

Karsten Fehre

Medexter Healthcare GmbH

Borschkegasse 7/5, A-1090 Vienna, Austria

+43-1-968 03 24 tel

+43-1-968 09 22 fax

kf@medexter.com

www.medexter.com

November 4, 2011

Proposal for a fuzzified Arden Syntax based on version 2.8

page 2 of 36

Contents

1. Truth Value... 3
2. Fuzzy Data Types .. 3

2.1. Fuzzy Number ... 3
2.2. Fuzzy Time ... 5
2.3. Fuzzy Duration .. 5

3. Applicability .. 5
4. Fuzzy Set ... (unary, right associative) ... 6
5. ... Fuzzified By ... (binary, non-associative) .. 8
6. Defuzzified ... (unary, right associative) ..10
7. Applicability [Of] ... (binary, non-associative)...11
8. ... As Truth Value (unary, left associative) ...14
9. ... Is Fuzzy (unary, non-associative) ...15
10. ... Is Crisp (unary, non-associative) ..16
11. Conclude ...17
12. … Is In … (binary, non-associative) ...18
13. … <= … (binary, non-associative) ...18
14. … >= … (binary, non-associative) ...19
15. ... Or ... (binary, left associative)..19
16. ... And ... (binary, left associative)..20
17. not … (unary, non-associative) ...21
18. Sort Expressions...22
19. If-Then Statements...23
20. If-Then-Else Statements..23
21. If-Then-Elseif Statements ..24
22. If-Then-ElseIf-Aggregate Statement ...25
23. Simple Switch-Case Statement...27
24. Switch-Case-Default Statement ..27
25. Switch-Case- Aggregate Statement...27
26. Linguistic Variables ...28
27. At Least ... Of ... (binary, right associative) ...30
28. At Most ... Of ... (binary, right associative) ..30
29. Operator Precedence and Associativity ..32

page 3 of 36

1. Truth Value

Affected chapters: (8.2)

Insert as chapter: 8.13 or as replacement for 8.2

Text to be inserted:

The data type of propositional variables is denoted by truth value or—for reasons of

backwards compatibility—, equivalently, Boolean. A variable of this type stores real

numbers between 0 and 1. The Boolean value true is equal to the truth value 1 and the

Boolean value false is equal to the truth value 0. We may write:

Var := truth value 0; or, equivalently Var := false;

Var := truth value 0.667;

Var := truth value 1; or, equivalently Var := true;

Affected BNF: the non-terminal “boolean_value ” must be extended to:

<boolean_value> ::=

 “TRUE”

| “FALSE”

| “TRUTH VALUE” <number>

| “TRUTH VALUE” “TRUE”

| “TRUTH VALUE” “FALSE”

2. Fuzzy Data Types

Affected chapters: none

Insert as chapter: 8.14

Text to be inserted:

Fuzzy data types are fuzzy sets over the data types number, time or duration.

2.1. Fuzzy Number

Affected chapters: none

Insert as chapter: 8.14.1

Text to be inserted:

The data type fuzzy number is dedicated to fuzzy sets over the reals. A fuzzy number

partitions the reals into a finite number of (possibly unbounded) intervals, on each of

page 4 of 36

which the fuzzy set is linear and continuous.

Formally, a fuzzy set u : R->[0, 1] can be stored in a variable of type fuzzy number if

the following condition is met: There are a1 < a2 < … < ak with k >= 1, such that u is

linear on each open interval (a1; a2), … , (ak-1; ak), u is constant on (-∞; a1) and (ak;

+∞), and for each x in R, u(x) coincides either with the left limit or the right limit of u

at x. If u is continuous, we then define:

Fuzzyset u := fuzzy set (a 1,t 1), (a 2,t 2), ..., (a k,t k);

where ti = u(ai) for i = 1, …, k.

The characteristic functions are allowed to include discontinuities, which are not likely to

be required in applications, but should at least be definable. At discontinuity points we

denote the left as well as the right limit. The first assignment is the value at that point,

unless the second one appears twice. For instance,

TwotoThree := fuzzy set (2, 0), (2, 1), (2, 1), (3, 1), (3,0);

OnetoFour := fuzzy set (1, 0), (2, 1), (2, 1), (3, 1), (4,0);

Fuzzy sets whose graph forms a symmetrical triangle around one point, which is mapped

to 1, are called triangular normal fuzzy sets. A simplified notation is permitted for these:

page 5 of 36

an expression of the form fuzzy set (a - b, 0), (a, 1), (a + b, 0), where a; b in R and b >

0, may also be written as:

a fuzzified by b

2.2. Fuzzy Time

Affected chapters: none

Insert as chapter: 8.14.2

Text to be inserted:

The data type fuzzy time is dedicated to fuzzy sets over times. Except for the simplified

notation, all definitions of fuzzy number apply mutatis mutandis to fuzzy time.

For the simplified notation, a time constant can only be fuzzified by duration. Thus, we

define

AfuzzyTime := today fuzzified by 1 day;

simple := 2009-10-10 fuzzified by 12 hours;

complex := fuzzy set (2009-10-10,0), (2009-10-11,1) , (2009-11-10,1), (2009-

11-11,0);

2.3. Fuzzy Duration

Affected chapters: none

Insert as chapter: 8.14.3

Text to be inserted:

All definitions of a fuzzy number apply mutatis mutandis to fuzzy duration.

simple := 14 days fuzzified by 1 day;

complex := fuzzy set (2 days,0), (3 days,1), (14 da ys,1), (31 days,0);

3. Applicability

Affected chapters: none

Insert as chapter: 8.15

Text to be inserted:

All simple data types (Truth Value, Boolean, Number, Time, Duration, String, Term,

Query Results, Time-of-Day, Day-of-Week, Fuzzy Types) are endowed with additional

information called the degree of applicability. This degree of applicability stores a truth

page 6 of 36

value expressing, which refers to the degree to which it is reasonable to use the value of

a variable. It is 1 by default, and—whenever the program branches—it is reduced

automatically according to the weight assigned to that branch. The programmer may

decide to make explicit use of this component but he is not required to do so. To access

the degree of applicability of an expression, the Arden Syntax programmer is referred to

the applicability [of] operator (Chapter 9.19.4).

