for the same sample as t he calcium */
IF evoking_albumin is present THEN
/* calculate the corrected calcium */

IF evoking_albumin is less than 4.0 THEN

corrected_calcium := calcium + (4.0-evoking_alb umin)*0.8 ;

ELSE

[* corrected is never less than actual */
corrected_calcium := calcium ;

ENDIF ;

/* test for total or corrected calcium >= 11.5 * /

IF calcium >= 11.5 OR corrected_calcium >= 11.5 THEN
message := "calcium =" || calcium ||

"on " || time of calcium ||
" (corrected calcium =" ||
corrected_calcium ||)" ;
message := message|["; albumin = "|levoking_alb umin ;
IF creatinine is present THEN
message := message||
", last creatinine = "||creatinine ;
message := message||
"; (total or corrected calcium " ||
"was at least 11.5)" ;
conclude true ;
ELSE
conclude false ;
ENDIF ;

ENDIF
/* no evoking albumin was present */

ELSE

/* check for true calcium >= 11.0 */
IF calcium >=11.0 THEN

message := "calcium = "||calcium||" on "||time of calcium ;
IF last_albumin is present THEN
message := message||"; last albumin "||
"(not from same blood sample as calcium) =" Il
last_albumin ;
IF creatinine is present THEN
message := message|| "; last creatinine ="
||creatinine ;
message := message||
", (total calcium was at least 11.0; "|
"corrected calcium was not calculated)" ;
conclude true ;
ELSE
conclude false ;
ENDIF ;

ENDIF ;

ENDIF ;

ENDIF ;

”

action: write "hypercalcemia study: " || message;;

urgency: 50;;
end:

Page 174
Revision date: 2008-05-06

Health Level Seven © 2008. All rights reserved.
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X4.3 Contraindication Alert MLM

maintenance:
title: Check for penicillin allergy;;
mimname: pen_allergy;;
arden: ASTM-E1460-1995;;
version: 1.00;;
institution: Columbia-Presbyterian Medical Center;
author: George Hripcsak, M.D.;;
specialist: ;;
date: 1991-03-18;;
validation: testing;;

library:
purpose:
When a penicillin is prescribed, check for an all ergy. (This MLM
demonstrates checking for contraindications.);;
explanation:
This MLM is evoked when a penicillin medication i s ordered. An
alert is generated because the patient has an all ergy to penicillin
recorded.;;
keywords: penicillin; allergy;;
citations: ;;
knowledge:
type: data-driven;;
data:
/* an order for a penicillin evokes this MLM */
penicillin_order := event {medication_order where
class = penicillin};
/* find allergies */
penicillin_allergy := read last {allergy where
agent_class = penicillin};
evoke:
penicillin_order;;
logic:
if exist(penicillin_allergy)then
conclude true;
endif;
action:
write "Caution, the patient has the following all ergy to penicillin documented:"
|| penicillin_allergy;;
urgency: 50;;
end:
© 2008 Health Level Seven, Inc.. All rights reserved. Page 175

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X4.4 Management Suggestion MLM
maintenance:
title: Dosing for gentamicin in renal failure;;
mimname: gentamicin_dosing;;
arden: Version 2.1;;
version: 1.00;;
institution: Columbia-Presbyterian Medical Center;
author: George Hripcsak, M.D.;;
specialist: ;;

date:

1991-03-18;;

validation: testing;;

library:

purpose:

Suggest an appropriate gentamicin dose in the set
insufficiency. (This MLM demonstrates a managemen

explanation:

Patients with renal insufficiency require the sam
gentamicin as those with normal renal function, b
reduced daily dose. The creatinine clearance is ¢
creatinine, age, and weight. If it is less than 3
appropriate dose is calculated based on the clear
ordered dose differs from the calculated dose by
then an alert is generated.;;

keywords: gentamicin; dosing;;
citations: ;;

knowledge:
type: data-driven;;

data:

/* an order for gentamicin evokes this MLM */
gentamicin_order := event {medication_order where
class = gentamicin} ;

[* gentamicin doses */

(loading_dose,periodic_dose,periodic_interval) :=
read last {medication_order initial dose,

periodic dose, interval} ;

[* serum creatinine mg/dl */

serum_creatinine := read last ({serum_creatinine}
where it occurred within the past 1 week) ;

/* birthdate */

birthdate := read last {birthdate} ;

[* weight kg */

weight := read last ({weight}
where it occurred within the past 3 months) ;

evoke:

gentamicin_order;;

logic:

age := (now - birthdate)/1 year ;
creatinine_clearance := (140 - age) * (weight)/
(72 * serum_creatinine) ;
[* the algorithm can be adjusted to handle higher
if creatinine_clearance < 30 then
calc_loading_dose := 1.7 * weight ;
calc_daily_dose := 3 * (0.05 + creatinine_cleara
ordered_daily_dose := periodic_dose *
periodic_interval/(1 day) ;
/* check whether order is appropriate */
if (abs(loading_dose - calc_loading_dose)/
calc_loading_dose > 0.2)
or
(abs(ordered_daily_dose - calc_daily_dose)/
calc_daily_dose > 0.2)then
conclude true ;
endif ;
endif ;

ting of renal
t suggestion.);;

e loading dose of
ut they require a
alculated by serum
0 ml/min, then an
ance. If the

more than 20 %,

clearances */

nce / 100) ;

