OMG Standards And HL7’s Mapping Requirement

Author: Robert Worden
Draft 01, 10th July 2010

Abstract: HL7 has adopted OMG’s Model-Driven Architecture (MDA) in its Services-Aware Interoperability Framework (SAIF), which is the central architecture for HL7’s interoperability products. HL7’s use of SAIF/MDA is not purely for model-driven forward engineering. HL7 needs to connect a forward model-driven approach with standards from other SDOs, independently designed DSLs, and legacy data formats such as HL7 Version 2. HL7 needs to assert, implement and test conformance of these platform-specific artefacts with its platform-independent model (PIM), which includes the Reference Information Model (RIM) and RIM-derived models. For this, HL7 needs to choose and adopt a mapping language, to map between the PIM and many independent PSM artefacts.

This paper examines several OMG standards and developments, to see if they meet HL7’s mapping requirement. OMG products examined are QVT Relational, Model-Driven Message Interoperability (MDMI), Information Management Model (IMM) and work from the Architecture-Driven Modernisation Task Force (ADM). None of these developments meet HL7’s requirements as closely as the proposed Open Mapping Language (OML), a declarative language with tool support which has been used within HL7. Experts within OMG are invited to comment on this assessment.

The Open Mapping Language is preferred not because it has healthcare-specific features, which would preclude its use in other OMG application domains, but because it is the best way to map between a PIM and a PSM. It is a simple, generic, executable PIM-PSM mapping and transformation language, based on UML and MOF. It may have wider applicability within OMG, wherever model-driven forward engineering needs to interface with legacy data and other independently-derived PSM data structures. OMG are invited to track the development of the language through HL7 standardisation, to see whether it meets a wider need in OMG. There might also be convergence or synergy with MDMI.
Table of Contents

21.
HL7’s Use of Model-Driven Architecture

2.
HL7’s Requirement for a Mapping Language
3
2.1
Need for a Standard Mapping Language in Healthcare
3
2.2
Types of Mapping Notation
4
2.3
Requirements for a Mapping Notation for Use in HL7
4
3.
Relevant Standards and Products
6
3.1
Open Mapping Language
6
3.2
Query-Verify-Transform (QVT Relational)
7
3.3
Model-Driven Message Interoperability (MDMI)
7
3.4
Information Management Model (IMM)
8
3.5
Architecture-Driven Modernisation (ADM)
8
3.6
Comparison with HL7’s Requirements
9
4.
Next Steps
10
1.
HL7’s Use of Model-Driven Architecture

HL7’s mission statement centres on the semantic interoperability of healthcare systems. The mission is

To provide the necessary specifications to enable HL7 users –- referred to here as trading partners -- to exchange data and information at a computable, semantically interoperable level in the context of a specific set of transactions (referred to as a collaboration) that involves HL7-enabled systems representing the trading partners.
HL7 has promulgated and continues to develop a wide range of specifications for healthcare system interoperability. These include several releases of HL7 Version 2 messages, message definitions for HL7 Version 3 in many domains, and the Clinical Document Architecture (CDA). The last two are based on the HL7 Reference Information Model (RIM), a core UML class model, and its extensions.

Since 2008, HL7 has adopted the Services Aware Integration Framework (SAIF) as its core architecture for all these products. At the centre of SAIF is the OMG Model-Driven Architecture (MDA), as the following ‘stairway to interoperability heaven’ diagram from SAIF illustrates:

[image: image1.png]Fle Edt View Document Tools Window

500 @ esnmoem

O

850x1100in <

The allocation of HL7 artefacts to these layers is as follows: The Conceptual (CIM) view consists of various domain models, produced by working groups in their domains. The Platform-Independent (PIM) level consists of the HL7 RIM - a UML class model – and its extensions for static information, and other UML artefacts for dynamic information. The Platform-specific (PSM) view includes a large number of message and document formats, including Version 2 and Version 3 messages, CDA documents, and various domain-specific message formats (DSLs such as Green CDA, Detailed Clinical Models, and Virtual Medical Records).

