HL7 V3 Templates Specification

Definitions & Design Methods

Table of Contents
21
Introduction

22
Templates Definition

23
Template Uses

34
Template Classification

45
Template Functional Requirements

45.1
Template Metadata

45.1.2
Identification Metadata - Mandatory

55.1.3
Identification Metadata – Optional

55.1.4
Description Metadata – Mandatory

55.1.5
Description Metadata – Optional

65.1.6
Publication Metadata – Mandatory

65.1.7
Publication Metadata – Optional

66
Template Node Constraints

87
Template Data Value Constraints

87.1.2
Structural attribute constraints

87.1.3
Data value constraints

97.1.4
Quantity data types constraints

97.1.5
Date data types constraints

97.1.6
Textual data types constraints

97.1.7
Logic operators

107.1.8
Template reference constraints

108
Template Assertions

108.1
Static assertions

108.2
Co-occurrence Assertions

118.3
Containment Assertions

119
Static Model Characteristics of Templates

1210
Shallow and Deep Templates

1210.1
Processing Requirements

1310.2
"Shallow" and "Deep" template references

1410.2.2
Shallow and Deep example LIM references

1710.3
"Deep" Templates

1810.4
"Shallow" Templates

1810.5
Mixing Deep and Shallow Templates

19Appendix A: HL7 V3 Static Information Models

19A.1
Reference Information Model

19A.2
Domain Information Models

19A.3
Constrained Information Models

20A.3.1
Clinical Statement Pattern

20A.3.2
Common Message Element Types

20A.4
Localised Information Models

21A.4.1
Profile Static Model

21A.5
Requirements for asserting model relationships

22A.6
Human Readable Documentation Form

1 Introduction

This document defines HL7 V3 Templates in terms of their purpose and type, as well as their methods of design and use.
It is intended as a reference for HL7 V3 designers and implementers.

2 Templates Definition

Templates are a type of Localised Information Model and represent constraints for a restrictive application of their parent Constrained Information Models. See Appendix A for descriptions of all types of HL7 V3 static information models.
In terms of their relationship to the Standard, HL7 Templates are a registered set of constraints on an approved HL7 V3 Constrained Information Model (CIM).

3 Template Uses

It is often necessary to further constrain an HL7 specification – to restrict the specific value sets, to define test batteries, to specify required internal document components, etc. Reasons for building templates include, but are not limited to, human-to-human communication, constraint and validation of computer-to-computer messages, construction, predication, post-processing and description. All are further described below.

Human-to-Human Communication

Templates can serve as a (structured) formalism through which human beings (either singly or as part of groups or organizations) can unambiguously exchange (structured) information, e.g. . "This is what a CBC means to our group, what does it mean to yours?"

Constraint and Validation of computer-to-computer Messages

Templates can be used to validate message content according to the template rules. "Verify that this message is a valid instance of a CBC template (according to my definition...)"

Construction

Templates can be used to guide and direct information input. A template defines which fields are required, which are optional and which cannot be entered along with the permissible value sets that may populate each field. "What information is necessary to fill in a CBC? What are the data types, values and selection lists for each of the fields?" Templates are object oriented and can be constructed with strict inheritance of constraint models.

Predication

Templates can be used to determine whether a message meets a specific 'predicate'. For example, templates could be constructed that describe lab tests, CBC's, abnormal CBC's, etc, and then used to drive decision support / alerting software mechanisms. "Is this an instance of an abnormal CBC?"

Post-processing

Templates may be used to convey the information that a fragment of a message meets agreed constraints, and thus is suitable for a specific processing in the receiving system (e.g. allocation of a battery to a particular device, calculating the price of a set of laboratory tests, trigger the calculation of derived variables)

Description

Templates can be used to describe the relationships between data elements that can then be queried - "Where would I have to look to find all instances of a WBC?"

4 Template Classification

HL7 Templates can be classified differently according to the roles that they play in the constraint process. Below are descriptions of the different classification of HL7 Templates.

Document Templates

Document templates are applied to the CDA schema to produce a desired level of information structure and content for a particular purpose – a particular type of document.

They are analogous to a paper form with mandatory and optional sections and described level of detail for each section. If sections can be coded, the specific coding scheme and any additional constraints are usually specified.

Document templates may reference other templates applied to specific sections or entries.