Page 176
Revision date:

2008-05-06

Health Level Seven © 2008. All rights reserved.
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

action:

write "Due to renal insufficiency, the dose of ge

urgency: 50;;
end:

"should be adjusted. The patient's calculated "
"creatinine clearance is " || creatinine_cleara

" ml/min. A single loading dose of " ||
calc_loading_dose || " mg should be given, foll
calc_daily_dose || " mg daily. Note that dialys
"necessitate additional loading doses."

ntamicin " ||
nce ||

owed by " ||
ismay " ||

© 2008 Health Level Seven, Inc.. All rights reserved.

Revision date: 2008-05-06

Page 177
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X4.5 Monitoring MLM

maintenance:
title: Monitor renal function while taking gentami
mimname: gentamicin_monitoring;;
arden: Version 2;;
version: 1.00;;
institution: Columbia-Presbyterian Medical Center;
author: George Hripcsak, M.D.;;
specialist: ;;
date: 1991-03-19;;
validation: testing;;
library:
purpose:

Monitor the patient's renal function when the pat
gentamicin. (This MLM demonstrates periodic monit

explanation:
This MLM runs every five days after the patient i
gentamicin until the medication is stopped. If th
has not been checked recently, then an alert is g
requesting follow-up. If the serum creatinine has
greater than 2.0, and has risen by more than 20 %
generated warning that the patient may be develop
insufficiency due to gentamicin.;;
keywords: gentamicin; renal function;;
citations: ;;
knowledge:
type: data-driven;;
data:
/* an order for gentamicin evokes this MLM */
gentamicin_order := event {medication_order where
class = gentamicin};
/* check whether gentamicin has been discontinued
gentamicin_discontinued :=
read exist({medication_cancellation where class
where it occurs after eventtime);
/* baseline serum creatinine mg/dl */
baseline_creatinine := read last ({serum_creatini
where it occurred before eventtime);
[* followup serum creatinine mg/dl */
recent_creatinine := read last ({serum_creatinine
where it occurred within the past 3 days);
evoke:
every 5 days for 10 years starting 5 days after t
gentamicin_order until gentamicin_discontinued;;
logic:
if recent_creatinine is not present then
no_recent_creatinine := true;
conclude true;
else
no_recent_creatinine := false;
if % increase of (serum_creatinine,
recent_creatinine) > 20 /* % */
and recent_creatinine > 2.0 then
conclude true;
endif;
endif;
action:
if no_recent_creatinine then

write "Suggest obtaining a serum creatinine to f
"on renal function in the setting of gentamici

else
write "Recent serum creatinine (" || recent_cre

" mg/dl) has increased, possibly due to renal
"insufficiency related to gentamicin use.";

endif;
urgency: 50;;
end:

cin;;

ient is taking
oring.);;

s placed on

e serum creatinine
enerated

been checked, is

, then an alert is
ing renal

*/

= gentamicin}

ne}

ime of

ollow up " ||
n."

atinine ||
"l

Page 178
Revision date: 2008-05-06

Health Level Seven © 2008. All rights reserved.
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X4.6 Management Suggestion MLM
maintenance:
title: Granulocytopenia and Trimethoprim/Sulfameth oxazole;;
mimname: anctms;;
arden: Version 2;;
version: 2.00;;
institution: Columbia-Presbyterian Medical Center; ;
author: George Hripcsak, M.D.;;
specialist: ;;
date: 1991-05-28;;
validation: testing;; library:

purpose:

Detect granulocytopenia possibly due to

trimethoprim/sulfamethoxazole;;
explanation:

This MLM detects patients that are currently taki ng

trimethoprim/sulfamethoxazole whose absolute neut rophile count is

less than 1000 and falling.;;
keywords:

granulocytopenia; agranulocytosis; trimethoprim; sulfamethoxazole;;

citations:

1. Anti-infective drug use in relation to the ris k of
agranulocytosis and aplastic anemia. A report from the
International Agranulocytosis and Aplastic Ane mia Study.
Archives of Internal Medicine, May 1989, 149(5):1036-40.;;

links:

'CTIM .34.56.78";

'MeSH agranulocytosis/ci and sulfamethoxazole/ae' N

knowledge:
type: data-driven;;
data:

[* capitalized text within curly brackets would b e replaced with */

/* an institution's own query */

let anc_storage be event {STORAGE OF ABSOLUTE_NEU TROPHILE_COUNT},

let anc be read last 2 from ({ABSOLUTE_NEUTROPHIL E_COUNT}

where they occurred within the past 1 week);
let pt_is_taking_tms be read exist
{TRIMETHOPRIM_SULFAMETHOXAZOLE_ORDERY},
evoke: anc_storage;;
logic:
if pt_is_taking_tms
and the last anc is less than 1000
and the last anc is less than the first anc
[* is anc falling? */
then
conclude true;
else
conclude false;
endif;;
action:
write "Caution: patient's relative granulocytope nia may be " ||
"exacerbated by trimethoprim/sulfamethoxazole.” ;

end:

© 2008 Health Level Seven, Inc.. All rights reserved. Page 179
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X4.7 MLM Translated from CARE

maintenance:
title: Cardiology MLM from CARE, p. 85;;
mimname: care_cardiology_mim;;
arden: Version 2;;
version: 1.00;;
institution: Regenstrief Institute;;
author: Clement J. McDonald, M.D.; George Hripcsak
specialist: ;;
data: 1991-05-28;;
validation: testing;;
library:
purpose:
Recommend higher beta-blocker dosage if it is cur

patient is having excessive angina or premature v
beats.;;

explanation:
If the patient is not bradycardic and is taking |
propanolol or less than 200 mg of metoprolol, the
Is having more than 4 episodes of angina per mont
premature ventricular beats per minute, recommend

keywords:
beta-blocker, angina; premature ventricular beats

citations:

1. McDonald CJ. Action-oriented decisions in ambu
Chicago: Year Book Medical Publishers, 1981, p

2. Prichard NC, Gillam PM. Assessment of proprano
pectoris: clinical dose response curve and eff
electrocardiogram at rest and on exercise. Br
33:473-480 (1971).

3. Jackson G, Atkinson L, Oram S. Reassessment of
blocker treatment in angina pectoris by peak e

measurements. Br Med J, 3:616-619 (1975).

knowledge:
type: data-driven;;

data:
let last_clinic_visit be read last {CLINIC_VISIT}
let (beta_meds,beta_doses,beta_statuses) be read
{MEDICATION,DOSE,STATUS
where the beta_statuses are ‘current’
and beta_meds are a kind of ‘beta_blocker’};
let low_dose_beta_use be false;
[* if patient is on one beta blocker, check if it
if the count of beta_meds = 1 then
if (the last beta_meds = ‘propanolol’
and
last beta_doses < 360)
or (the last beta_meds = ‘metoprolol'
and
the last beta_doses <= 200) then
let low_dose_beta_use be true;
endif;
endif;
let cutoff_time be the maximum of
((1 month ago),(time of last_clinic_visit),
(time of last beta_meds));
/* a system-specific query to angina frequency, P
/* and pulse rate would replace capitalized ter

let angina_frequency be read last ({ANGINA_FREQUE

where it occurred after cutoff_time);

let premature_beat_frequency be read last
({PREMATURE_BEAT_FREQUENCY}
where it occurred after cutoff_time);

let last_pulse_rate be read last {PULSE_RATE};

evoke: /* this MLM is called directly */;;

» M.D.;;

rently low and the
entricular

ess than 360 mg of
n if the patient

h or more than 5

a higher dose.;;

; bradycardia;;

latory medicine.
. 85.

lol in angina
ecton

Heart J,

failed beta-
xercise heart rate

is low dose */

VC frequency, */
ms */

NCY}

Page 180
Revision date: 2008-05-06

Health Level Seven © 2008. All rights reserved.
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

logic:

action:

end:

if last_pulse_rate is greater than 60 and
low_dose_beta_use then
if angina_frequency is greater than 4 then
let message be
"Increased dose of beta blockers may be "||
"needed to control angina."”;
conclude true;
else
if premature_beat_frequency is greater than 5 t
let message be
"Increased dose of beta blockers may "||
"be needed to control PVC's.";
conclude true;
endif;
endif;
endif;
conclude false;

write message;;

hen

© 2008 Health Level Seven, Inc.. All rights reserved.
Revision date: 2008-05-06

Page 181
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X4.8 MLM Using While Loop

maintenance:

title: Allergy_test_with_while_loop;;
filename: test_for_allergies_while_loop;;
version: 0.00;;

institution: ;;
author: ;;
specialist: ;;

date: 1997-11-06;;
validation: testing;;

library:
purpose:

lllustrates the use of a WHILE-LOOP that processe

explanation:
keywords:

knowledge:

type: data-driven;;

data:

/* Receives four arguments from the calling MLM:
(med_orders,

med_allergens,

patient_allergies,

patient_reactions) := ARGUMENT;

evoke:

logic:

/* Initializes variables */

a_list:= ();

m_list:= ();

r_list:=();

num:=1;