For the SAIF Enterprise Compliance and Conformance Framework (ECCF), HL7 needs to assert and test conformance relations between these different layers, even though they were not all created by the forward engineering, model-driven process (from PIM to PSM) which is typically associated with MDA, so conformance is not guaranteed by any such process. Conformance statements between layers are mappings. That is one reason why HL7 wishes to choose and standardise a mapping language.
2. HL7’s Requirement for a Mapping Language

Need for a Standard Mapping Language in Healthcare

Large-scale healthcare applications typically use multiple overlapping models, message formats and data structures:

•
National initiatives such as HITECH have adopted several overlapping standards

•
Within one SDO, there may be multiple overlapping standards (e.g. HL7 V2, V3 and CDA)

•
There is interest in local data formats and Domain Specific Languages with precise semantic relations to standards (e.g. Green CDA, Micro-ITS, RIM ITS, Detailed Clinical Models, Virtual Medical Record)

•
Healthcare providers need to interface IT systems with a wide range of different models and data formats.

•
The HL7 Enterprise Compliance & Conformance Framework (ECCF) has a Specification Stack with three layers from OMG’s Model Driven Architecture: CIM, PIM, and PSM. ECCF Conformance Statements are testable relations between items in different layers. They are mappings between layers.

National programs, SDOs, IT suppliers and healthcare providers frequently need to understand and document the precise relationships between different healthcare models and data formats. Failure to do so carries risk to patient safety. The relationships between different semantic models and data formats are commonly referred to as ‘mappings’, and the activity of defining them is called ‘mapping’ between the formalisms.

While mapping is critical to the integrity of healthcare IT systems and to patient safety, there is no single widely-used language for mapping, and there are no agreed quality criteria for mappings. Mapping is typically done behind closed doors within implementation projects, with the results buried in code. Mappings are documented informally in Excel spreadsheets, and become shelfware.

A single standard notation for mappings would have clear benefits to the healthcare IT community, and for patient safety:

•
Different groups could exchange results in the notation, getting common insights and sharing problems.

•
Mappings could be made available for peer review and ballot, increasing their quality and the reliability of the systems that depend on them.

•
Mappings in a standard notation are machine-processable, and will create a market for tools

•
Mappings support conformance testing

•
Mappings expose interoperability problems early – saving costs

•
Mappings are more maintainable than code

•
A common mapping notation will create a market for mappings in the notation.

Mappings are a critical element of the Healthcare IT eco-system. They will continue to be so, as long as no one healthcare data standard rules the world. Yet mappings have remained a second-class citizen of the Healthcare IT skill-set and toolkit. Failures of mapping have remained hidden, and have contributed to poor system integration.

By adopting one common notation for mappings, HL7 can change this. A standard mapping notation will make mappings a shareable, peer-reviewed resource, and increase their quality.

Types of Mapping Language

There are three types of mapping: Model-to-Model (M2M), Structure-to-Model (S2M) and Structure-to-Structure (S2S). ‘Model’ refers to a semantic model (e.g. a UML model), and ‘Structure’ means a physical data structure (e.g. defined by an XML schema or a relational database schema).

The distinction between ‘Model’ and ‘Structure’ can best be understood by reference to OMG’s model-driven architecture. In this respect, a ‘Model’ is part of the Platform-Independent Model (PIM) and may typically be a UML class model; while ‘Structure’ is part of some Platform-Specific Model (PSM), and is a physical data structure such as a relational database or XML message structure.

· S2S mapping notations have been developed in commercial tools (such as Altova’s MapForce, or Microsoft’s BizTalk Mapper) with the aim of transforming data instances from one structure to another, sometimes bi-directionally, or in ETL tools.

· The primary use case of M2M mappings, as in the OMG QVT languages, is to transform one model to another (possibly uni-directionally).

· S2M mappings have multiple uses: asserting and testing conformance to models, and making transformations between structures. They can also support model-to-model transforms.

Any of these types of mapping can be declarative or procedural. A declarative mapping language makes statements of the form ‘the parts of formalism F1 and the parts of formalism F2 are related in these ways’; the order of statements does not matter. A procedural (or imperative) mapping language says: ‘To get from F1 to F2 , do this sequence of steps’; the sequence and interactions of the statements matter. Declarative languages are generally easier to write, understand and analyse. A declarative mapping language says what is the relationship between two formalisms, rather than how you get from one to the other.