Atomic Concept Definition Templates

Atomic concept definition templates are applied to part of a static model that specifies the structure and permitted coding to completely define a particular clinical concept.

Any constraints on coded elements or value ranges are specified. Optional relevant components that may add nuances in particular circumstances are included.

These templates are designed to be reusable in many different contexts. CEN defines Archetypes as atomic concept definitions formally approved by recognized clinical bodies.

The stereotypical example is Blood Pressure, composed of 2 numerical measures with optional additional information about patient positioning, cuff size, etc.

Aggregate Measures Templates

An aggregate measure template is applied to an observation with multiple components that constrains the content and relationship of components.

Its constraints may be on optionality or to valid value ranges or coded value sets. The application of constraints may be conditional depending on values in other components.

HL7 balloted static models have the information structures that can describe these component relationships, but to define a specific named set that can be referenced consistently would be a template.

Computed Measures Templates

A template of this type is applied to an observation that has multiple components.

Its constraints apply to the content and relationships of the components, but also describes the computational algorithm that derives a computed measure from the component measures.

An APGAR score is an example.

Assembly or sub-assembly Templates

This type of template is applied to an “organizer” level of a static model that defines the content of components for a particular purpose.

Its constraints can be any structural or non structural variety and may reference other templates.

In effect, the “Assembly” constraints are the sum total of all the constraints expressed in referenced templates plus any associated with the “Assembly” as a whole.

5 Template Functional Requirements
5.1 Template Metadata

5.1.2 Identification Metadata - Mandatory

templateID – A globally unique, non-semantic, identifier for the Template. This is the primary identifier for all Templates.
templateName – A free text natural language name identifying the Template. It is anticipated that there will be far too many templates to be able to assign a unique mnemonic or meaningful name to all of them. This is the secondary identifier for all Templates. (Refer to templateCodedTerm.)

originatingAuthorEntityID – A globally unique non-semantic identifier for the original author of the Template. NOTE: Determining the form of the ID and its issuer etc is necessary but not yet addressed.

templateIntention – A free text natural language description of the intent and scope of the Template. The purpose is to provide the author’s initial intent for the Template. Example: The intention may include the realm or sub-realm within which the Template was designed to be used. NOTE: A change to the semantic meaning or intent of a Template will constitute a new Template, not a new version of the Template.

templateVersion – The version identifier for the Template. The ability to determine the correct version of a Template is essential to its identification. NOTE: Changes to the Template that do not change the semantics or intention of the Template will constitute a new version of the Template being created. Any change to the semantic meaning of the Template will constitute the creation of a new Template.

templateReferenceModelID – The globally unique identifier of the reference model against which the Template was developed. The underlying reference model may be a DIM, CIM, Profile or Template.

templateRepositoryIdentifier – The identifier of the repository where the Template is located. This is a required metadata item since the core functional purpose of a Template is reuse, and things in general are much harder to reuse when they cannot be easily located. Open Issue: What form should this identifier take? This will be addressed in the Template Implementation guide, and will likely be ITS dependent.

templateRegistrationAuthority – The identifier of the registration authority (organization, institution, committee, or individual) for the Template. Open Issues: What are registration rules? What is the relationship between the repository and registration? What is the purpose of regsistration?

5.1.3 Identification Metadata – Optional

templateCodedTerm – The coded concept that uniquely represents the templateName within a given code system. A concept code can be assigned to an entire Template, providing it with a language-independent method of secondary identification. This can be used in conjunction with the templateName to convey the intended purpose and use of the template. (Refer to templateName.) The same templateCodedTerm and templateName may be used in multiple Templates.

5.1.4 Description Metadata – Mandatory

descriptionLanguage – The natural language in which the Template is represented.

templateDescription – A free text natural language description of the intent and scope of the Template. The purpose is to provide the author’s initial intent for the Template.

5.1.5 Description Metadata – Optional

implementationFormat – The preferred format that the Template should be implemented in from an ITS perspective. Implementation formats other than that recommended (if any) are not deemed suitable for this Template by the publishingAuthority. Other implementation formats are possible, but it is the responsibility of the translator to make the tralation to the new format, not that of the publishingAuthority.

evidenceSource – A description, reference or link to the published medical knowledge that was used in the definition of this Template.

detailedDescription – A detailed explanation of the purpose of this Template, including features of interest. This may include an indication of the intended user group for which this definition is intended.

cautionPoints – A formal statement regarding when this Template should not be used, or may be used erroneously. To define roles where the Template should not be used, or should be used with care. This field is used to expand in detail on the templateIntention.