4. Fuzzy Set ... (unary, right associative)

Affected chapters: none

Insert as chapter: 9.19.1 (into a new chapter “9.19 Fuzzy Operators”)

Text to be inserted:

The fuzzy set … operator creates a new fuzzy set as described in 8.14.1, 8.14.2, or

8.14.3, according to the provided parameter. Its usage is:

<var> := FUZZY SET "(" <number>, <truth-value>")", "(" <number>, <truth-

value>")", ...;

Var1 := fuzzy set (2, 0), (3, 1), (4, 1), (5, 0);

<var> := FUZZY SET "(" <time>, <truth-value>")", "(" <time>, <truth-

value>")", ...;

Var2 := fuzzy set (now – 2 days, 0), (now, 1), (now + 1 day, 0);

Var3 := fuzzy set (2001-12-12, 0), (2003-12-12, 1), (2009-01-01, 0);

<var> := FUZZY SET "(" <duration>, <truth-value>")" , "(" <duration>, <truth-

value>")", ...;

Var4 := fuzzy set (2 days, 0), (3 days, 1), (4 days , 1), (5 days, 0);

Affected BNF:

<logic_assignment> ::=

<identifier_becomes> <expr>

| <time_becomes> <expr>

| <applicability_becomes> <expr>

page 7 of 36

| <identifier_becomes> <call_phrase>

| “(” <data_var_list> “)” “:=„ <call_phrase>

| “LET” “(” <data_var_list> “)” “BE“ <call_phrase>

| <identifier_becomes> <new_object_phrase>

| <identifier_becomes> <fuzzy_set_phrase>

<expr_fuzzy_set> ::=

<expr>

| <fuzzy_set_phrase>

<expr_factor_atom> ::=

<identifier>

| <number>

| <string>

| <time_value>

| <boolean_value>

| <weekday_literal>

| “TODAY”

| “TOMORROW”

| “NULL”

| “CONCLUDE” /* only available in the action slot * /

| <it>

| “(” “)”

| “(” <expr_fuzzy_set> “)”

<data_assign_phrase> ::=

 “READ“ <read_phrase>

| “MLM” <term>

| “MLM” <term> “FROM” “INSTITUTION” <string>

| “MLM” “MLM SELF”

| “INTERFACE“ <mapping_factor>

| “EVENT“ <mapping_factor>

| “MESSAGE“ <mapping_factor>

| “MESSAGE” “AS” <identifier> <mapping_factor>

| “MESSAGE” “AS” <identifier>

| “DESTINATION“ <mapping_factor>

| “DESTINATION” “AS” <identifier> <mapping_factor>

| “DESTINATION” “AS” <identifier>

| “ARGUMENT”

| “OBJECT“ <object_definition>

| “LINGUISTIC VARIABLE“ <object_definition>

page 8 of 36

| <call_phrase>

| <new_object_phrase>

| <fuzzy_set_phrase>

| <expr>

<fuzzy_set_phrase> ::=

“FUZZY SET” <fuzzy_set_init_list>

| <expr_duration> “FUZZIFIED BY” <expr_duration>

| <expr_factor> “FUZZIFIED BY” <expr_factor>

<fuzzy_set_init_list> ::=

<fuzzy_set_init_element>

| <fuzzy_set_init_list> “,” <fuzzy_set_init_element >

<fuzzy_set_init_element> ::=

“(” <fuzzy_set_init_factor> “,” <expr_factor> “)”

<fuzzy_set_init_factor> ::=

<expr_factor>

| <number> <duration_op>

5. ... Fuzzified By ... (binary, non-associative)

Affected chapters: none

Insert as chapter: 9.19.2 (into a new chapter “9.19 Fuzzy Operators”)

Text to be inserted:

The … fuzzified by … operator creates a new triangular fuzzy set as described in

8.14.1, 8.14.2, or 8.14.3, according to the provided parameter. The operator returns

null if the data types are not compatible. Its usage is:

<var> := <number> FUZZIFIED BY <number>;

Var1 := 7 fuzzified by 2;

<var> := <time> FUZZIFIED BY <duration>;

Var2 := now fuzzified by 2 days;

<var> := <duration> FUZZIFIED BY <duration>;

Var3 := 7 days fuzzified by 2 hours;

Affected BNF:

<logic_assignment> ::=

page 9 of 36

<identifier_becomes> <expr>

| <time_becomes> <expr>

| <applicability_becomes> <expr>

| <identifier_becomes> <call_phrase>

| “(” <data_var_list> “)” “:=„ <call_phrase>

| “LET” “(” <data_var_list> “)” “BE“ <call_phrase>

| <identifier_becomes> <new_object_phrase>

| <identifier_becomes> <fuzzy_set_phrase>

<expr_fuzzy_set> ::=

<expr>

| <fuzzy_set_phrase>

<expr_factor_atom> ::=

<identifier>

| <number>

| <string>

| <time_value>

| <boolean_value>

| <weekday_literal>

| “TODAY”

| “TOMORROW”

| “NULL”

| “CONCLUDE” /* only available in the action slot * /

| <it>

| “(” “)”

| “(” <expr_fuzzy_set> “)”

<data_assign_phrase> ::=

 “READ“ <read_phrase>

| “MLM” <term>

| “MLM” <term> “FROM” “INSTITUTION” <string>

| “MLM” “MLM SELF”

| “INTERFACE“ <mapping_factor>

| “EVENT“ <mapping_factor>

| “MESSAGE“ <mapping_factor>

| “MESSAGE” “AS” <identifier> <mapping_factor>

| “MESSAGE” “AS” <identifier>

| “DESTINATION“ <mapping_factor>

| “DESTINATION” “AS” <identifier> <mapping_factor>

| “DESTINATION” “AS” <identifier>

page 10 of 36

| “ARGUMENT”

| “OBJECT“ <object_definition>

| “LINGUISTIC VARIABLE“ <object_definition>

| <call_phrase>

| <new_object_phrase>

| <fuzzy_set_phrase>

| <expr>

<fuzzy_set_phrase> ::=

“FUZZY SET” <fuzzy_set_init_list>

| <expr_duration> “FUZZIFIED BY” <expr_duration>

| <expr_factor> “FUZZIFIED BY” <expr_factor>

<fuzzy_set_init_list> ::=

<fuzzy_set_init_element>

| <fuzzy_set_init_list> “,” <fuzzy_set_init_element >

<fuzzy_set_init_element> ::=

“(” <fuzzy_set_init_factor> “,” <expr_factor> “)”

