Appendix A: Example ITS for ASN.1

This is an example for an Implementation Technology Specification (ITS) of the HL7 version 3 data types. This appendix is of informative value only. At this point in time it conveys no recommendation as to how the HL7 version 3 data types should be implemented in ASN.1. This material is appended to the semantic data type specification as an illustration as to how the abstract semantics can be mapped into an implementation technology.

This specification uses the primitive and constructor types defined in the ASN.1 specification, including, BOOLEAN, BIT STRING, OCTET STRING, UTF8String, INTEGER, REAL, CHOICE, SET, SET OF, SEQUENCE, SEQUENCE OF

For the sake of brevity, not all of the aggregate types
have been created. However, at least one example of each aggregate type has been created in order to set the pattern.

This ASN.1 specification uses the standard C language preprocessor to expand macros that are defined with #define statements. The appropriate use of macros can dramatically increase the readability of the specification.

The following statement creates a macro for constraining a ConceptDescriptor to a particular domain

#define CD(domain) \
CompleteDataValue(WCS{...,data(WCS{...,val(WCS{...,cd(WCS{...,cd({domain})})})})})

The following statements create macros for constraining the other coded types.

#define CS(domain) \
 CompleteDataValue(\
 WCS{...,data(WCS{...,val(WCS{...,cs(WCS{...,cd({domain})})})})})

#define CV(domain) \
 CompleteDataValue(\
 WCS{...,data(WCS{...,val(WCS{...,cv(WCS{...,cd({domain})})})})})

#define CE(domain) \
 CompleteDataValue(\
 WCS{...,data(WCS{...,val(WCS{...,ce(WCS{...,cd({domain})})})})})

The following statement specializes the domain of a Coded Set.

#define SetCS(domain) \
 SetCodedSimpleValue(\
 WC(WCS{...,data(WCS{...,val(WCS{...,ce(WCS{...,cd({domain})})})})}))

This is the standard opening for an ASN.1 specification

HL7-V3-Data-Types DEFINITIONS IMPLICIT TAGS ::=
BEGIN

Every data element has a proper value or it is considered null. If (and only if) it is null, a "null flavor" provides more detail, as shown in the FlavorOfNull domain.

CompleteDataValue
::=
CHOICE {
 null
[0]
NullValue,
 data
[1]
ValueWithExtensions }

NullValue
::=
CS(FlavorOfNull)

Generic type extensions enable comments of various natures to be attached to any data value of any data type. These generic type extensions inherit most properties of their base type and add some specific feature to it.

ValueWithExtensions
::=
SET {
 val
[0]
Value,
 vt
[1]
ValidTime OPTIONAL,
 uvn
[2]
UncertainValueNarative OPTIONAL,
 uvp
[3]
UncertainValueProbabilistic OPTIONAL,
 npp
[4]
NonParametricProbability OPTIONAL,
 pp
[5]
ParametricProbability OPTIONAL }

ValidTime
::=
IntervalTimeStamp

UncertainValueNarative
::=
CS(Confidence)

UncertainValueProbabilistic
::=
Probability

Probability
::=
XRealNumber(0..1)

ParametricProbability
::=
SEQUENCE OF UncertainValueProbabilistic

ParametricProbabilityValue
::=
ValueWithExtensions (WITH COMPONENTS {

val,

pp })

NonParametricProbability
::=
UncertainValueProbabilistic

NonParametricProbabilityValue
::=
ValueWithExtensions (WITH COMPONENTS {

val,

npp })

NonParametricProbabilityDistribution
::= SET OF
 NonParametricProbabilityValue

Any data type defined in this specification is a value of the type DataType. Note that X types (base type definitions) are used in defining other primitive types because using the complete types would add unwanted complexity at the lowest level