5.1.6 Publication Metadata – Mandatory

publicationStatus – The current publication status for the template.
· Development

· Test

· Private

· Public

· Preferred

· Former

· Deprecated

publicationStatusChangeDate – The date that the current value for publicationStatus was applied of the Template.
publisher – The name of the author(s) institutional affiliations and contact infomation for the creators of the Template.

publishingAuthority – The autoritative body who has reviewed the Template for clinical accuracy and relevance, and autorized it for publication.
revisionHistory – The free text description describing the changes in this version of the Template as compared to the previous version. Since Template versions are built off of previous versions, the net effect of this field is to function as a comprehensive historical reference of the Template.
5.1.7 Publication Metadata – Optional

effectiveDate – The date after which the Template can be considered for use. Use of the Template prior to this date would be considered an invalid use of the Template.
expirationDate – The date at which the clincal concept represented by this Template becomes stale, and should be reviewed for clinical relevance and accuracy. Use of the Template after this date would be considered venturesome.
6 Template Node Constraints

templateNodeExplicit – Explicitly defines a node in the template constraint definition. Template nodes are organised in a hierarchial structure. The top level constraint node is known as the 'root template node' or the 'template'.

templateNodeId – A globally unique, non-semantic, identifier for the template node. Within the context of HL7, a templateNodeID should take the form of an ISO Object Identifier (OID) or an HL7 Artifact ID.
templateNodeReferenceModelID – The globally unique identifier (ISO OID or HL7 Artifact ID) of the reference model against which the Template was developed. The underlying reference model may be a DIM, CIM, Profile or Template

templateNodeReference – References a template node that can be used in the template node hierarchy. This may be referring to a template root node or a template node within an explicit template definition.
inclusionRationale – Annotation as to the rationale for inclusion of this template node reference at this point in the hierarchy.
templateReferenceId – A node reference may refer to another template, this identifer (ISO OID or HL7 Artifact ID) specifies the relevant template. A node reference may refer to another template node contained within a template, this identifier (ISO OID or HL7 Artifact ID) specifies the relevant containing template.
templateNodeReferenceId – A node reference may refer to a pre-existing template node by its unique template node identifier (ISO OID or HL7 Artifact ID). The template node may be within the current template, or an external reference to a node within another template.
templateNodeConstrained – Another template node referenced by required attributes?? That is not defined by identifier but by rules governing allowed template nodes.

templateNodeChoice – A node choice allows the selection of one of a set of possible choices, this may be an explicit templateNode, reference templateNodeReference, or constrained reference templateNodeConstrained.
templateNodeConstraint – Constrains allowed nodes based on the attributes of a template node definiton. This inclusion constraint may be made against explicit or referenced template nodes.
inclusionRationale – Annotation as to the rationale for inclusion of this template node constraint at this point in the hierarchy.

constraintStatement – Statement of the constraints placed on template nodes that are allowed to be instantiated at this point corresponding to template node hierarchy.
cardinality – Constraints on the number of instances that can be instantiated corresponding to this template node.
logicalCondition – Constraint rule expression statement. This may include references to environmental parameters, relatively referenced instances or absolutely referenced instances.
expressionFormalism – The expression formalism used to express the logical condition. (e.g. OWL, OCL, GELLO, etc.)
codedTermBinding – Every template node must be associated with at least one clinical term. Issue: not all nodes can be bound to clinical concepts. Each template node may be associated with additional clinical concepts, terms, or synonyms.