Requirements for a Mapping Language for Use in HL7

HL7 has launched a project to choose, evaluate and adopt a standard mapping notation. The project has defined requirements for the mapping notation. These requirements, stated below, have been reviewed by the HL7 ITS working group, and are taken from http://wiki.hl7.org/index.php?title=Mapping_Notation_Requirements

A notation for mappings to be adopted by HL7 should:

1. Be Linked to a Semantic Model: Because HL7’s concern is semantic interoperability, the mapping notation should link to a semantic information model, such as a RIM-based model. So the notation should be S2M or M2M, but not S2S.

2. Have Well-Defined Meaning: What the mapping notation can say about the relation between two formalisms, and how it says it, should be well-defined and documented.

3. Be Semantically Expressive: The notation must be able to express how the meaning in one model or structure is commonly represented in the other. Sub-requirements include:

a. Can map XML, formatted text, relational databases or UML models

b. Can express how associations are mapped (for all cardinalities; 1:1, 1:N, or N:M)

c. Can state where attribute value conversions are needed (e.g. different code sets)

d. Can handle mappings of lists of items

e. Can note where mapping is not possible, and why

4. Be Easy to Understand and Review: It should be possible to read the mapping notation, with or without tools, and readily understand what it says about the relation between two formalisms. Sub-requirements include:

a. Modularity: It should be possible to divide a large mapping set into smaller ‘modules’ of mappings, with clear definition of the links between modules and allowing reuse of modules

b. Cross-Mapping: when several data structures are mapped onto one semantic model, it should be easy to view the parts of each data structure mapped to the same semantic model item

5. Be Easy to Write: It should be possible to create mappings in the formalism easily – with or without tools.

6. Have Static Validation Criteria: There should be clear criteria for a valid set of mappings in the notation, suitable for checking by eye or by machine.

7. Be Declarative rather than Procedural: Because declarative languages are easier to write, understand and analyse, a declarative mapping language is preferred (especially if transformations can be generated from it automatically – see below). The notation should allow for a ‘procedural escape’ for cases where mappings are hard to express declaratively.

8. Be Executable: It should be possible to use the mappings without further coding to convert data instances from one model or structure to another, so as to:

a. translate data instances in live applications;

b. test that mappings are correct;

c. review mappings by reviewing translations made from them;

d. support iterative development of mappings.

9. Have Editing Support: A mapping editor can make it easier to develop mappings, and to view them (e.g. with automatic capture of the structures and models to be mapped)

10. Have Automated Validation: This can go a long way towards defining and checking quality measures for the mappings.

11. Be open and neutral, not proprietary: It will probably be feasible for any supplier to convert mappings from a neutral notation to their own proprietary notation – but may not be possible the other way round

3. Relevant Standards and Products

This section describes the OMG standards and products which might meet HL7’s mapping language requirements. It also describes the Open Mapping Language, a development from a language supported by an open source Eclipse-based toolset available from the HL7 GForge, at http://gforge.hl7.org/gf/project/v2v3-mapping/frs/ . Because that language appears to meet HL7’s requirements fairly well, it is described first, as a basis for comparison with the others.
Open Mapping Language

The Open Mapping Language (OML) is defined in an accompanying paper, which describes its tabular concrete syntax, its abstract syntax (a MOF metamodel) and its execution model. It is intended for Structure-to-Model mapping, where the structure is typically an XML document structure or relational database, and the model is a UML class model. Tables of mappings can be held in spreadsheets, in XML with stylesheets, in relational databases, or as annotations in XML schemas.

There are a range of design patterns which people may use to represent information in data structures such as XML or Relational Databases. Full OML has a range of constructs, to capture how these design patterns are used. It has been divided into a small core mapping language – which consists of just a table with five basic columns – and an extended mapping language, consisting of 8 further columns to be used in addition where necessary.

Mappings describe how an instance of the XML represents an instance of the UML class model – which is a set of objects (instances of classes) with values for their attributes and linked by instances of the associations (links). Mappings define which nodes in the XML represent objects, attribute values, and links, and how they do so. Mappings are declarative descriptions, not a procedural recipe.

Each row of the tabular form defines one mapping. The 5 core fields in each mapping are as follows:

1. Type: has three possible values to define the type of mapping, which may be: an object mapping, attribute mapping, or association mapping. These define respectively how an instance of the data structure (XML) represents an object, attribute, or association in the class model

2. XPath: the descending XPath from the root of the document to the set of nodes representing the aspect of the class model which is represented

3. Class: defines the class in the UML model which is represented, or whose feature (attribute or association) is represented

4. Feature: Empty for object mappings. For attribute mappings, the name of the attribute represented. For association end mappings, the role name followed by the target class name.