Value
::=
CHOICE {
 bl
[0]
XBoolean,
 real
[1]
XRealNumber,
 int
[2]
XIntegerNumber,
 ts
[3]
XTimeStamp,
 cs
[4]
XCodedSimpleValue,
 cv
[5]
XCodedValue,
 ce
[6]
XCodedWithEquivalents,
 cd
[7]
XConceptDescriptor,
 st
[8]
XCharacterString,
 ed
[9]
XEncapsulatedData,
 ii
[10]
XInstanceIdentifier,
 oid
[11]
XISOObjectIdentifier,
 tel
[12]
XTelecommunicationAddress,
 ad
[13]
XPostalAddress,
 en
[14]
XEntityName,
 pn
[15]
XPersonName,
 on
[16]
XOrganizationName,
 tn
[17]
XTrivialName,
 pq
[18]
XPhysicalQuantity,
 mo
[19]
XMonetaryAmount,
 rto
[20]
XRatio,
 pivl
[21]
XPeriodicIntervalOfTime,
 eivl
[22]
XEventRelatedPeriodicIntervalOfTime,
 gts
[23]
XGeneralTimingSpecification }

Complete basic types which include FlavorOfNull and Extensions

Boolean
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {bl}) }) })

DecimalNumber
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {real}) }) })

IntegerNumber
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {int}) }) })

TimeStamp
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {ts}) }) })

CodedSimpleValue
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {cs}) }) })

CodedValue
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {cv}) }) })

CodedWithEquivalents
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {ce}) }) })

ConceptDescriptor
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {cd}) }) })

InstanceIdentifier
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {ii}) }) })

ISOObjectIdentifier
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {oid}) }) })

TelecommunicationAddress
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {tel}) }) })

CharacterString
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {st}) }) })

EncapsulatedData
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {ed}) }) })

PostalAddress
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {ad}) }) })

EntityName
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {en}) }) })

PersonName
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {pn}) }) })

OrganizationName
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {on}) }) })

TrivialName
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {tn}) }) })

PhysicalQuantity
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {pq}) }) })

MonetaryAmount
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {mo}) }) })

Ratio
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {rto}) }) })

PeriodicIntervalOfTime
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {pivl}) }) })

EventRelatedPeriodicIntervalOfTime
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {eivl}) }) })

GeneralTimingSpecification
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {gts}) }) })

Specific Set Item subtypes of CompleteDataValue
SET-CS
::= SetCodedSimpleValue

SetCodedSimpleValue
::= SET OF CodedSimpleValue

SET-CV
::= SetCodedValue

SetCodedValue
::= SET OF CodedValue

SET-CE
::= SetCodedWithEquivalents

SetCodedWithEquivalents
::= SET OF CodedWithEquivalents

SET-CD
::= SetConceptDescriptor

SetConceptDescriptor
::= SET OF ConceptDescriptor

Specific History Item subtypes of CompleteDataValue

HIXT
::=
HistoryItemValue

HistoryItemValue
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val,

vt }) })

HIXT-REAL
::=
HistoryItemDecimal

HistoryItemDecimal
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {real}),

vt }) })

HIXT-INT
::=
HistoryItemInteger

HistoryItemInteger
::=
CompleteDataValue (WITH COMPONENTS {

...,

data (WITH COMPONENTS {

...,

val (WITH COMPONENTS {int}),

vt }) })

Full History subtype definitions

HIST-REAL
::= HistoryDecimal

HistoryDecimal
::= SET OF HistoryDecimal

HIST-INT
::= HistoryInteger

HistoryInteger
::= SET OF HistoryInteger

An interval is a set of consecutive values of any ordered data type. An interval is thus a contiguous subset of its base data type.