/* Checks each allergen in the medications to det
[* if the patient is allergic to it

while num <= (count med_allergen) do

allergen:= last(first num from med_allergens);
allergy_found:= (patient_allergies = allergen);
reaction:= patient_reactions where allergy_found
medication:= med_orders where (med_allergens = a

/* Adds the allergen, medication, and reaction t
/* variables that will be returned to the callin
If any allergy_found then
a_list:= a_list, allergen;
m_list:= m_list, medication;
r_list:=r_list, reaction;
endif;

/* Increments the counter that is used to stop th

num:=num+1;

enddo;

/* Concludes true if the patient is allergic to o
/* the medications

If exist m_list

end

action:

then conclude true;
if;

/* Returns three lists to the calling MLM
return m_list, a_list, r_list;

end:

s an entire list

*

ermine */

ilergen);

o] */
g MLM */

e while-loop */

ne of */

*

Page 182
Revision date: 2008-05-06

Health Level Seven © 2008. All rights reserved.
Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X5 SUMMARY OF CHANGES
X5.1 Summary of changes from the 1992 standard (Vsion 1) to Version 2:

» Clarification of many details of operator definiim
» Arden syntax versionslot required. (6.1.3)
» Citations must be numbered, and can be classifielipporting or refuting. (6.2.4)
» Specification of Links slot (6.2.5)
» Times can be constructed from durations+iaperator (7.1.5.3)
e Triggertime is the time the MLM was triggered (8.4.5)
* Query retrieval order is not necessarily by primtéme (8.9.2)
* Interface statement for using external functions (11.2.16)
» Single-line comments may be introduced with "/7.1(9)
» Thefilename slot has been renamedrtdmname. (6.1.2)
* Some new operators have been introduced:
» sort(9.2.4)
reverse(9.12.21)
format (9.8.2)
earliest, latest(9.12.17, 9.12.16)
floor, ceiling, truncate, round (9.16.11, 9.16.12, 9.16.13, 9.16.14)
index (...[...]) (9.12.18)

year, month, day, hour, minute, secondield extraction Error! Reference source not found,
Error! Reference source not found, Error! Reference source not found, Error! Reference
source not found, Error! Reference source not found, Error! Reference source not found)

» seqto (9.12.20)

» string, extract characters(9.8.3, 9.12.19)
» Operators which select from lists may be annottigdturn indexes instead of the elements. (98)2.1
* As number operator which converts strings and Booleans tobarsr (9.16.17)
» Some restrictions have been removed (e.g., doeh@solon inside strings).

» Thecall expression and statement can now pass multiplevagts; arguments may also be passed from an
action slot. (10.2.5, 11.2.5, 12.2.2, 12.2.5)

» Looping constructs have been added: for loop, whidg. (10.2.5.10, 10.2.7)
» Thecontinue statement may have amlessadded to it (this a readability aid).

YV VYV V V V

* Anew form of conditional execution, by allowinglessin aconclude statement.
e Theread ... where ..no longer requires parentheses.
* Aread query may specify a sort order (differentrfrthe default of chronological by primary time).

© 2008 Health Level Seven, Inc.. All rights reserved. Page 183
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X5.2

Summary of changes from Version 2 to Version.2:

A structured message for theite statement, represented as a Document Type Defirtiti be encoded in
the Extensible Markup Language (XML), has beenudet. K1.4.1 <structured.message>

Thein operator is now a synonym fisrin; similarly, not in is synonymous witks not in. (9.6.23
Occur/occurs/occurred atis now synonymous withccur/occurs/occurred equal (9.7.17

The syntaXrom <time> is now synonymous withfter <time>. (9.10.4)

A period punctuation mark (".") now is permissibieheMImname slot. £.1.2

New reserved wordurrenttime returns the system time at any point during an Mi_&Kecution.§.4.9

Six new string-handling operators are now availablese includéength (9.8.5, uppercase(9.8.9),
lowercase(9.8.7), trim (9.8.8, find...in string (9.8.9, andsubstring...characters from(9.8.10.

Thewhere trigger statement has been removed.

Added new code for Arden Syntax version slot—Vaers2dl—to distinguish Version 2 and Version 2.1
compliant MLMs.

Page 184

Health Level Seven © 2008. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X5.3 Summary of changes from Version 2.1 to VersioR.5:

The following relate to new Object capabilities:
Added new sections:
* 10.2.7,New statement.
o 11.2.1.9Read Asstatement.
e 11.2.5.2Message Asstatement
» 11.2.5.6Destination Asstatement
e 11.2.130bject statement.
* 10.2.1.1 Attribute assignment statement.
» 9.18,Dot notation (attribute reference)
e 9.19,Clone operator (attribute reference)
e 8.10,0bject data type
* Annex A6, Objects in Arden: rationale, details,. etc

Section A4.3, new operators is object, is not dbjec<object-name>, is not <object-name> were ddde