Coded term (mapping?) purpose must be labelled: - principal concept - code system translation - language translation – synonym. Any referenced coded term must include code, code system (OID), and display name text.

attributeConstraints – A template node may specify constraints on attributes corresponding to the RIM. This covers the case where RIM class attributes are constrained further as required by a particular template. This includes: Restricting cardinality e.g. 0..* to 1..1 and Restricting a data type to a specialisation e.g. GTS to TS (this is the equivalent to Data Type flavours). Issue: this now asserts that datatypes are definately part of the reference model; NOT data values as examined in the next section.

attributeName – Name of the attribute corresponding to the underlying reference model.
attributeCode – Label/code of type of attribute describing its context. This may be role code, type code, etc.

cardinality – Cardinality constraints may be defined on instantiation of attributes.
instantiationConstraint – Other constraints or rules may be specified in a desired expression formalism.
collectionType – Multiple instances can be specified as unordered list, ordered list or a unique instance set.
7 Template Data Value Constraints

7.1.2 Structural attribute constraints

It must be possible to specify constraints and rules for the Structural Attributes within the Reference Information Model.

- in process

7.1.3 Data value constraints

It must be possible to specify data value constraint information, including:

· Null and null flavor values as well as an optional reason to specify a null flavor value.

· If the constraint or rule specifies inclusion or exclusion criteria.

· The formalism (including version) in which this constraint specification is represented.

· The intended fixed (prescribed) value for conforming instances.

· The intended default value for conforming instances.

· A list of permitted candidate values for conforming instances (i.e. to be a subset of those vales legally permissible in the underlying Reference Model.)

7.1.4 Quantity data types constraints
inclusiveQuantity – A value range where the value(s) for conforming instances must be inclusive
exclusiveQuantity – A value range where the value(s) for conforming instances must be exclusive
inclusiveCritical – A range within which values are considered to be clinically exceptional or critical.
exclusiveCritical – A range ouside of which values are considered to be clinically exceptional or critical.
7.1.5 Date data types constraints
inclusiveDateValueRange – A value range where the value(s) for conforming instances must be inclusive
exclusiveDateValueRange – A value range where the value(s) for conforming instances must be exclusive;
dataValueUnits – The intended measurement units for conforming instances.
7.1.6 Textual data types constraints
regularExpression – A Regular Expression pattern defining the range of possible values for a String.
codingScheme – The intended coding scheme to be used for conforming instances for the textual data.
7.1.7 Logic operators
Constraint rules might be expressed using logical operators, and may include reference to environment parameters such as the current time or location or participants, or be related to the (preexisting) values other nodes in the instance hierarchy. Relative constraints may be nested, and include logical or set operators in order to represent compound rules.
Logical operators can be applied to a set of assertions to indicate which assertions in the set must be true or false. Example: (All | at least X | at most X | exactly X) of the assertions contained in this set must be (true | false).

7.1.8 Template reference constraints
The reference to a preexisting value must specify that instance precisely and unambiguously.

templateID – The identifier for the Template being referenced

The occurrence in the instance hierarchy

· First

· Most Recent

· Any

· N ordered by Y (the nth set of instances ordered on y)

· highest value

· lowest value

· one or more instances within a definable time value

8 Template Assertions

8.1 Static assertions
· A template can constrain the cardinality of a clone’s association.

· A template can constrain the cardinality of a clone’s attribute.

· A template can constrain the allowable date/time values in a date/time field.

· A template can constrain any attribute value to be a subset of those values legally permissible in the specification being constrained.

· A template can constrain the range of allowable date/time values for attributes valued by date/time data types.

· A template can constrain the range of allowable code values for attributes valued by terminology concepts.

· A template can constrain the range of allowable numbers for attributes valued by numbers.

· A template can express a regular expression constraint on attributes valued by strings.

· A template can constrain any data type component, including recursively-nested components.

· A template can constrain the range of allowable values of a clone’s attribute.

· All additional constraints that can be expressed in a normative specification (including all the columns in an HMD) can be further constrained in a template.

8.2 Co-occurrence Assertions

· The value of one field can be constrained based on the value of another field.
Example: If fieldOne is “X”, then fieldTwo’s value must be “A”.

· Chronological assertions can constrain the date/time value of one field based on the date/time of another field.
Example: The start time for fieldOne is (earlier | later | equal to) the start time of fieldTwo.

· Numeric comparison assertions can constrain the numeric value of one field based on the value of another field.
Example: The value of fieldOne is (equal to | less than | greater than) the value of fieldTwo.

· Numeric operation assertions can constrain the numeric value of one field based on a numeric operator applied to the value of another field or constant.
Example: The value of fieldOne is (equal to | less than | greater than) the value of fieldTwo (plus 7 | divided by 27).