<fuzzy_set_init_factor> ::=

<expr_factor>

| <number> <duration_op>

6. Defuzzified ... (unary, right associative)

Affected chapters: none

Insert as chapter: 9.19.3 (into a new chapter “9.19 Fuzzy Operators”)

Text to be inserted:

The defuzzified operator expects a fuzzy data type value as its argument. The operator

converts a fuzzy set into a crisp data type. To calculate the result the mean of

maximum method is used. That is, the average of the midpoints of the intervals,

mapping to the supremum of the fuzzy set image, is calculated. If it is not exclusive to

finite intervals, null is returned. The usage of the operator is:

<n:crisp_type> := DEFUZZIFIED <n:fuzzy_type>

7 := Defuzzified 7 fuzzified by 2;

page 11 of 36

Figure 1: Mean Of Maximum
Affected BNF:

<of_noread_func_op> ::=

“ANY” | “ALL”

| “NO” | “SLOPE”

| “STDDEV” | “VARIANCE”

| “INCREASE” | “PERCENT” “INCREASE”

| “%” “INCREASE” | “DECREASE”

| “PERCENT” “DECREASE” | “%” “DECREASE”

| “INTERVAL” | “TIME”

| “TIME” “OF” “DAY” | “DAY” “OF” “WEEK”

| “ARCCOS” | “ARCSIN”

| “ARCTAN” | “COSINE”

| “COS” | “SINE”

| “SIN” | “TANGENT”

| “TAN” | “EXP”

| “FLOOR” | “INT”

| “ROUND” | “CEILING”

| “TRUNCATE” | “LOG”

| “LOG10” | “ABS”

| “SQRT” | “EXTRACT” “YEAR”

| “EXTRACT” “MONTH” | “EXTRACT” “DAY”

| “EXTRACT” “HOUR” | “EXTRACT” “MINUTE”

| “EXTRACT” “SECOND” | “EXTRACT” “TIME” “OF” “DAY”

| “STRING” | “EXTRACT” “CHARACTERS”

| “REVERSE” | “LENGTH”

| “UPPERCASE” | “LOWERCASE”

| “CLONE” | “EXTRACT” “ATTRIBUTE” “NAMES”

| “APPLICABILITY” | “DEFUZZIFIED”

7. Applicability [Of] ... (binary, non-associative)

page 12 of 36

Affected chapters: none

Insert as chapter: : 9.19.4 (into a new chapter “9.19 Fuzzy Operators”)

Text to be inserted:

The applicability of operator returns the degree applicability of a value. Since null is

not allowed as degree of applicability, a value is always returned (default degree of

applicability is 1). The result of the applicability operator preserves the primary time

and degree of applicability of its argument; so applicability applicability x is

equivalent to applicability x. Its usage is (assuming that data0 has the degree of

applicability of 0.44):

<n:truth-value> := APPLICABILITY [OF] <n:any-type>

0.44 := APPLICABILITY OF data0

0.44 := APPLICABILITY APPLICABILITY data0

(1,1) := APPLICABILITY (3,4)

The inverse of the applicability operator (to set the degree of applicability of a value)

can be achieved by using the applicability operator on the left side of an assignment

statement. For example:

APPLICABILITY [OF] <n:any-type> := <n:truth-value>;

APPLICABILITY data1 := 0.44;

If the identifier on the left hand side of an assignment statement refers to a list, the

behavior of the applicability assignment is undefined.

Affected BNF:

<logic_assignment> ::=

<identifier_becomes> <expr>

| <time_becomes> <expr>

| <applicability_becomes> <expr>

| <identifier_becomes> <call_phrase>

| “(” <data_var_list> “)” “:=„ <call_phrase>

| “LET” “(” <data_var_list> “)” “BE“ <call_phrase>

| <identifier_becomes> <new_object_phrase>

| <identifier_becomes> <fuzzy_set_phrase>

<applicability_becomes> ::=

“APPLICABILITY” “OF” <identifier> “:=”

page 13 of 36

| “APPLICABILITY” <identifier> “:=”

| “LET” “APPLICABILITY” “OF” <identifier> “BE”

| “LET” “APPLICABILITY” <identifier> “BE”

<of_noread_func_op> ::=

“ANY” | “ALL”

| “NO” | “SLOPE”

| “STDDEV” | “VARIANCE”

| “INCREASE” | “PERCENT” “INCREASE”

| “%” “INCREASE” | “DECREASE”

| “PERCENT” “DECREASE” | “%” “DECREASE”

| “INTERVAL” | “TIME”

| “TIME” “OF” “DAY” | “DAY” “OF” “WEEK”

| “ARCCOS” | “ARCSIN”

| “ARCTAN” | “COSINE”

| “COS” | “SINE”

| “SIN” | “TANGENT”

| “TAN” | “EXP”

| “FLOOR” | “INT”

| “ROUND” | “CEILING”

| “TRUNCATE” | “LOG”

| “LOG10” | “ABS”

| “SQRT” | “EXTRACT” “YEAR”

| “EXTRACT” “MONTH” | “EXTRACT” “DAY”

| “EXTRACT” “HOUR” | “EXTRACT” “MINUTE”

| “EXTRACT” “SECOND” | “EXTRACT” “TIME” “OF” “DAY”

| “STRING” | “EXTRACT” “CHARACTERS”

| “REVERSE” | “LENGTH”

| “UPPERCASE” | “LOWERCASE”

| “CLONE” | “EXTRACT” “ATTRIBUTE” “NAMES”

| “APPLICABILITY” | “DEFUZZIFIED”