The following updates relate to new recommendationfer formatting structured citations and links
* 6.2.4,Citations slot now recommends ANSI/NISO OpenURL format fioustured citations
* 6.2.5,Links slot now recommends ANSI/NISO OpenURL format fioustured links
* Annex Al, XML schema for MLMs replaces DTD

The following updates relate to new recommendationfor representing MLMs using XML
* Appendix X1, XML schema for structured write re@adTD for structured write
* Appendix X2, XML schema for MLMs added

Annex Al Backus-Naur Form updated to include new ogrators, statements, and correct errors from
previous versions

Updated B/N forms for:
» <data_assign_phrase>
» <expr_factor>

» <logic_assignment> (fixed a problem in 2.1 B/Nnficrelating to calling MLMs
that return multiple values)

* <identifier_becomes>
e <unary_comp_op>

» <data_assignment>

» <expr_function>

» <of _noread_func_op>

© 2008 Health Level Seven, Inc.. All rights reserved. Page 185
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

These B/N Forms were added:
* <object_definition>
* <object_attribute_list>
* <new_object_phrase>
» <identifier_or_object_ref>
» <expr_attribute_from>
* Annex A2 Reserved Words updated to include new opators and statements

* Annex A4 Operator Precedence and Associativity upded to include new operators

Page 186 Health Level Seven © 2008. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X5.4 Summary of Changes from Version 2.5 to 2.6
5.1 Character set allows UNICODE encoding withircertain limitations
* 6.25 Changes to structured version of links slot
* 6.4 Resource category defines text resources fgpecific languages
e 7.1.11 Time of day constants
- 8.11 Time-of-day data type
e 8.12 Day-of-week datatype
e 9.15 Time of day handling
« 9.6.21 Is[not]time of day
* 9.10.5 Time of day operator
« 9.10.6 Day of week operator
e 9.8.11 Localized operator (unary)
* 9.8.12 Localized operator (binary)
e 9173 At
+ 11.2.15 Extension of include statement to incledresources
» X3 Selected language and country codes for usetiviresource category slots.

This version features new data types and opertigepresent time-of-day and day-of-week. In addjtnew
capabilities have been added to let an MLM repa@ssages in a variety of languages. The modificatiociude:

© 2008 Health Level Seven, Inc.. All rights reserved. Page 187
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X5.5 Summary of Changes from Version 2.6 to 2.7
e 0173 AT (time) changed tATTIME to remove need for precedence rules to propeepes of
AT (time) in write statement with destination.

e 10.2.1.2 Enhanced Assignment Statement changagppmort directly assigning to nested attributes
of objects and specific elements in a list

« 10.2.4.10 Enhanced Assignment in Call Statement

« 10271 New Statement with Named Initializer €ult$)

» Evoke slot chapter reorganized and rewritten

» Changes to BNF to reflect updates to text of stethdad fix typographical errors

Page 188 Health Level Seven © 2008. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X5.6 Summary of Editorial Corrections of ANSI/HL7 Arden V2.7-2008 December 10, 2008

e TOC Updated numbering of chapter 11.2.10 to 11.th1Be table of contents

* 9.1.3 Added Each operator must apply the here described listdtiag first (if applicable) before the
specific list handling as described in the respartiperator description is applied.to make the correct
application of list handling clearer.

» 9.1.3.4 Removed. matches pattern ...because this does not belong into this chapter.

* 9.1.3.4 added missing. from ... operator

* 9.3.1 Correction of first example since the statpdrator... is within ... after ... does not exist,. is
within ... following ... must be used.

* 9.4.1 Type constraint updated becauser ... is also applicable to lists.

e 9.7 Several “occured” changed to “occurred”.

e 0.8.1 Correcte@oz to %s because there is no such operétar.

* 0.8.4 2nd type constraint removed. <k:list of gfgm means a list with k elements of “list of stehg
which is a list of lists and not allowed in Ardeyn$ax.

* 9.9.7 Type constraint corrected to ensure thatite side of the.. ** ... operator is not a list.

* 9.12.19 Updated the type constraintéatract charactersoperator to ensure that the list of arguments is
of type string.

* 10.2.1.2 Operator correcteelémentinstead ofindex), corrected examples (“msg” instead of “message”,
“message” not allowed as variable name)

e 10.2.7 Definition of non-terminatobject-identifier> added.

« 11.2.5 Removed[".] If the MLM is evoked instead of called, dietarguments are treated as null. [...]
since this sentence is in contradiction with Chap2.4.6.

 11.2.8to 11.2.18 Updated numbering of chapters.

e Al BNF expression fogread_where> updated with missing “<” and “>".

» Al BNF expression fotevoke_statement> updated with the missing non-termiraklayed_evoke>

» Al BNF expression fotdelayed_evoke> updated with the missing quotation marks.