· String comparison assertions can constrain the string value of one field based on the value of another field.
Example: The string value of fieldOne is contained in the value of fieldTwo.

· Any constraint a template and constituent archetypes can make can be made dependent on the value expressed in one or more other fields. For instance, in addition to constraining the cardinality of an association, a template and constituent archetypes can constrain the cardinality based on the value in a particular field.
Example: If ((fieldOne is “X” or “Y”) OR (fieldTwo is “ABC”)) then ((a nested act relationship under Observation is required) AND (fieldThree in the nested act has a value of “A” or “B” or “C”) AND (fieldThree in the nested act cannot be NULL)).

8.3 Containment Assertions

· Data descendant assertions can constrain allowable depth at which one component is nested within another component.
Example: The vital-signs section must be (a direct child of | some descendant of | less than a depth of X from) the physical-exam section.

· Items in a template and constituent archetypes can be “ordered” or “unordered”. In an ordered template and archetype, the order of the stated assertions is important. In an unordered template and archetype, the order is not important.
Example: Assertion One: There is a nested act under observationOne that has an observation.cd for “hemoglobin”. Assertion Two: There is a nested act under observationOne that has an observation.cd for “hematocrit. If the template and constituent archetypes are “ordered”, the “hemoglobin” must come before the “hematocrit”. If the template and constituent archetypes is “unordered” the “hemoglobin” can come before or after the “hematocrit”.

9 Static Model Characteristics of Templates

The static model characteristics of templates (with respect to the HL7 model 'hierarchy') may include:
· Linkages to other static models
· Application to any HL7 V3 static model and at any point within that model where the descendent tree from that node is equivalent to (or is a proper subset of) the static model on which the template is based
· An 'entry point' class that is not the same as the entry point of its parent CIM
10 Shallow and Deep Templates
The issue of defining and supporting both "shallow" and "deep" Templates arises in the context of determining how to assert the binding to a Template in a message instance. The issue arises because

· The element names in a Template do not need to be the same as the name in the CIM (Message Type) that the Template element constrains.

· This rule allows a single Template to be asserted as a constraint against multiple, independently defined message types (CIMs)

· If a receiving system seeks to validate an instance against the templates, it must perform a coordinated "tree walk" on both the message and the Template simultaneously in order to determine which Template element should be governing each node.

· If the sending system was to include in the nodes of the instance message an identification of the Template element used to constrain the instance node, the coordinated tree walk is straightforward.

· Absent such identification in the instance, there are numerous example cases in which the coordinated tree walk that identifies a single node in the Template which constrains each node in the instance becomes computationally burdensome or even impossible.

As a consequence, there is a question about the mechanisms by which such references can be made. There are concerns that the current method for including CMETs in a design may obscure the identification of where a CMET begins. In the XML ITS the element naming is the same whether a CMET is used or the same content is fully expressed in the parent design. This was done to allow common components to be identified and split off into CMETs the designs without resulting in changes in the instances. If the same approach is taken to referencing Templates from the instance, however, there would need to be explicit references to component models as well as to the Template that references them. This obscures the way in which a Template may refer to other Templates to allow users to build Templates that reuse the concepts defined in other Templates in a greater pattern.

This led to the consideration of "shallow" versus "deep" Templates.

10.1 Processing Requirements

Templates are useful because they allow the instance reader to associate knowledge of the instance over and above the inherent semantics of the information in the instance

The instance must be able to identify the Template(s) that have been applied to the instance.

Senders may choose not to identify the Template in the instance, but in this case the receiver may not know to invoke special Template dependent processing.

Templates may further unroll the relationships in the CIM that is being used. Readers wishing to use the information associated with the further unrolling must be able to associate the parts of the instance with the parts of the Template.
This leads to the more technical requirement stated above:

· If a receiving system seeks to validate or fully understand a received instance against a Template, the receiving system must perform a coordinated "tree walk" on both the message and the Template simultaneously in order to determine which Template element should be governing each node.

· If the sending system can (and does) include in the nodes of the instance message an identification of the Template element used to constrain the instance node, the coordinated tree walk is straightforward.

· Absent such identification in the instance, there are numerous example cases in which the coordinated tree walk becomes computationally burdensome and some in which it is virtually impossible.