<data_assignment> ::=

<identifier_becomes> <data_assign_phrase>

| <time_becomes> <expr>

| <applicability_becomes> <expr>

| “(” <data_var_list> “)” “:=” “READ“ <read_phrase>

| “LET” “(” <data_var_list> “)” “BE” “READ“ <read_p hrase>

| “(” <data_var_list> “)” “:=” “READ” “AS” <identif ier>

<read_phrase>

page 14 of 36

| “LET” “(” <data_var_list> “)” “BE” “READ” “AS” <i dentifier>

<read_phrase>

| “(” <data_var_list> “)” “:=” “ARGUMENT”

| “LET” “(” <data_var_list> “)” “BE” “ARGUMENT”

<action_statement> ::=

/* empty */

| “IF“ <action_if_then_else2>

| “SWITCH” <identifier> <action_switch>

| “FOR” <identifier> “IN” <expr> “DO“ <action_block > “;” “ENDDO”

| “WHILE” <expr> “DO“ <action_block> “;” “ENDDO”

| <call_phrase>

| <call_phrase> “DELAY” <expr>

| “WRITE” <expr>

| “WRITE” <expr> “AT” <identifier>

| “RETURN” <expr>

| <identifier_becomes> <expr>

| <time_becomes> <expr>

| <applicability_becomes> <expr>

| <identifier_becomes> <new_object_phrase>

8. ... As Truth Value (unary, left associative)

Affected chapters: none

Insert as chapter: 9.20.4 (into a new chapter “9.20 Type Conversion Operators” –

together with “as number”, “as time”, and “as string”)

Text to be inserted:

The as truth value operator attempts to convert a Number or Boolean to a truth value.

If the conversion to a truth value is possible, the truth value is returned, otherwise null

is returned. The primary time of the argument is preserved.

The usual use for this is to convert a calculated number into the corresponding truth

value. If the number is not between 0 and 1, the result will be null.

Boolean values are translated at follows: Boolean true is represented as truth value 1

and Boolean false is represented as truth value 0.

<n:truth value> := <n:number> AS TRUTH VALUE;

0.33 := 0.33 AS TRUTH VALUE;

null := "xyz" AS TRUTH VALUE;

page 15 of 36

null := 400 AS TRUTH VALUE;

<n:truth value> := <n:Boolean> AS TRUTH VALUE;

1 := True AS TRUTH VALUE;

0 := False AS TRUTH VALUE;

() := () AS TRUTH VALUE;

Affected BNF:

<unary_comp_op> ::=

“PRESENT”

| “NULL”

| “BOOLEAN”

| “TRUTH VALUE”

| “CRISP”

| “FUZZY”

| “NUMBER”

| “TIME”

| “DURATION”

| “STRING”

| “LIST”

| “OBJECT”

| “LINGUISTIC VARIABLE”

| <identifier>

| “TIME” “OF” “DAY”

<as_func_op> ::=

“NUMBER”

| “TRUTH VALUE”

9. ... Is Fuzzy (unary, non-associative)

Affected chapters: none

Insert as chapter: 9.6.27

Text to be inserted:

The is fuzzy operator returns true if the argument's data type is fuzzy number, fuzzy

time or fuzzy duration. Otherwise it returns false. Is fuzzy never returns null. Its usage

is:

<n:Truth Value> := <n:any-type> IS FUZZY

false := 3 IS FUZZY

page 16 of 36

true := (FUZZY SET (0,0), (1,1)) IS FUZZY

true := (today fuzzified by 2 days) IS FUZZY

Affected BNF:

<unary_comp_op> ::=

“PRESENT”

| “NULL”

| “BOOLEAN”

| “TRUTH VALUE”

| “CRISP”

| “FUZZY”

| “NUMBER”

| “TIME”

| “DURATION”

| “STRING”

| “LIST”

| “OBJECT”

| “LINGUISTIC VARIABLE”

| <identifier>

| “TIME” “OF” “DAY”

10.... Is Crisp (unary, non-associative)

Affected chapters: none

Insert as chapter: 9.6.28

Text to be inserted:

The is crisp operator returns true if the argument's data type is not a fuzzy number,

fuzzy time or fuzzy duration. Otherwise it returns false. Is crisp never returns null. Its

usage is:

<n:Truth Value> := <n:any-type> IS CRISP

true := 3 IS CRISP

false := (FUZZY SET (0,0), (1,1)) IS CRISP

false := (today fuzzified by 2 days) IS CRISP

Affected BNF:

<unary_comp_op> ::=

“PRESENT”

| “NULL”

page 17 of 36

| “BOOLEAN”

| “TRUTH VALUE”

| “CRISP”

| “FUZZY”

| “NUMBER”

| “TIME”

| “DURATION”

| “STRING”

| “LIST”

| “OBJECT”

| “LINGUISTIC VARIABLE”

| <identifier>

| “TIME” “OF” “DAY”

11.Conclude

Affected chapters: 10.2.4

Insert as chapter: none

Text to be inserted:

If the expression (<expr>) in the conclude statements is a truth value > 0, the

applicabilities of all variables are multiplied by this value, and the action slot is executed

immediately. Otherwise the whole MLM or the current branch of the MLM terminates

immediately.

…

Furthermore the reserved word “conclude” can be used in the action slot to retrieve the

degree of applicability the action slot is executed with.

Applicability_of_action_slot:= conclude;

Affected BNF:

<expr_factor_atom> ::=

<identifier>

| <number>

| <string>

| <time_value>

| <boolean_value>

| <weekday_literal>

page 18 of 36

| “TODAY”

| “TOMORROW”

| “NULL”

| “CONCLUDE” /* only available in the action slot * /

| <it>

| “(” “)”

| “(” <expr_fuzzy_set> “)”

12.… Is In … (binary, non-associative)

Affected chapters: 9.6.14

Insert as chapter: none

Text to be inserted:

…

The operator is in also checks for containment in a fuzzy set, returning a truth value.

The arguments are of a crisp type and a fuzzy type. The fuzzy type must be derived from

the rough crisp type of the other argument (e.g.: if the crisp value is a number, the fuzzy

value must be a fuzzy number), otherwise false is returned. If we define a fuzzy number

as:

u := fuzzy set (a1,t1), (a2,t2),...,(ak,tk);

Then a crisp number r, contained in Var, may be correlated to the fuzzy number u

contained in FuzzyVar, by the expression

Var is in FuzzyVar

This simply gives the value of u at r, u(r).