5. Comment: free-text comment on the mapping, e.g. recording any difficulties or ambiguities.

With occasional use of the extended mapping columns, these five columns can represent the great majority of ways in which people use XML or relational databases to represent class model information – that is, how people use PSM data structures to represent parts of PIM models, even when the PSM structures are not derived from the PIM models.

The Execution Model of OML has two parts:

· OML mappings provide sufficient information to run a mapping-driven XML Reader ,which can convert any instance of the mapped XML (or database extract) into an instance of the UML class model, expressed (for instance) as EMF Ecore. The working of an XML Reader follows directly from the definition of the mappings, so it is straightforward to implement.

· OML mappings can also be used to run a mapping-driven XML Writer, which can translate an instance of the UML class model into an instance of the XML data structure. The working of an XML Writer cannot be derived so directly from the definition of OML mappings, and it is not so straightforward to implement. A mapping-driven XML Writer has been implemented, and is available from the HL7 GForge.

Using the XML Reader followed by the XML Writer allows data instance translation from any one mapped data structure to any other. This translation facility works in spite of structure clashes between the two data structures, and is more powerful than the translations from most commercial structure-to-structure mapping products.

Use of the XML Reader and Writer also enables a style of model-based application development, where applications are developed purely in terms of the UML class model, and can then be interfaced to any mapped data structure through the mappings. This kind of future-proofing is the central value proposition of MDA.

OML has no features which depend on HL7-specific IPR such as the RIM, or the HL7 MIF metamodel for model interchange; although the tools on the HL7 GForge at http://gforge.hl7.org/gf/project/v2v3-mapping/frs/ (for the immediate antecedent of OML) have extensions to make them easier to use with HL7 MIF-based and RIM-based models.
Query-Verify-Transform (QVT Relational)

OMG’s Query-Verify-Transform specification (QVT) has existed since about 2002, and is targeted at model-to-model mapping; although it can be used for structure-to-model mapping, when one of the models is the model of a physical data structure. Descriptions of QVT are sometimes confused by a plethora of meta-levels, which I have attempted to cut through here.

There are two main branches of the QVT language: QVT (Relational + Core), which are purely declarative languages which define the relations between two models; and QVT Operational , which embodies imperative (procedural) programming constructs. Because HL7’s requirement is for a declarative mapping language, HL7’s interest is mainly in QVT Relational (which has the same expressive power as QVT core).

Tools for QVT have been developed in Eclipse – which is suitable for HL7 because HL7 is taking an Eclipse-based approach to tooling – e.g working closely with Open Healthcare Tools (OHT). However, the bulk of the Eclipse QVT development effort has focussed on QVT Operational, and I understand from Ed Willink that development effort on QVT Relational has essentially stalled, without having delivered any Eclipse-based open source execution engine for it.

This may be because QVT Relational can define a very general and recursive set of relations between two models; so I suspect that devising an execution engine (which can, for example, convert an instance of one model to an instance of the other) is a hard problem. In contrast, OML attempts only to capture the common design patterns which people use in XML or Relational PSM data structures, to represent PIM-level class models. This means that for OML, the PSM=>PIM execution engine is almost trivial, and the PIM=>PSM execution engine is at least feasible.

Therefore QVT Relational as it stands does not seem suitable for HL7, as it has no open source execution engine and seems unlikely to get one soon.
Model-Driven Message Interoperability (MDMI)

The OMG MDMI initiative arose to meet requirements for message interoperability in the finance sector, and has links to the ISO 200022 UML class model for finance information. The comments below address MDMI 1.0, as I am not aware of the specific directions being taken by MDMI 2.0, which is in development.

MDMI has certain similarities to OML, in that MDMI maps physical message structures onto a central information model (through a two-stage mapping process). Then, if MDMI maps of two different message structures onto the same central information model are developed independently, they can be used in series to translate from {message 1 => central data model => message 2}. Translation engines exist to run these message translations (e.g. from Firestar), but they are not open source.