* Al BNF expression fotrelative_evoke_time_expr> updated, since this non-terminal was still using
“AT” instead of “ATTIME”

* A2 arccosinstead ofarcos

* A4 Operators added to precedence groups: 9.16.16.,19

* A4 arccosinstead ofarcos

» Ab5.1 Some letter must be lowercase instead of usiag in uppercase twice.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 189

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

X5.7 Summary of Changes from Version 2.7 with Editoal Corrections to 2.8

* 6.1.2, Added theninus sign, since the BNF (non-terminahimname_text_rest>) allows this sign inside
of an MLM name

* 6.1.7, Changed slot type to “textual list” since thformal description claims the same format asatthor
slot

e 6.1.8, Added short term, which makes clear thay tm complete representation (given in i8©) is
allowed

e 8.1, Added a sentence to make clear that null rasg la primary time

» 8.4.1, Changed the granularity of time from infsitmal to implementation specific (beyond milliseds)

* 9.1.2.2, Additional data typdifmes’ introduced, which subsumdisne andtime-of-day

e 0.1.2.2, Addedtime-of-day” within the typesany-type, non-null, andordered

e 0.1.3.1, Added the operators.“As Number’, “... As String”, and “... As Time" to the general list
handling

e 0.1.3.4, Added the operatorRéplaceYear Of ... With”, “ReplaceMonth Of ... With ", “ReplaceDay
Of ... With”, “Replace Hour Of ... With ", “ReplaceMinute Of ... With ", and “ReplaceSecond Of ...
With” to the general list handling

 0.1.3.6, Added the operatortmtiex Of ... From ...” ,“Add ... To ...” , “At Least ... From ...”, and “At
Most ... From ...” to the general list handling

e 0.1.3.7, Added theRemove ... From ..” operator to the general list handling

e 90.2.4, Added theUsing ...” modifier as extension to treort operator. This modifier will allow to sort lists
by any complex calculation

e 9.2.5, Added new operatoAtid ... To ... [At ...]" for simple list manipulation by insertion of elemts at
arbitrary positions

e 0.2.6, Added new operatoReémove ... From ..” for simple removing arbitrary elements from 4 lis

* 9.6.7, Changed the operator type constraint fofiime> to<n:times> to describe thatme-of-day
values are also allowed

e 09.6.8, Changed the operator type constraint feofime> to<n:times> to describe thatme-of-day
values are also allowed

* 9.6.9, Changed the operator type constraint fofiime> to<n:times> to describe thatme-of-day
values are also allowed

* 9.6.10, Changed the operator type constraint #omme> to<nitimes> to describe thatme-of-day
values are also allowed

* 0.6.12, Changed the operator type constraint &#efmme> to<n:itimes> to describe thatme-of-day
values are also allowed

* 9.6.13, Changed the operator type constraint #omme> to<nitimes> to describe thatme-of-day
values are also allowed

* 9.6.14, Added 2 sentences to make the null handlfirtige “... Is [Not] In ..."” operator clearer

e 0.7.2, Changed the operator type constraint feefime> to<n:times> to describe thatme-of-day
values are also allowed

* 9.7.3, Changed the operator type constraint fofiime> to<n:times> to describe thatme-of-day
values are also allowed

e 9.7.4, Changed the operator type constraint fofiime> to<n:times> to describe thatme-of-day
values are also allowed

e 0.7.5, Changed the operator type constraint feefime> to<n:times> to describe thatme-of-day
values are also allowed

e 0.7.6, Changed the operator type constraint feofime> to<n:times> to describe thatme-of-day
values are also allowed

Page 190 Health Level Seven © 2008. All rights reserved.

Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

* 0.7.9, Changed the operator type constraint feefime> to<ntimes> to describe thatme-of-day
values are also allowed

e 0.7.10, Changed the operator type constraint &#efme> to<n:itimes> to describe thatme-of-day
values are also allowed

e 9.7.11, Changed the operator type constraint f@rme> to<n:times> to describe thatme-of-day
values are also allowed

e 9.9.1, Changed the operator type constraint feefime> to<n:times> to describe thatme-of-day
values are also allowed

e 9.9.3, Changed the operator type constraint feofime> to<n:times> to describe thatme-of-day
values are also allowed

e 9.10.1, Changed the operator type constraint #emme> to<nitimes> to describe thatme-of-day
values are also allowed

* 9.10.2, Changed the operator type constraint &#efme> to<n:itimes> to describe thatme-of-day
values are also allowed

* 9.10.4, Changed the operator type constraint &#efme> to<n:itimes> to describe thatme-of-day
values are also allowed

e 9.10.7, Moved operatoExtract Year” from chapter 9.11.2
e 9.10.8, Moved operatoExtract Month” from chapter 9.11.4
e 9.10.9, Moved operatoExtract Day” from chapter 9.11.7
* 9.10.10, Moved operatoEktract Hour ” from chapter 9.11.9