If one argument is null, then null is always returned.

Primary times are not used in determining the result. The primary time of the result is

determined by the rules in Section 9.1.4. The usage of the … is [in] … operator is:

<n:truth value> := <n:crisp> is <n:fuzzy>

0.5 := 4 is in 5 fuzzified by 2

0.5 := 2 is in Fuzzy Set (0,0), (4,1), (5,0)

13.… <= … (binary, non-associative)

page 19 of 36

Affected chapters: 9.5.4

Insert as chapter: none

Text to be inserted:

The <= operators also support the same arguments as the is [in] operator. When the

first argument is a crisp type and the second a fuzzy type, the <= operator returns the

supremum of u(x) for all r <= x, while r is the value stored in the first argument and

u(x) is the fuzzy set provided by the second argument.

14.… >= … (binary, non-associative)

Affected chapters: 9.5.6

Insert as chapter: none

Text to be inserted:

The >= operators also support the same arguments as the is [in] operator. When the

first argument is a crisp type and the second a fuzzy type, the >= operator returns the

supremum of u(x) for all r >= x, while r is the value stored in the first argument and

u(x) is the fuzzy set provided by the second argument.

15.... Or ... (binary, left associative)

Affected chapters: 9.4.1

Insert as chapter: none

Text to be inserted:

The or operator performs the logical disjunction of its two arguments. If one argument is

true and the other is not a truth value, the result is truth value true. If both arguments

are truth values, the maximum of both arguments is returned. Otherwise the result is

null. Its usage is:

<1:Boolean> := <1:any-type> OR <1:any-type>

true := true OR false

false := false OR false

true := true OR null

null := false OR null

null := false OR 3.4

page 20 of 36

(true, true) := (true, false) OR (false, true)

() := () OR ()

The operator’s truth table is given below. The column and row “other” means any of

these data types: null, number, time, duration, or string.

 Right argument

OR TRUE other Truth Value other NULL

TRUE TRUE True TRUE TRUE

other Truth Value TRUE Max(a,b) NULL NULL

other TRUE NULL NULL NULL

L

e

f

t

A

r

g

u

m

e

n

t

NULL TRUE NULL NULL NULL

16.... And ... (binary, left associative)

Affected chapters: 9.4.1

Insert as chapter: none

Text to be inserted:

The and operator performs the logical conjunction of its two arguments. If one argument

is false and the other is not a truth value, the result is the truth value false. If both

arguments are truth values, the minimum of both arguments is returned. Otherwise the

result is null. Its usage is:

<1:Boolean> := <1:any-type> AND <1:any-type>

false := true AND false

false := false AND false

null := true AND null

false := false AND null

null := true AND 3.4

page 21 of 36

(false, true) := (true, true) AND (false, true)

() := () AND ()

The operator’s truth table is given below. The column and row “other” means any of

these data types: null, number, time, duration, or string.

 Right argument

AND FALSE other Truth Value other NULL

FALSE FALSE FALSE FALSE FALSE

other Truth Value FALSE Min(a,b) NULL NULL

other FALSE NULL NULL NULL

L

e

f

t

A

r

g

u

m

e

n

t

NULL FALSE NULL NULL NULL

17.not … (unary, non-associative)

Affected chapters: none

Insert as chapter: 8.14.3

Text to be inserted:

The not ... operator performs the logical negation of its argument. If the argument is a

truth value, the negation is the subtraction from 1. Its usage is:

<n:truth value> := AND <n:truth value>

false := NOT true;

true := NOT false;

null := NOT null

truth value 0.8 := NOT truth value 0.2

(true, false) := NOT (false, true)

() := NOT ()

page 22 of 36

18.Sort Expressions

Affected chapters: 9.2.4

Insert as chapter: none

Text to be replaced:

The sort operator reorders a list based on element keys, which are either the element

values (keyword data), the primary times (keyword time), or the applicability (keyword

applicability). An optional modifier may be use with the sort operator. If used, the

modifier must be placed immediately after the sort keyword. The following keywords can

be placed after the sort keyword: data, time, or applicability, which are mutually

exclusive. If no modifier is used, the sort operator defaults to a data sort. Direction of

sorting is always ascending. For a descending sort, reverse can be used.

The sort options are considered to be part of the sort operator for precedence purposes.

This resolves the potential conflict with the time [of] operator (9.17.1) or the

applicability [of] operator. Thus the expression "sort time x" should be parsed as "sort

the list x by time" rather than as "extract the primary times from the list x and sort the

list of times."

When sorting by primary times, if any of the elements do not have primary times, the

result is null. (The sort argument can always be qualified by where time of it is

present, if this is not desired behavior.) Elements with the same key will be kept in the

same order as they appear in the argument. If any pair of element key cannot be

compared because of type clashes, sort returns null (that is, when sorting by data, any

null value (or non-comparable value); when sorting by time, any null primary time

results in null). The sorting by applicabilities is defined as sorting by primary times.

Its usage is (assuming that data1 has a data value of 30, 10, 20 with time values

1991-01-01T00:00:00, 1991-02-01T00:00:00, 1991-01-03T00:00:00 and

applicability values truth value 0.3, truth value 0.5, truth value 0.7):

<n:any-type> := SORT <n:any-type>

<n:any-type> := SORT [DATA | TIME | APPLICABILITY] <n:any-type>

…

(10, 20, 30) := SORT APPLICABILITY data1

(30, 20, 10) := REVERSE (SORT APPLICABILITY data1)

page 23 of 36

null := SORT APPLICABILITY (3,1,2,null)

 () := SORT APPLICABILITY ()

Affected BNF:

<sort_option> ::=

/*empty*/

| “TIME”

| “DATA”

| “APPLICABILITY”

19.If-Then Statements

Affected chapters: 10.2.2

Insert as chapter: none

Text to be inserted:

The if-then statement permits conditional execution based upon the value of an

expression. It tests whether the expression (<expr>) is equal to a single Boolean true. If

it is, then a block of statements (<block>) is executed. (A block of statements is simply

a collection of valid statements possibly including other if-then statements; thus the if-

then statement is a nested structure.) If the expression is a list, or if it is any single item

other than Boolean true or not a truth value, then the block of statements is not

executed. The flow of control then continues with subsequent statements.