Examination of the MDMI metamodel shows that the central data model (which messages are mapped onto) is not a full UML class model, but is essentially a flat, relational-style model with only attributes from the ISO 200022 class model. I understand this was a deliberate design decision, to keep things simple for the business analysts who, it is assumed, will be making MDMI maps.

However, this implies that where the class model does contain complex, multiple and deeply nested associations (as is the case for all healthcare models), and adequate representation of these associations can only be forced into the MDMI metamodel by adding a large number of associative objects – which seems an artificial and clumsy solution

Therefore MDMI 1.0 is not currently suitable for adoption by HL7 for two reasons: the central information model does not explicitly represent associations, which appear to be important for most HL7 applications; and there are no easily available Eclipse-based tools and execution engines.

OMG are currently involved in a healthcare application of MDMI, working with South East Michigan Health Information Exchange (SEMHIE), Sun/Oracle, CSC and others on an Electronic Medical Records project funded by the US Social Security Administration. It would be useful if HL7 and OMG were to keep a joint watching brief on this project, to understand whether the design choices of MDMI 1.0 in not representing UML associations cause problems in a healthcare application; and if so, what are the solutions and do they point to a direction from MDMI 2.0; at the same time, whether MDMI 2.0 could use features from the HL7 Open Mapping Language, or whether there could be bridges between the two languages. There is sufficient commonality of the two approaches that mutual learning appears to be beneficial.
Information Management Model (IMM)

OMG’s Information Management Model is the successor to the Common Warehouse MetaModel (CWM) and inherits many features from it. It seems largely aimed at suppliers of enterprise metadata products, to give them a common metamodel for exchanging information between their products. As such, it is trying to satisfy a large established community. It has a very large MOF metamodel, which shows the traces of trying to accommodate OMG’s core UML community, as well as an Entity-Relationship modelling community who apparently do not want to use UML.

There is a pilot implementation of IMM being done in the Eclipse MDT project. The Eclipse MDT website implies that it is not yet far advanced.

The IMM, inheriting from CWM, addresses some issues of mapping, transformation, and traceability between models. However, this is in the context of a very large metamodel, and the parts for mapping and traceability seem mainly directed at structure-to-structure mapping, as for instance in classic Extract-Transform-Load (ETL) tools.

While it may be possible to use IMM for the kinds of PIM-to-PSM mappings that HL7 requires, an emphasis on PIM-to-PSM mappings does not leap out from the current IMM specifications. For instance, the IMM core metamodel (where one would expect to find the PIM) does not contain a metamodel for UML class models, so there is no simple target for PSM-to-PIM mappings. The introduction to the IMM submission says: ‘The UML2 metamodel is not used’

IMM does not seem suitable to meet HL7’s mapping requirements, because: (a) It has a very large metamodel addressed at other stakeholders, which would make mappings complex; (b) it places no emphasis on PSM-to-PIM mappings, and has no UML2 metamodel which would be the target for these mappings; (c) it does not define a mapping language as such; and (d) Eclipse tooling for IMM is not far advanced.
Architecture-Driven Modernisation (ADM)

The remit of the Architecture-Driven Modernisation Task Force is to support ‘modernisation’ of existing legacy systems to better meet current and ongoing needs. ADM proposes that modernisation should not be done just by technical-level hacking, but is much more effective if it looks to the architecture and business levels, before tackling the technical level. So the ‘architecture-driven’ modernisation has links to ‘model-driven’ development as in MDA; this task force appears to be OMG’s bridge between the forward-engineering world of MDA, and the world of legacy systems and application integration.

ADM’s work package 7 is described as follows:

#7: ADM: Transformation ADM Transformation defines mappings between the KDM [Knowledge Discovery Metamodel, an earlier work package of ADM] and ASTM [Abstract Syntax Tree Discovery Metamodel, another earlier WP] and target models. This standard defines the mappings and transformations that may occur between existing applications and top down, target models. Development paradigms may vary, but will include MDA as a target. This standard will complete ADM task force efforts in providing a transformational bridge between existing systems and target architectures. There is no target date for this work.

In this description, ‘top down, target models’ presumably refers to the PIM models of MDA, so this work package seems relevant to HL7’s need to have mappings between its RIM-based PIM models and a diverse PSM which includes other standards, DSLs and legacy formats. But the task force web page seems to imply that work has not yet started on this work package; and the description implies that it will be tackled last. It is therefore not in a mature enough state to be relevant to HL7.
Comparison with HL7’s Requirements

The table below summarises HL7’s main requirements for a mapping language, against OML and the three initiatives from OMG. ADM is not included in the table because it has not yet tackled mapping.