Interval
::=
SET {
 low
[0]
Value OPTIONAL,
 lowClosed
[1]
XBoolean OPTIONAL,
 high
[2]
Value OPTIONAL,
 highClosed
[3]
XBoolean OPTIONAL,
 width
[4]
Value OPTIONAL,
 center
[5]
Value OPTIONAL }

Interval subtypes

IVL-TS
::=
IntervalTimeStamp

IntervalTimeStamp
::=
Interval (WITH COMPONENTS {

low(WITH COMPONENTS {ts}) OPTIONAL,

lowClosed OPTIONAL,

high(WITH COMPONENTS {ts}) OPTIONAL,

highClosed OPTIONAL,

width(WITH COMPONENTS {ts}) OPTIONAL,

center(WITH COMPONENTS {ts}) OPTIONAL })

IVL-PQ
::=
IntervalPhysicalQuantity

IntervalPhysicalQuantity
::=
Interval (WITH COMPONENTS {

low(WITH COMPONENTS {pq}) OPTIONAL,

lowClosed OPTIONAL,

high(WITH COMPONENTS {pq}) OPTIONAL,

highClosed OPTIONAL,

width(WITH COMPONENTS {pq}) OPTIONAL,

center(WITH COMPONENTS {pq}) OPTIONAL })

The Boolean type stands for the values of two-valued logic. A Boolean value can be either true or false.
BL
::=
Boolean

XBoolean
::=
BOOLEAN

Data that is primarily intended for human interpretation or for further machine processing outside the scope of this specification. This includes unformatted or formatted written language, multi-media data, or structured information in as defined by a different standard (e.g., XML-signatures.) Instead of the data itself, an ED may contain only a reference (see TEL.) Note that the ST data type is a specialization of the ED data type when the ED media type is text/plain.

ED
::= EncapsulatedData

XEncapsulatedData
::=
SET {
 bin
[0]
BinaryData OPTIONAL,

Identifies the encoding of the data and a method to interpret the data.

 type
[1]
MimeMediaType,

Where applicable, specifies the character set and character encoding used. The charset may be implied or fixed by the ITS.

 charset
[2]
CharSet OPTIONAL,

Where applicable, specifies the language of text data.

 language
[3]
Language OPTIONAL,

Indicates whether the raw byte data is compressed, and what compression algorithm was used.

 compression
[4]
Compression OPTIONAL,

A short binary value representing a cryptographically strong checksum over the binary data.

 integritycheck
[5]
IntegrityCheck OPTIONAL,

Specifies the algorithm used to compute the integrityCheck value.

 integritycheckalgorithm
[6]
IntegrityCheckAlgorithm OPTIONAL,

An abbreviated rendition of the full data.

 thumbnail
[7]
Thumbnail OPTIONAL }

Binary data is a sequence of uninterpreted bits. A bit is identical with a Boolean value. Thus, all binary data is - semantically - a sequence of Boolean values. The binary data type is protected; it should not be used directly but only inside the encapsulated data (ED).

BIN
::=
BinaryData

BinaryData
::=
BIT STRING

MimeMediaType
::=
CS(MediaType)

CharSet
::=
CS(CharacterSetCode)

Language
::=
CS(Language)

Compression
::=
CS(CompressionAlgorithm)

IntegrityCheck
::=
BinaryData

IntegrityCheckAlgorithm
::=
CS(IntegrityCheckAlgorithm)

Thumbnail
::=
EncapsulatedData

Text data, primarily intended for machine processing (e.g., sorting, querying, indexing, etc.) Used for names, symbols, and formal expressions.) Note that the ST data type is a specialization of the ED data type when the ED media type is text/plain.

ST
::=
CharacterString

XCharacterString
::=
UTF8String

Coded data, consists of a code and display name. The code system and code system version is fixed by the context in which the CS value occurs. CS is used for coded attributes that have a single HL7-defined value set.

CS
::=
CodedSimpleValue

XCodedSimpleValue
::=
XConceptDescriptor (WITH COMPONENTS {

cd OPTIONAL,

dn OPTIONAL })

Coded data, consists of a code, display name, code system, and original text. Used when a single code value must be sent.

CV
::=
CodedValue

XCodedValue
::=
XConceptDescriptor (WITH COMPONENTS {

cd OPTIONAL,

dn OPTIONAL,

cs OPTIONAL,

csn OPTIONAL,

csv OPTIONAL,

ot OPTIONAL })

Coded data, consists of a coded value (CV) and, optionally, coded value(s) from other coding systems that identify the same concept. Used when alternative codes may exist.