20.If-Then-Else Statements

Affected chapters: 10.2.2.2

Insert as chapter: none

Text to be inserted:

This form executes <block1> if <expr1> is true; otherwise it executes <block2>:

IF <expr1> THEN

 <block1>

ELSE

 <block2>

ENDIF;

page 24 of 36

If, however, <expr1> is any truth value (t) between 0 and 1, the program splits:

<block1> and <block2>, named program branches in the sequel, will be executed in

parallel. To this end each branch is provided with its own set of variables which,

accordingly, are duplicated.

Moreover, the degree of applicability of each variable is in case of <block1> multiplied

by t, in case of <block2> multiplied by 1 − t. t and 1 − t are called the relative weights

of <block1> and <block2>, respectively. The program may branch several times. Each

command executed during the run of the program is assigned a weight in the

straightforward manner. The weight is 1 as long as the program does not split; when the

weight is w and the program enters a branch with relative weight t, the weight will be

reduced to w · t.

In a branch of weight w, the range of the degree of applicability of any variable is [0, w].

Whenever the content of a variable is changed, its degree of applicability will be reduced

to w if necessary. For example:

Var := 0;

Con := truth value 0.2;

If con then

 Var := Var + 1;

Else

 Var := Var + 3;

Endif

The result of this example are two branches of the MLM execution, where in the first

branch Var has the value 1 and the degree of applicability 0.2 and in the second branch

Var has the value 3 and the degree of applicability 0.8. This mean the execution of the

MLM will return two different values with different degree of applicability.

21.If-Then-Elseif Statements

Affected chapters: 10.2.2.3

Insert as chapter: none

Text to be inserted:

… (Current content) …

page 25 of 36

If the expressions are truth values the execution of the MLM is split into N branches.

Branching into n + 1 blocks is possible by the following statement:

IF <expr 1> then <block1>

ELSEIF <expr 2> then <block2>

. . .

ELSEIF <expr N> then <blockN>

ELSE <block N+1>

ENDIF;

In this case the relative weight ti of the i-th branch is given by <expri>, where i = 1, ...,

n. If <expri> is undefined, it is treated as ti = 0, in which case the branch is not

executed. Moreover, if the sum of the ti is strictly smaller than 1, the relative weight of

blockn+1 will be 1 − t1 − ... − tn, otherwise this block is skipped.

22.If-Then-ElseIf-Aggregate Statement

Affected chapters: none

Insert as chapter: 10.2.2.6

Text to be inserted:

As shown in chapter 10.2.2.2, the program execution is split if the condition of an if-

then-else statement evaluates to any truth value between 0 and 1.

Once all branches of a program have completed their execution in parallel, because of an

unsharp condition, it is difficult to issue a general recommendation how the program

should proceed. Two possibilities exist:

(A) The program remains split, that is, all subsequent commands are executed in

parallel as well, the action slot included.

(B) The program reunifies. The multiplied variables are merged into single ones.

Both options are available and possibility (A) is the default. The more appropriate option

in the individual situation should be decided on the basis of the specific application.

If (A) is selected, the MLM’s results will be provided by each branch separately. The

application to which the results are sent–the host system or the calling MLM–must be

prepared to deal with the situation. If the MLM is called by another MLM and returns

page 26 of 36

data, the calling MLM splits accordingly as well.

The possibility (B) implies that the task of combining divergent pieces of information is

executed within the MLM itself. To opt for (B), the final line of an if-then-else statement

is modified: after the key word endif, the key word aggregate is added. Thus, when

writing

IF <expr> then <block1>

ELSE <block2>

ENDIF aggregate;

the two branches unify after their execution. The program weight is then set to the sum

of the weight of the branches, i.e., to the same value as before.

Moreover, corresponding variables are aggregated.

Let Var be a variable defined in at least one branch. As far as the main component is

concerned, the procedure is as follows.

If the content of Var is the same in each branch, the content is taken over.

Otherwise, if Var is defined in all branches and of the same simple data type except

string, the contents are aggregated according to their weighted middle.

If Var is of the same compound type in all branches, we proceed successively with the

components in the same manner.

In the remaining cases Var is set to null.

The aggregation of the contents of variables, with respect to the degree of applicability

and the primary time, is straightforward. The primary time of Var is transferred if

coincident in all branches. If distinct times appear, the primary time will be set to null.

Furthermore, as might be expected, the degrees of applicability are added. Thus, if left

unchanged during the execution of all branches, the degree of applicability prior the

execution of the if-then-else statement will be restored.

Affected BNF:

<logic_elseif> ::=

<logic_endif>

| “ELSE” <logic_block> “;” <logic_endif>

| “ELSEIF” <logic_if_then_else2>

page 27 of 36

<logic_endif> ::=

“ENDIF”

| “ENDIF” “AGGREGATE”

23.Simple Switch-Case Statement

Affected chapters: 10.2.3.1

Insert as chapter: none

Text to be inserted:

Equivalent to the if-then-elseif statement (see Chapter 10.2.2.3), the execution of a

switch-case statement can split the program execution into several program branches

which will be executed in parallel. This happens if the comparison between the value of a

variable and an <expr> evaluates to a truth value between 0 and 1.

24.Switch-Case-Default Statement

Affected chapters: 10.2.3.2

Insert as chapter: none

Text to be inserted:

Equivalent to the if-then-else statement (see Chapter 10.2.2.2), the execution of a

switch-case-default statement can split the program execution into several program

branches which will be executed in parallel. This happens if the comparison between the

value of a variable and an <expr> evaluates to a truth value between 0 and 1.

25.Switch-Case- Aggregate Statement

Affected chapters: none

Insert as chapter: 10.2.3.3

Text to be inserted:

The aggregate operator in the switch-case-aggregate or switch-case-default-aggregate

statement acts exactly like in the if-then-elseif-aggregate statement. See chapter

10.2.2.6 for more details.