10.2 "Shallow" and "Deep" template references

There are two options for how a Template that contains CMET references to component models may be referenced from an instance.

"Deep" template references follow the same rules as the ITS for CIMs, and component models of the Template are not differentiated in the instance. Thus for every node in the instance that is constrained by a Template, the identifier for the Template static model will be included along with the identifier for the node itself.

"Shallow" template reference rules require that the identity of the static model in which the node constraint is defined be included in the instance with the the identifier for the class.

The following example may help to clarify the situation. There is a template for "Diabetes Annual Review" that includes a template for "Body Mass Index" as a CMET, and both are defined as templates against the Clinical Statement Pattern. An instance of a Care Provision message is created for an annual review encounter, an dthe sender wants to assert that the instance conforms to the template for "Diabetes Annual Review". If the deep template approach is taken then each node in the subtree of the nmessage that contains the annual review data will include a templateId that points to the "Diabetes Annual Review" template, and to the name of the appropriate class within that model (or the CMETs that it references). In this case the instance will not include any explicit reference to the "Body Mass Index" CMET, but the receiving system will be able to walk the tree of the instance, and the template for "Diabetes Annual Review" and discover that the CMET has been used. If the shallow LIM approach is taken then the Identifier for the "Diabetes Annual Review" LIM will be included for all elements in the subtree that conform to the LIM, until the start of the subtree that conforms to the "Body Mass Index" branch, at which point the Identifier for the "Body Mass Index" model will be included. In all cases alongside the identifier for the model will be the identifier for the class within the model that confrmance is being asserted to. Note that in the Shallow reference a receiver that has rules for processing "Body Mass Index" structures will be able to recognise the structure even if they do not recognise the "Diabetes Annual Review" structure.

Note also that the "Shallow" and "Deep" distinction applies to the way that the reference to the template in the instance is provided, and is not a property of the definition of the template itself.

10.2.2 Shallow and Deep example LIM references

The example shallow and deep LIMs both use the following model as their underlying CIM.

The following is an example of a shallow LIM with an instance.

<Observation>

 <templateId root="2.16.840.1.113883.2.1.3.2.4.12" extension="REPC_MT000103.Barthel_Index">

 <code codeSystem="2.16.840.1.113883.2.6.15.1" code="Barthel-index"/>

 <derivationExpr>Sumscore</derivationExpr>

 <effectiveTime value="200601191211"/>

 <value value="3"/>

 <component templateId="REPC_MT000103.component1">

 <Observation templateId="REPC_MT000103.Darm">

 <code codeSystem="2.16.840.1.113883.2.6.15.1.ICFXXX" code="BrtlB525"/>

 <effectiveTime value="200601191211"/>

 <value value="1"/>

 </Observation>

 </component>

 <component templateId="REPC_MT000103.component2">

 <Observation templateId="REPC_MT000103.Blaas">

 <code codeSystem="2.16.840.1.113883.2.6.15.1.ICFXXX" code="BrtlB6202"/>

 <effectiveTime value="200601191211"/>

 <value value="1"/>

 </Observation>

 </component>

 <component templateId="REPC_MT000103.component3">

 <Observation templateId="REPC_MT000103.Uiterlijke_verzorging">

 <code codeSystem="2.16.840.1.113883.2.6.15.1.ICFXXX" code="BrtlD520"/>

 <effectiveTime value="200601191211"/>

 <value value="1"/>

 </Observation>

 </component>

</Observation>

The same model expressed as a deep LIM. The first image is the payload and the second is the CMET.

<Observation>

 <templateId root="2.16.840.1.113883.2.1.3.2.4.12" extension="REPC_MT000103.Barthel_Index">