CE
::=
CodedWithEquivalents

XCodedWithEquivalents
::=
XConceptDescriptor (WITH COMPONENTS {

cd OPTIONAL,

dn OPTIONAL,

cs OPTIONAL,

csn OPTIONAL,

csv OPTIONAL,

ot OPTIONAL,

trans OPTIONAL })

Concept Descriptor is like a CE with the extension of modifiers. Modifiers for codes have an optional role name and a value. Modifiers allow one to express, e.g., "FOOT, LEFT" as a postcoordinated term built from the primary code "FOOT" and the modifier "LEFT".

CD
::=
ConceptDescriptor

XConceptDescriptor
::=
SET {

The plain code symbol.

 cd
[0]
Code OPTIONAL,

A name or title for the code, under which the sending system shows the code value to its users

 dn
[1]
DisplayName OPTIONAL,

Specifies the code system that defines the code

 cs
[2]
CodeSystem OPTIONAL,

A common name of the coding system

 csn
[3]
CodeSystemName OPTIONAL,

If applicable, a version descriptor defined specifically for the given code system

 csv
[4]
CodeSystemVersion OPTIONAL,

The text or phrase used as the basis for the coding

 ot
[5]
OriginalText OPTIONAL,

Specifies additional codes that modify the meaning of this concept descriptor

 trans
[6]
Translations OPTIONAL,

A set of other concept descriptors that translate this concept descriptor into other code systems.

 mod
[7]
ListOfModifiers OPTIONAL }

Code
::=
XCharacterString

DisplayName
::=
XCharacterString

CodeSystem
::=
XISOObjectIdentifier

CodeSystemName
::=
XCharacterString

CodeSystemVersion
::=
XCharacterString

OriginalText
::=
XEncapsulatedData

Translations
::=
SET OF ConceptDescriptor

ListOfModifiers
::=
SEQUENCE OF ConceptRole

The concept role is used to hold code modifiers with optionally named roles. Both modifier roles and values must be defined by the coding system.

ConceptRole
::=
SET {

Specifies the the kind of role that the modifier plays.

 val
[0]
Role OPTIONAL,

Specifies the manner in which the value modifies the meaning.

 name
[1]
RoleName OPTIONAL,

Indicates that the sense of the role name is reversed

 inv
[2]
Inverted OPTIONAL }

Role
::=
ConceptDescriptor

RoleName
::=
CV(RoleNameCode)

Inverted
::=
XBoolean

An identifier to uniquely identify an individual instance. Examples are medical record number, order number, service catalog item number, etc. Based on the ISO Object Identifier (OID).

II
::=
InstanceIdentifier

XInstanceIdentifier
::=
SET {

The value of the identifier, unique within its assigning authority's namespace.

 extension
[0]
XCharacterString OPTIONAL,

A unique identifier that guarantees the global uniqueness of the instance identifier. The root alone may be the entire instance identifier, an extension value is not needed.

 root
[1]
XISOObjectIdentifier,

A human readable name or mnemonic for the assigning authority. This name is provided solely for the convenience of unaided humans interpreting an II value. Note: no automated processing must depend on the assigning authority name to be present in any form.

 assigningAuthorityName
[2]
XCharacterString OPTIONAL }

A globally unique string consisting of numbers and dots (e.g., 2.16.840.1.113883.3.1). This string expresses a tree data structure, with the left-most number representing the root and the right-most number representing a leaf.

OID
::=
ISOObjectIdentifier

XISOObjectIdentifier
::=
XCharacterString

A telephone number or e-mail address specified as a URL. In addition, this type contains a time specification when that address is to be used, plus a code describing the kind of situations and requirements that would suggest that address to be used (e.g., work, home, pager, answering machine, etc.).