Affected BNF:

<logic_switch> ::=

 “SWITCH” <identifier> “:”

 <logic_switch_cases>

page 28 of 36

 <logic_endswitch>

<logic_endswitch> ::=

“ENDSWITCH” “;”

| “ENDSWITCH” “AGGREGATE” “;”

<data_switch> ::=

 “SWITCH” <identifier>

 <data_switch_cases>

<data_endswitch>

<data_endswitch> ::=

“ENDSWITCH” “;”

| “ENDSWITCH” “AGGREGATE” “;”

| “ENDSWITCH” “AGGREGATE WITH” <fuzzy_method> “;”

<action_endswitch> ::=

“ENDSWITCH” “;”

| “ENDSWITCH” “AGGREGATE” “;”

| “ENDSWITCH” “AGGREGATE WITH” <fuzzy_method> “;”

26.Linguistic Variables

Affected chapters: none

Insert as chapter: 10.2.20

Text to be inserted:

The clear recommendation to the programmer when using fuzzy data types is, to use

fuzzy sets never singly but always in conjunction with other, to define together a

subdivision of a value range. Assume a value, stored in the variable parameter, out of an

arbitrary interval W. Furthermore, assume three fuzzy sets u1, u2, and u3 over W

representing the ranges “low”, “middle”, and “high”. In such a case, it is necessary to

save these three fuzzy sets together in a single variable of the type object whose fields

are named according to the ranges, such as:

Range := object [low, middle, high];

Value := new Range;

page 29 of 36

Value.low := /definition of the fuzzy set u 1 /;

Value.middle := /definition of the fuzzy set u 2 /;

Value.high := /definition of the fuzzy set u 3 /;

Whenever a parameter has a low, medium or high value, it can be evaluated by the

following expressions, which provide three truth values, whose sum is truth value 1.

Parameter = Value.low

Parameter = Value.middle

Parameter = Value.high

To clarify the significance of the fuzzy sets, the keyword linguistic variable is used for

object declarations where all components are fuzzy data types.

RangeOfAge := linguistic variable [young, middl eAge, old];

Age := new RangeOfAge;

Age.young := (0 years, 1), (25 year, 1), (35 years, 0);

Age.middleAge := (25 years, 0), (35 years, 1), (55 years, 1), (65

years, 0);

Age.old := (55 years, 0), (65 years, 1);

Now, if the variable myAge interpreted as the age of a person, myAge is Age.young

returns a truth value that indicates the degree to which the statement “is the person

young” is justified.

Affected BNF:

<data_assign_phrase> ::=

 “READ“ <read_phrase>

| “MLM” <term>

| “MLM” <term> “FROM” “INSTITUTION” <string>

| “MLM” “MLM SELF”

| “INTERFACE“ <mapping_factor>

| “EVENT“ <mapping_factor>

| “MESSAGE“ <mapping_factor>

| “MESSAGE” “AS” <identifier> <mapping_factor>

| “MESSAGE” “AS” <identifier>

| “DESTINATION“ <mapping_factor>

| “DESTINATION” “AS” <identifier> <mapping_factor>

page 30 of 36

| “DESTINATION” “AS” <identifier>

| “ARGUMENT”

| “OBJECT“ <object_definition>

| “LINGUISTIC VARIABLE“ <object_definition>

| <call_phrase>

| <new_object_phrase>

| <fuzzy_set_phrase>

| <expr>

27.At Least ... Of ... (binary, right associative)

Affected chapters: none

Insert as chapter: 9.13.5

Text to be inserted:

The at least ... of ... operator expects a number (call it N) as its first argument and a

homogeneous list of truth values as its second argument. The at least operator returns

the n-th largest value of the list of truth values. If the first argument is not a number or

the second parameter contains a non truth value, null is returned. If N is greater than

the cardinality of the list, the truth value false is returned. The primary times of the

arguments are not maintained. The degree of applicability of the result is always 1. The

usage of the operator is:

<1:truth_value> := AT LEAST <1:number> OF <n:any-ty pe>

0.7 := AT LEAST 2 OF (TRUE, truth value 0.7, truth value 0.1, FALSE)

1 := APPLICABILITY OF (AT LEAST 2 OF (TRUE, Truth v alue 0.7, FALSE))

FALSE := AT LEAST 7 OF (TRUE, truth value 0.1,FALSE)

null := AT LEAST 2 YEARS OF (TRUE, truth value 0.1, FALSE)

null := AT LEAST 2 OF (TRUE, "true", truth value 0. 1,FALSE)

1 := APPLICABILITY OF (AT LEAST 2 OF (TRUE, "true", truth value 0.1,FALSE))

28.At Most ... Of ... (binary, right associative)

Affected chapters: none

Insert as chapter: 9.13.6

Text to be inserted:

page 31 of 36

The at most … of … operator expects a number (call it N) as its first argument and a

homogeneous list of truth values as its second argument. The at most operator returns

the n-th smallest value of the list of truth values. If the first argument is not a number or

the second parameter contains a non truth value, null is returned. If N is greater than

the cardinality of the list, the truth value false is returned. The primary times of the

arguments are not maintained. The degree of applicability of the result is always 1. The

usage of the operator is:

<1:truth_value> := AT MOST <1:number> OF <n:any-typ e>

0.6 := AT MOST 2 OF (TRUE, truth value 0.4, truth v alue 0.7, FALSE)

1 := APPLICABILITY OF (AT MOST 2 OF (TRUE,0.5,0.7,0 .1,FALSE))

FALSE := AT MOST 7 OF (TRUE, truth value 0.5, FALSE)

null := AT MOST 2 YEARS OF (TRUE,0.5,0.7,0.1,FALSE)

null := AT MOST 2 OF (TRUE,"true",0.7,0.1,FALSE)

1 := APPLICABILITY OF (AT MOST 2 OF (TRUE,"true",0. 7,0.1,FALSE))

page 32 of 36

29.Operator Precedence and Associativity

... fuzzified by ... (non-associative)

Fuzzy Set ... (Right associative)

... , ... (left associative)

... merge ... (left associative)

sort ... (non-associative)

... where ... (non-associative)

... or ... (left associative)

... and ... (left associative)

not ... (non-associative)

... = ...|... eq ...|... is equal ... (non-associat ive)

... <> ...|... ne ...|... is not equal ... (non-ass ociative)