 <code codeSystem="2.16.840.1.113883.2.6.15.1" code="Barthel-index"/>

 <derivationExpr>Sumscore</derivationExpr>

 <effectiveTime value="200601191211"/>

 <value value="3"/>

 <component templateId="REPC_MT000103.component1">

 <Observation templateId="REPC_MT000103.Darm">

 <code codeSystem="2.16.840.1.113883.2.6.15.1.ICFXXX" code="BrtlB525"/>

 <effectiveTime value="200601191211"/>

 <value value="1"/>

 </Observation>

 </component>

 <component templateId="REPC_MT000103.component2">

 <Observation templateId="REPC_MT000103.Blaas">

 <code codeSystem="2.16.840.1.113883.2.6.15.1.ICFXXX" code="BrtlB6202"/>

 <effectiveTime value="200601191211"/>

 <value value="1"/>

 </Observation>

 </component>

 <component templateId="REPC_MT000103.component3">

 <Observation templateId="COCT_MT000103.Uiterlijke_verzorging">

 <code codeSystem="2.16.840.1.113883.2.6.15.1.ICFXXX" code="BrtlD520"/>

 <effectiveTime value="200601191211"/>

 <value value="1"/>

 </Observation>

 </component>

</Observation>

In this example the main difference between the two approaches is the the final observation, in the deep example the templateId has got the artifact id from the CMET for the LIM instead of the main model. If these messages were sent in an interaction the interactionId would use the artifact id from the CIM.

10.3 "Deep" Templates
A "deep" Template is simply any valid static model, with the full richness and complexity allowed in any HL7 message type design. It establishes constraints for all the elements that it contains.

Although another template (Template-b) might also be asserted against elements that are "internal" to the template in question (Template-a), this assertion is in addition to the assertion of Template-a, not a part thereof.

All templates are bound to the instance at a single point, which must link that node of the instance to the root node of the template. Writers (senders) are expected to link every node in the instance to the associated name in the Template (by using the templateId property of InfrastructureRoot).
So this leads to a rule:

· If a Template is associated with the instance, then all sub-parts of the instance which conform to the Template must identify the name of the Template element in their templateId property

· This rule is required to enable deep Templates to be appropriately processed by readers.

10.4 "Shallow" Templates
Purpose

A "shallow" template is a construct designed to support bottom-up composition of templates. It creates sub-templates that can be included in larger templates to build a larger concept. Thus a template to represent hemoglobin, and one to represent hematocrit can be defined and then used in the definition of a blood test. This pattern has been used successfully in several health record implementations.

Requirements
In order to fullfill this purpose, a "shallow" template should:

· present no ambiguities when doing a coordinated tree walk of an instance and the Template; and
· have the ability to declare, in a message instance being constrained by a Template (Template-a, above) that a portion of the message is constrained by another, subsidiary Template that is a component(??) (Template-b, above) of the original Template.

Rules for a proper "shallow" Template
The rules that determine whether a model is a valid "shallow" Template are those rules which assure that the node tree of an instance can be unambiguously walked in coordination with that template. Specifically:

1. A "shallow" template may "include" a subsidiary template at any node (class clone).

2. The "shallow" template must 'include' a subsidiary template at any point where: the maximum cardinality of an association is greater than one.

(Note - these rules are illustrative, not technically complete)

10.5 Mixing Deep and Shallow Templates

Deep and shallow templates are not incompatible. Each are enabled by a different solution. Deep templates are enabled by the rule that each element must identify its template name. Shallow templates are enabled by providing a mechanism for templates to include another template. The point of describing them in the terms above is to describe how the templates could work in the absence of each technology

 [add example clinical template X]
Appendix A: HL7 V3 Static Information Models

A.1
Reference Information Model

[from the RIM spec]The HL7 V3 Reference Information Model (RIM) provides a static view of the information needs of HL7 V3 standards. It includes class and state-machine diagrams and is accompanied by use case models, interaction models, data type models, terminology models, and other types of models to provide a complete view of the requirements and design of HL7 standards. The classes, attributes, state-machines, and relationships in the RIM are used to derive domain-specific information models that are then transformed through a series of constraining refinement processes to eventually yield a static model of the information content of an HL7 standard.

The HL7 V3 standard development process requires that all information structures in derived models be traceable back to the RIM and that their semantic and related business rules not conflict with those specified in the RIM. The RIM therefore is the ultimate source for all information content in HL7 V3 standards.

[may be useful to indicate what the benefit of that rule is – i.e. the consequences if that rule wasn't in place]
[refer to RIM graphic in Appendix?]

A.2
Domain Information Models

HL7 V3 Domain Information Models (DIMs) represent the concept space (i.e. elements of interest) for an HL7 subject area.