TEL
::=
TelecommunicationAddress

XTelecommunicationAddress
::=
SET {

The essence of a telecommunication address is a Universal Resource Locator.

 url
[0]
URL,

A code advising a system or user which telecommunication address in a set of like addresses to select for a given telecommunication need.

 use
[1]
TelecomAddressUse OPTIONAL }

TelecomAddressUse
::=
SetCS(TelecommunicationsAddressUse)

A Universal Resource Locator (URL) is a type of telecommunications address specified as Internet standard RFC 1738 [http://www.isi.edu/in-notes/rfc1738.txt]. The URL specifies the protocol and the contact point defined by that protocol for the resource. Notable uses of the telecommunication address data type is for telephone and telefax numbers, e-mail addresses, Hypertext references, FTP references, etc. URLs are normally represented in a character string, formatted as "<scheme>:<address>," where the most common schemes are:

URL
::= XCharacterString

For example, a mailing address. Typically includes street or post office Box, city, postal code, country, etc.

AD
::=
PostalAddress

XPostalAddress
::=
SET {

The address data

 part
[0]
SequenceADXP,

A code advising a system or user which address in a set of like addresses to select for a given purpose

 use
[1]
AddressUses OPTIONAL }

AddressUses
::=
SetCS(AddressUse)

SequenceADXP
::= SEQUENCE OF ADXP

ADXP
::=
SET {

The address part data

 text
[0]
XCharacterString,

Indicates whether an address part is the street, city, country, postal code, post box, etc.

 type
[1]
AddrPartType OPTIONAL }

AddrPartType
::=
CS(AddressPartType)

A name of a person, organization, place, or thing. Can be a simple character string or may consist of several name parts that can be classified as given name, family name, nickname, suffix, etc.

EN
::=
EntityName

XEntityName
::=
SET {

The name data

 part
[0]
SequenceENXP,

A code advising a system or user which address in a set of like addresses to select for a given purpose

 use
[1]
NameUses OPTIONAL }

NameUses
::=
SetCS(NameUse)

SequenceENXP
::= SEQUENCE OF ENXP

ENXP
::=
SET {

The name part data

 text
[0]
XCharacterString,

Indicates whether an address part is the street, city, country, postal code, post box, etc.

 type
[1]
EntityNamePartType OPTIONAL,

A set of codes each of which specifies a certain subcategory of the name

 qualifier
[2]
EntityNameQualifiers OPTIONAL }

EntityNamePartType
::=
CS(NamePartType)

EntityNameQualifiers
::=
CS(EntityNameQualifier)

A name of a person. Person names usually consist of several name parts that can be classified as given, family, nickname etc. PN is a restriction of EN.

PN
::=
PersonName

XPersonName
::=
XEntityName

A name of an organization. ON name parts are typically not distinguished, but may distinguish the suffix for the legal standing of an organization (e.g. "Inc.", "Co.", "B.V.", "GmbH", etc.) from the name itself. ON is a restriction of EN.

ON
::=
OrganizationName

XOrganizationName
::=
XEntityName

A restriction of EN that is equivalent with a plain character string (ST). Typically used for the names of things, where name parts are not distinguished.

TN
::=
TrivialName

XTrivialName
::=
XEntityName (WITH COMPONENTS {part})

The QTY data type is an abstract generalization that stands for INT, REAL, PQ, and MO.

QTY
::=
CHOICE {
 real
[0]
XRealNumber,
 int
[1]
XIntegerNumber,
 pq
[2]
XPhysicalQuantity,
 mo
[3]
XMonetaryAmount }

Positive and negative whole numbers typically the results of counting and enumerating. The standard imposes no bounds on the size of integer numbers.

INTX
::=
IntegerNumber

XIntegerNumber
::=
INTEGER

Fractional numbers. Typically used whenever quantities are measured, estimated, or computed from other decimal numbers. The typical representation is decimal, where the number of significant decimal digits is known as the precision.

XRealNumber
::=
REAL

A dimensioned quantity expressing the result of measurement. It consists of a decimal number value and a physical unit. Physical quantities are often constrained to a certain dimension by specifying a unit representing the dimension (e.g. m, kg, s, kcal/d, etc.) However, physical quantities should not be constrained to any particular unit (e.g., should not be constrained to centimeter instead of meter or inch.)