* 9.10.10, Changed the operator type constraint fietime> to <n:times> to describe thaime-of-day
values are also allowed

e 9.10.11, Moved operatoEktract Minute ” from chapter 9.11.11

e 9.10.11, Changed the operator type constraint fiatime> to<ntimes> to describe thaime-of-day
values are also allowed

* 9.10.12, Moved operatoEktract Second from chapter 9.11.13

* 9.10.12, Changed the operator type constraint fietime> to <n:times> to describe thaime-of-day
values are also allowed

e 0.10.13, Added new operatdRéplaceYear [Of] ... With ” to set the year part of a given date

e 0.10.14, Added new operatdRéplaceMonth [Of] ... With ” to set the month part of a given date

e 0.10.15, Added new operatdRéplaceDay [Of] ... With” to set the day part of a given date
 9.10.16, Added new operatdRéplaceHour [Of] ... With ” to set the hour part of a given date

* 9.10.17, Added new operatdréplaceMinute [Of] ... With ” to set the minute part of a given date

¢ 9.10.18, Added new operatdRéplaceSecond [Of] ... With” to set the second part of a given date

* 9.12.3, Added a sentence to make clear whagxfstsoperator does if the parameter is a single element

e 9.12.4, Changed the operator type constraint #omme> to<nitimes> to describe thatme-of-day
values are also allowed

e 0.12.5, Changed the operator type constraint #efime> to<n:itimes> to describe thatme-of-day
values are also allowed

e 0.12.9, Added the ability to use thesing” modifier, too
e 0.12.10, Added the ability to use thestng’ modifier, too
e 9.12.13, Added the optional keyworlk$True”

e 9.12.14, Added the optional keywordreTrue”

e 9.12.15, Added the optional keyworl$True”

© 2008 Health Level Seven, Inc.. All rights reserved. Page 191
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

e 0.12.16, Added a sentence to make clear what happtrere is more than one element with the latest
primary time

e 0.12.16, Added the ability to use thesfng’ modifier, too

e 0.12.17, Added a sentence to make clear what happtere is more than one element with the estrlie
primary time

e 9.12.17, Added the ability to use thesing” modifier, too

e 9.12.20, Corrected an example (added brackets} segtooperator has higher precedence than unary
minus

e 9.13.2, Corrected the operators type constraimtesihe formal description only allows single tinassfirst
parameter

e 9.13.4, Added new operataintiex Of ... From ..."” to find the index of a specific list element

e 9.13.5, Added theAt Least ... [IsTrue|AreTrue] From ...” operator to determine if a list contains at
least N elements which are true

e 9.13.6, Added theAt Most ... [IsTrue|AreTrue] From ... " operator to determine if a list contains at most
N elements which are true

* 0.14.2, Added the ability to use thesing” modifier, too
e 0.14.3, Added the ability to use thesing” modifier, too

* 9.14.6, Added new operatostiblist ... Elements [Starting at ...] From ..” to extract sub-lists from
given data lists

e 9.14.7, Adjusted the second type constraint suahtkie operator can handle listgtiofie-of-day values
and added an example

* 9.14.8, Adjusted the second type constraint suahttte operator can handle liststiofie-of-day values
and added an example

e 0.14.11, Added the ability to use thesfng” modifier, too
e 0.14.12, Added the ability to use thestng’ modifier, too

* 9.16.10, Corrected the first two examples (addedHets) sincent operator has higher precedence than
unary minus

» 9.16.12, Corrected the first two examples (addedH®ts) sinceeiling operator has higher precedence
than unary minus

* 9.16.13, Corrected the first two examples (addedH®mts) sincéruncate operator has higher precedence
than unary minus

e 0.16.14, Corrected the last three examples (addexkéts) sinceound operator has higher precedence
than unary minus

* 9.16.18, Added new operatoh$ Time” to convert a string into a time data type

* 9.16.19, Added new operatoh$ String” to convert any data into a string

e 9.17.1, Added a sentence to make clear what happamon-time value is used for the assignment
e 9.18.3, Changed the operators type constraint uatlonly one object can be passed

e 10.2.1, Changed the description such that it véltkear that a re-assignment is allowed nowhersdeibf
the data slot

* 10.2.3, Added theSwitch-Casé statement for simple distinction of different t&ts of a variable

e 10.2.3.1, Added a chapter to describe the simpieitth-Case statement

e 10.2.3.2, Added a chapter to describe tB@itch-Case-Default statement

e 10.2.6, Added the possibility to use the termirideakLoop” for aborting a while loop

» 10.2.7, Added the possibility to use the termirigi¢akLoop” for aborting a for loop

» 11.2.3.1, Added a sentence to describe the deBawliean value of a variable that represents anteven

Page 192 Health Level Seven © 2008. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

e 11.2.12, Added theSwitch-Casé statement to the data slot, too

e 11.2.19,Added MLM, event, and interface variabl¢he listing, since chapter 10.2.5.2 claims thay
are also included

e 12.2.4, Added theSwitch-Casé statement to the action slot, too
Al BNF, Added version 2.7 and 2.8 to the non-teahand<arden_version>

e Al BNF, added multiple non-terminalsation_switch> , <logic_switch> , and<data_switch>) and
added them to the general statements fodéte, action, andlogic slot to allow switch statements in all of
these slots

e Al BNF, Added the terminaBREAKLOOP ” to the non-terminalslogic_statement>
<data_statement> , and<action_statement>

* Al BNF, Adjusted non-terminaksdentifier_becomes> and<identifier_or_object_ref > to allow the
enhanced assignment statements described in 20.2.1.