	HL7 Mapping Requirement:

The mapping language must...
	Open Mapping Language (OML)
	QVT Relational
	Model-Driven Message Interoperability (MDMI)
	Information Management Model (IMM)

	Be linked to a semantic model
	Yes - UML
	Yes – any MOF model
	Yes, but no associations
	No UML2

	Have well-defined meaning
	Yes
	Yes
	Yes
	IMM does not define a mapping language

	Be semantically expressive
	Yes
	Yes
	No associations yet
	-

	Be easy to understand and review
	Yes
	not yet tried for healthcare applications
	Now being tried for healthcare applications
	-

	Be easy to write
	Yes?
	Not yet tried in healthcare
	Not yet known
	-

	Be declarative
	Yes
	Yes
	Yes
	-

	Be executable
	Yes
	No
	Limited
	-

	Have editing support
	Yes
	Yes
	?
	-

	Have automated validation
	Yes
	Yes
	?
	-

	Be open and neutral
	Yes
	Yes
	? Do not know of open source translators
	-

In summary, none of the three OMG developments yet appear to meet HL7’s requirement as closely as the Open Mapping Language, although MDMI is the closest.

4. Next Steps

OMG experts and contributors to the initiatives mentioned above (QVT, MDMI, IMM, ADM) are invited to comment on the assessments made in section 3 – in case the OMG initiatives have been misunderstood in any way, or their fit to HL7’s requirements under-estimated.

Assuming there has been no major misunderstanding, and that the Open Mapping Language remains the preferred candidate for HL7 standardisation, HL7 intends to take the following steps:

1. Initial review of the OML specification (next 1-2 months)

2. Trial use of OML on a number of HL7 and national projects

3. Revisions to OML following experience in use

4. HL7 Ballot of OML as a Draft Standard for Trial Use (DSTU)

There is nothing healthcare-specific about the Open Mapping Language per se. Therefore OMG, and interested groups within it, may wish to track the development of OML through these steps as a kind of ‘watching brief’ – to see whether the result has wider applicability in the OMG community. If it does, OMG and HL7 may collaborate on its wider standardisation. This has benefits for both. For OMG, it brings in a mapping language which can have a big positive impact on MDA; for HL7, it reduces the dependence on HL7 home-grown standards, enabling HL7 to use cross-industry supported tools and methods.

At the same time , OMG and HL7 should keep a joint watching brief on the application of MDMI in healthcare, to see whether there could be future convergence of Open Mapping Language and MDMI, or whether they in fact serve different needs.

The case for the wider applicability of the Open Mapping Language within OMG is as follows:

The model-driven, forward engineering approach of MDA has gained significant traction in industry and open source developer communities. However, forward-engineering model-driven development is most suited for green-field situations. In most market sectors, including healthcare, these are rare. A large part of all IT budgets – thought to be of the order of 40% - goes to application integration; almost all new applications need to be integrated with existing legacy applications. Core MDA forward-engineering does not support this.

A first step in application integration is data integration – ensuring that new MDA applications can interface with existing data sources. For this, legacy data sources need to be incorporated within an enlarged PSM, with the means to translate data to and from these legacy sources. This requires a simple, executable mapping language, to map between PIM and PSM layers – for PSM structures which were not derived from the PIM.

Three mapping languages have been examined – QVT Relational, Open Mapping Language, and MDMI. Of these, QVT Relational is very powerful, but there are almost no working translators after 8 years. MDMI has working translators, but its semantic model appears to be not yet powerful enough for complex applications. The Open Mapping Language appears to occupy a place between these two; it is a simple language, yet powerful enough to capture PIM-PSM mappings in complex healthcare applications, and it has a working translation engine.

If OMG finds, through tracking the HL7 adoption of Open Mapping Language and its relation to MDMI, that between the two there is indeed a good tool for executable PIM-PSM mappings, then the language may have an important role in extending the scope of MDA beyond green-fields developments, to encompass application integration – which is most IT users’ main headache. That is the driver for a mapping language in healthcare, and it can be the driver in all market sectors.