PQ
::=
PhysicalQuantity

XPhysicalQuantity
::=
SET {

The magnitude of the quantity measured in terms of the unit

 value
[0]
XRealNumber,

The unit of measure

 unit
[1]
Units,

The magnitude of the quantity measured in terms of the original unit.

 originalValue
[2]
XRealNumber OPTIONAL,

The original unit of measure.

 originalUnits
[3]
OriginalUnits OPTIONAL }

Units come from UCUM

Units
::= XCodedValue

OriginalUnits
::= CS
(UCUM)

The amount of money in some currency. Consists of a value and a currency denomination (e.g., U.S.$, Pound sterling, Euro, Indian Rupee.)

MO
::=
MonetaryAmount

XMonetaryAmount
::=
SET {

The magnitude of the monetary amount in terms of the currency unit.

 value
[0]
XRealNumber,

The currency unit

 currency
[1]
CurrencyUnit }

CurrencyUnit
::= CS(Currency)

A quantity explicitly including both a numerator and a denominator (e.g. 1:128.) Only in the rare cases when the numerator and denominator must stand separate should the Ratio data type should be used. Normally, the REAL, PQ, or MO data types are more appropriate.

RTO
::=
Ratio

XRatio
::=
SET {

The numerator of the ratio.

num
[0]
QTY,

The denominator of the ratio

denom
[1]
QTY }

A time stamp.

TS
::=
TimeStamp

XTimeStamp
::=
XCharacterString

The periodic interval of time specifies an interval of time that recurs periodically. Periodic intervals have two properties, phase and period. The phase specifies the "interval prototype" that is repeated every period.

PIVL
::=
PeriodicIntervalOfTime

XPeriodicIntervalOfTime
::=
SET {

A prototype of the repeating interval, may anchor the periodic interval sequence at a certain point in time.

 phase
[0]
IntervalTimeStamp,

A time duration specifying the frequency at which the periodic interval repeats.

 period
[1]
TimeQuantity,

Specifies an alignment of the repetition to a calendar (e.g., to distinguish every 30 days from "the 5th of every month".)

 alignment
[2]
Alignment OPTIONAL,

Indicates whether the exact timing is up to the party executing the schedule (e.g., to distinguish "every 8 hours" from "3 times a day".)

 institutionSpecifiedTime
[3]
XBoolean OPTIONAL }

TimeQuantity ::= XPhysicalQuantity (WITH COMPONENTS {
 ...,
 value,
 unit (WCS{cd({TimeUnit})}) })

Alignment
::= CS(CalendarPeriodsForAlignment)

The event-related periodic interval of time allows specifying a periodic interval of time based on activities of daily living, important events that are time-related but not fully determined by time.

EIVL
::=
EventRelatedPeriodicIntervalOfTime

XEventRelatedPeriodicIntervalOfTime
::=
SET {

A code for a common (periodical) activity of daily living

 event
[0]
EventType,

An interval that marks the offsets for the beginning, width and end of the event-related periodic interval measured from the time each such event actually occurred

 offset
[1]
IntervalPhysicalQuantity }

EventType
::=
CV(EventRelatedPeriod)

One or more time intervals used to specify the timing of events. Every event spans one time interval (occurrence interval). A repeating event is timed through a sequence of such occurrence intervals. Such timings are often specified not directly as a sequence of intervals but as a rule, e.g., "every other day (Mon - Fri) between 08:00 and 17:00 for 10 minutes."

GTS
::=
GeneralTimingSpecification

XGeneralTimingSpecification
::=
XCharacterString

END
-- HL7-V3-Data-Types

�What do you mean by “aggregate type”?

�You see that I turned all ASN.1 comments into body text. I would like to also add subheadings, possibly in the ordering of this material in the main specification.

�Changed from CV to CS, ‘cause I think that’s what the spec says. See also MO below, where we also use CS.

�Why don’t you use ASN.1 GeneralizedTime here?