DIMs are static models that
· Are valid constraints of the RIM and possibly other DIMs

· Need not be serialisable

· Must have one or more classes where serialisation may begin ('entry points') when deriving Constrained Information Models
· May include reference links ('stubs') to content from other static models
· Have vocabulary bound in the 'universal' realm (i.e. where constraints are defined by HL7)

[Example in the same domain as clinical template X]

A.3
Constrained Information Models

HL7 V3 Constrained Information Models (CIMs) mainly define the content for communications ‘over the wire’. Some CIMs define the content for the abstract 'parent' of a communication model.

CIM characteristics include:
· May include linkages ('stubs') to other static models
· Must be serialisable
· Must have one (and only one) entry point (class where serialisation begins)
· Must be derived from a DIM or another CIM
· May include reference links ('stubs') to content from other static models
· Element names must be transmitted

· Must have vocabulary defined for (bound to) one or more realms (realms define code constraints on attributes)

Sub-types of CIM include design patterns (e.g. the Clinical Statement Pattern), re-usable model components (e.g. CMETs), message models (e.g. Refined Message Information Models and Hierarchical Message Definitions) and document models (e.g. Clinical Document Architecture).

A.3.1
Clinical Statement Pattern

The Clinical Statement Pattern was created by HL7 in response to the observation that different committees were independently designing different RIM derived structures to define the same clinical meaning. The Clinical Statement Model is the structure that all committees creating clinical content have agreed should be used to represent that common content. As a model it is intended to represent only commonly used structures, and will be extended by committees where there is a specific requirement for more detail.

A.3.2
Common Message Element Types

[Examples of each. The relationship of the CSP to the R-MIM should be demonstrated by a model that includes what will later form the basis of clinical template X. The relationship of the CSP to the CDA should also be demonstrated with an example. If the examples are too big, they should be referenced and put in an Appendix.]

A.4
Localised Information Models

HL7 V3 Localized Information Models (LIMs) define information constraints for particular "local" purposes. Thus, LIMs are expected to be defined in a variety of settings, including: HL7 realms (Affiliates), implementations, policy-making, professional societies, etc.

LIM constraints must conform to its parent CIM or LIM. LIM constraints do not impact the interoperability of its instances with instances that conform to the same CIM.

LIM characteristics include:

· Must be serialisable

· Must have one (and only one) entry point

· Association names are not reflected as element names in instances (instead, the element names of the CIM are transmitted)
LIMs come in two sub-types, Templates and Static Profiles.

A.4.1
Profile Static Model
HL7 V3 Profile Static Models fully define all their data elements.

Profile Static Model characteristics include:
· A fully bound LIM starting at the root of the Interaction

· Starts at the entry point of the outermost CIM to which the interaction in the profile was bound

· Specific to an Interaction

· Has the same entry point as the entry point of the CIM it is based on
· Must not contain stubs

[example profile model that is based on the RMIM or CDA examples and includes the clinical template from above]

A.4.1.1

Interaction Profile

An Interaction Profile includes a Profile Static Model with receiver responsibilities for the Interaction and local vocabulary constraints assertions.
A.4.1.2

Conformance Profile

A Conformance Profile contains one to many Interaction Profiles and other conformance information, including Realm, transmission technology, etc.
An 'Implementation Profile' is a fully-constrained Conformance Profile.

A 'Conformance Statement' is a textual language assertion of compliance against a fully-defined Conformance Profile.

A.5
Requirements for asserting model relationships

Derivation type

· It must be possible to assert that a node in the derived model is a restriction of the node in the parent document

· It must be possible to assert that a node in the derived model is an extension of the node in the parent document

· It must be possible to assert that a node in the derived model is a combination of restriction and extension of the node in the parent model

Relationship maintainence

The relationships to the parent model will be maintained as part of the derived model, and so any change to these relationships will result in a change to the version on the derived model. Note that a consequence of this is that if the clinical statement model evolves, such that the derived model can be asserted to be a better constraint on the new parent model, adding this information will be done to a new version of the parent model.

Unambiguous mapping

No node in the derived model should be associated with more than one node in the parent model. Thus if there are two different actRelationships in the parent model that could correspond to an actRelationship in the derived model, an association to only one of them must be asserted.
A.6
Human Readable Documentation Form

Issues

· Should there be a facility to maintain relationship assertions externally from the parent and derived models, such that asserting a relationship does not have to change the version information of either model (since there is no change to the set of valid instances of either)?