Al BNF, Addedusing modifier to the non-terminalexpr_function> and to the non-terminal
<expr_sort>

» Al BNF, Added the new operatofAdd ... To ...” to the non-terminakexpr_sort> and inserted a new
non-terminakexpr_add_list>

Al BNF, Added the new operatdReémove ... From ..” as non-terminakexpr_remove_list>

e Al BNF, Added an additional.!. Formatted With ...” line to the non-terminatexpr_string> to allow
complex format strings

* Al BNF, Removed the terminal&Jppercasé and “Lowercase from the non-terminal
<of_noread_func_op> and added them to the non-termigalpr_string> as non-terminatcase_option >

Al BNF, Added non-terminalexpr_attime > to prevent infinite loops while parsimdtime statements
» Al BNF, Added alternative non-terminal to the BN¥preeSSiOrnkexpr_duration>

* Al BNF, Added the new operatorRéplace <Timepart> Of ... With ...” to the non-terminal
<expr_funtion>

Al BNF, Added theat leastand theat most operator as non-terminedt_least most_op> to the non-
terminal<expr_function>

* Al BNF, Added thethdex Of ... from ... “ operator to the non-terminaéxpr_function>

» Al BNF, Added thesublist operator to the non-termin&dxpr_function> by adding the non-terminal
<expr_sublist_from>

* Al BNF, Added the optional keywordssTrue” and “AreTrue” to the operatorgo, any andall in the
non-terminakof_noread_func_op>

* Al BNF, Added the new operator.: As Time" to the non-terminakas_func_op>
Al BNF, Added the new operator.:'As String” to the non-terminakas_func_op>
¢ Al BNF, Added an additional non-terminaimepart>

e Al BNF, Changed the non-terminailelayed_evoke> to fit the informal description which does allowlyp
simple duration statements on the left side of torigime trigger statements

e Al, BNF, Change description of tkglainstring> non-terminal since both, the regular expressiahtha
informal description (7.1.6) does allow “;;” in &iag

Al BNF, Added non-terminalseconds> and adjusted thaime_of day> non-terminal definition

* A2, Added the following words to the list of resedvwordsadd, aretrue, breakloop, case elements
istrue, least, most, remove, replace,sublist, switch, using

e A4, Added theslementoperator

* A4, Added the unargommaoperator to the list of precedence
A4, Added the Add ... To ... [At ...]"” operator

e A4, Added the Remove ... From ..” operator

© 2008 Health Level Seven, Inc.. All rights reserved. Page 193
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

* A4, Removed binary.?. Round ...” operator, which is not defined in the specifioati

* A4, Added the Sublist ... elements [Starting At ...] From ..” operator in its two occurrence
e A4, Added the Index Of ... Within ..."” operator

e A4, Added the At Least ...” operator

* A4, Added the At Most ..."” operator

* A4, Added the Replace <timepart> Of ... With ...” operators

A4, Added “.. Seqto ..” operator as new group at the end of the list

* A4, Added new precedence group for."As Number”’, “... As Time”, and “... As String”

* A4, Split some precedence groups since operatdhsdifferent associativity should not be in the sam
precedence group

* A4, Added the operators extended by tisang modifier

Page 194 Health Level Seven © 2008. All rights reserved.
Revision date: 2008-05-06 Print date: 3/11/2011

Arden Syntax for Medical Logic Systems

REFERENCES

(1) HELP Frame Manual, 1991, LDS Hospital, 325 8th A®alt Lake City, UT 84143.

(2) McDonald, C. J., Action-Oriented Decisions in Artdiory Medicine, Chicago: Year Book Medical Pubésh,
1981.

(3) Wirth, N., "What Can We Do About the Unnecessaiyelsity of Notation for Syntactic Definitions?"
Communications of the ACM, Vol 20, 1977, pp. 82382

(4) UMLS Knowledge Sources, Experimental Edition, Bstta, MD: National Library of Medicine, September
1990.

(5) International Committee of Medical Journal Edit@pecial Report, "Uniform Requirements for Manigssr
Submitted to Biomedical Journals," The New Engldadrnal of Medicine, Vol 324, No. 6, 1991, pp. 428.

© 2008 Health Level Seven, Inc.. All rights reserved. Page 195

Revision date: 2008-05-06 Print date: 3/11/2011