... < ...|... lt ...|... is less than ...|... is no t greater than or equal

... (non-associative)

... <= ...|... le ...|... is less than or equal ... |... is not greater than

... (non-associative)

... > ...|... gt ...|... is greater than ...|... is not less than or equal

... (non-associative)

... >= ...|... ge ...|... is greater than or equal ...|... is not less than

... (non-associative)

... is within ... to ... (non-associative)

... is not within ... to ... (non-associative)

... is within ... preceding ... (non-associative)

... is not within ... preceding ... (non-associativ e)

... is within ... following ... (non-associative)

... is not within ... following ... (non-associativ e)

... is within ... surrounding ... (non-associative)

... is not within ... surrounding ... (non-associat ive)

... is within past ... (non-associative)

... is not within past ... (non-associative)

... is within same day as ... (non-associative)

... is not within same day as ... (non-associative)

... is before ... (non-associative)

... is not before ... (non-associative)

... is after ... (non-associative)

... is not after ... (non-associative)

... occur equal ... | ...occur at ...(non-associati ve)

... occur within ... to ... (non-associative)

page 33 of 36

... occur not within ... to ... (non-associative)

... occur within ... preceding ... (non-associative)

... occur not within ... preceding ... (non-associa tive)

... occur within ... following ... (non-associative)

... occur not within ... following ... (non-associa tive)

... occur within ... surrounding ... (non-associati ve)

... occur not within ... surrounding ... (non-assoc iative)

... occur within past ... (non-associative)

... occur not within past ... (non-associative)

... occur within same day as ... (non-associative)

... occur not within same day as ... (non-associati ve)

... occur before ... (non-associative)

... occur not before ... (non-associative)

... occur after ... (non-associative)

... occur not after ... (non-associative)

... is in ... | ...in ...(non-associative)

... is not in ... | ...not in ...(non-associative)

... is present | ... is not null (non-associative)

... is not present | ... is null (non-associative)

... is Boolean (non-associative)

... is not Boolean (non-associative)

... is number (non-associative)

... is not number (non-associative)

... is time (non-associative)

... is not time (non-associative)

... is time of day (non-associative)

... is not time of day (non-associative)

... is duration (non-associative)

... is not duration (non-associative)

... is string (non-associative)

... is not string (non-associative)

... is list (non-associative)

... is not list (non-associative)

... is object (non-associative)

... is fuzzy (non-associative)

... is crisp (non-associative)

... is linguistic variable (non-associative)

... is not object (non-associative)

... is not linguistic variable (non-associative)

... is <object-name> (non-associative)

page 34 of 36

... is not <object-name> (non-associative)

... || ... (left associative)

... formatted with ... (non- associative)

uppercase ...(right associative)

lowercase ...(right associative)

trim ...(right associative)

trim left ...(right associative)

trim right ...(right associative)

substring ...characters from ...(right associative)

substring ...characters from ...starting at ...(rig ht associative)

localized ...(non-associative)

localized ...by ...(right associative)

+ ... (non-associative)

... + ... (left associative)

- ... (non-associative)

... - ... (left associative)

... * ... (left associative)

... / ... (left associative)

... ** ... (non-associative)

... round ... (non-associative)

... before ... (non-associative)

... after ... | ...from ...(non-associative)

... ago (non-associative)

... year | ... years (non-associative)

... month | ... months (non-associative)

... week | ... weeks (non-associative)

... day | ... days (non-associative)

... hour | ... hours (non-associative)

... minute | ... minutes (non-associative)

... second | ... seconds (non-associative)

...matches pattern ...(non-associative)

find ...[in] ...(right associative)

find ...[in] ...starting at ...(right associative)

count [of] ... (right associative)

exist [of] ... (right associative)

avg [of] ... | average [of] ... (right associative)

median [of] ... (right associative)

sum [of] ... (right associative)

stddev [of] ... (right associative)

page 35 of 36

variance [of] ... (right associative)

any [of] ... (right associative)

all [of] ... (right associative)

no [of] ... (right associative)

slope [of] ... (right associative)

min ... from | minimum ... from ... (right associat ive)

min [of] ... | minimum [of] ... (right associative)

max ... from ... | maximum ... from ... (right asso ciative)

max [of] ... | maximum [of] ... (right associative)

index min ... from | index minimum ... from ... (ri ght associative)

index min [of] ... | index minimum [of] ... (right associative)

index max ... from ... | index maximum ... from ... (right associative)

index max [of] ... | index maximum [of] ... (right associative)

at least ... from ... (right associative)

at most ... from ... (right associative)

last ... from ... (right associative)

last [of] ... (right associative)

first ... from ... (right associative)

first [of] ... (right associative)

latest ... from ... (right associative)

latest [of] ... (right associative)

earliest ... from ... (right associative)

earliest [of] ... (right associative)

nearest ... from ... (right associative)

index nearest ... from ... (right associative)

increase [of] ... (right associative)

decrease [of] ... (right associative)

percent increase [of] ... |

percent decrease [of] ... |

interval [of] ... (right associative)

time [of] ... (right associative)

applicability [of] ... (right associative)

defuzzified ... (right associative)

time of day [of] ... (right associative)

day of week [of] ... (right associative)

arcos [of] ... (right associative)

arcsin [of] ... (right associative)

arctan [of] ... (right associative)

cos [of] ... | cosine [of] ... (right associative)

sin [of] ... | sine [of] ... (right associative)

page 36 of 36

tan [of] ... | tangent [of] ... (right associative)

exp [of] ... (right associative)

floor [of] ... (right associative)

ceiling [of] ... (right associative)

truncate [of] ... (right associative)

log [of] ... (right associative)

log10 [of] ... (right associative)

abs [of] ... (right associative)

sqrt [of] ... (right associative)

extract year [of] ... (right associative)

extract month [of] ... (right associative)

extract hour [of] ... (right associative)

extract minute [of] ... (right associative)

extract second [of] ... (right associative)

reverse [of] ... (right associative)

extract characters [of] ... (right associate)

string [of] ... (right associative)

length [of] ...(right associative)

...(right associative)

attribute ...from ...(right associative)

extract attribute names ...(right associative)

clone ...(right associative)

... as truth value (left associative)

