
medexter
clinical decision support

11

How to write Arden Syntax MLMs –
An introduction (with fuzzy concepts)

Karsten Fehre

Medexter Healthcare GmbH
Borschkegasse 7/5
A-1090 Vienna, Austria
www.medexter.com

medexter
clinical decision support

22

• Arden Syntax – Fundamentals
• Basic MLM Layout

– Maintenance Category
– Library Category
– Knowledge Category
– Resources Category

• Sample MLM
• Identify an MLM
• Data Types

– Fundamentals
– Fuzzy Sets
– Truth Value
– Linguistic Variable
– Primary Time
– Applicability

• Expressions
– Fundamentals
– Curly Braces (Mapping Clauses)

Content

medexter
clinical decision support

33

• Statements
– Fundamentals
– If-Then-Else
– If-Then-Else – Fuzzy Condition
– If-Then-Aggregate
– Object Statements
– Call Statements
– Call Statements – Nested MLMs
– Triggers

• Operators
– List Operators
– Logical Braces
– Comparison Operators
– Comparison Operators – Fuzzy Comparison
– String Operators
– Arithmetic Operators
– Temporal Operators
– Aggregation Operators
– Time and Object Operators

Content (cont.)

medexter
clinical decision support

44

• In Arden Syntax, medical knowledge is
arranged within Medical Logic Modules
(MLMs)

• Each MLM represents sufficient
knowledge to make a single clinical
decision

• One or more MLMs are stored within a file
that has the extension “.mlm"

• Each MLM is well organized and
structured into categories and slots with
specific content

Arden Syntax – Fundamentals I

medexter
clinical decision support

55

• MLMs are working in close contact with their host system. Ways of interaction are:

– Input: By calling an MLM, an input parameter can be committed

– Curly Brace Expressions: So called "curly brace expressions" implement a special kind
of dynamic interaction between MLMs and host systems

– Write Statements: Texts can be written to destinations that are maintained by the
host system

– Output: Analogous to the input parameter, data can be committed from the MLM to the
host system after the execution of the MLM has finished

• In order to start the execution of an MLM, an engine is needed that handles communication
with the host system and can tell which of the MLMs are available

• Ways to start running an MLM:

– MLM call: An MLM is directly called

– Event call: Any MLM that listens to a specific event is executed

Arden Syntax – Fundamentals II

medexter
clinical decision support

66

• An MLM is composed of slots, grouped into the following
four required categories: maintenance, library,
knowledge, and resources

• A category is depicted starting with its name, followed
immediately by a colon (e.g., maintenance:)

• Categories must appear in the correct (predefined) order

• Within each category is a set of slots

• Slots must appear in the correct order, too

• In general, an MLM is arranged such as:

maintenance:

slotname: slot-body;;

slotname: slot-body;;

...

library:

slotname: slot-body;;

...

knowledge:

slotname: slot-body;;

...

resources: <optional>

slotname: slot-body;;

Basic MLM Layout

medexter
clinical decision support

77

• Contains slots that specify general information,
unrelated to the MLM’s health knowledge

• These slots are used for MLM knowledge base
maintenance and change control

• Contains information about the Arden Syntax version in
use

• Slots:
– Title

– MLMname (content required)

– Arden Syntax version (content required)

– Version (content required)

– Institution (content required)

– Author

– Specialist

– Date

– Validation (one of: production, research, testing, expired)

• MLMname, Institution, and Version are used to identify
the MLM

Maintenance Category

medexter
clinical decision support

88

• Contains the slots pertinent to knowledge base
maintenance that are related to the MLM’s knowledge

• Slots provide health personnel with explanatory
information as well as links to relevant health literature

• Slots

– Purpose

– Explanation

– Keywords

– Citations

– Links

Library Category

medexter
clinical decision support

99

• Contains the slots that actually specify the MLM’s action

• This category’s slots define:

– Terms used in the MLM (data slot)

– The order of execution if more then one MLM is called
(priority and urgency slot)

– The context in which the MLM should be evoked (evoke
slot),

– The condition to be tested (logic slot),

– The action to be taken should the condition be true (action
slot).

• Slots:

– Type: only "data-driven" available

– Data: preparation and query of data

– Priority: defines the order of MLM evaluation

– Evoke: checks if the MLM has to be executed if an event
call occurs

– Logic: contains the actual logic of the MLM,

– Action: is executed if logic slot concludes true

– Urgency: defines the urgency of the action slot

Knowledge Category

medexter
clinical decision support

1010

• Contains a set of language slots that specify the textual
resources from which the localized operator should draw
in order to obtain message content in different languages

• Each language slot defines a set of key/value pairs that
represent text constants in one specific language

• At least one language slot is required

• Slots:

– Default (defines the default language to be used)

– Language (one language slot for each language to be used)

• Example:
resources:

default: de;;

language: en

'msg' : "The patient's BMI %.1f is not in the norma l range and is
classified as ";

;;

language: de

'msg' : "Der BMI %.1f des Patienten ist nicht im no rmalen Bereich und
wird klassifiziert als ";

;;

Resources Category

medexter
clinical decision support

1111

Sample MLM

• Most of the examples for operator and concept explanation are taken from the following
sample MLM which calculates the body mass index (BMI) of a patient:

medexter
clinical decision support

1212

Sample MLM (cont.)

medexter
clinical decision support

1313

Sample MLM (cont.)

medexter
clinical decision support

1414

Sample MLM (cont.)

medexter
clinical decision support

1515

• An MLM can be identified by using the following 3 pieces of information:

– Name, as given in the MLMname-slot
– Institution, as given in the Institution-slot
– Version, as given in the Version-slot

• Example:
The MLM with the following maintenance category

maintenance:
title: simple body mass index;;
mlmname: BMI;;
arden: Version 2.7;;
version: 1.00;;
institution: Medexter Healthcare GmbH;;
author: Karsten Fehre;;
specialist: ;;
date: 2010-09-09;;
validation: testing;;

can be addressed using the following MLM definition in the data-slot:

bmiMLM := MLM 'BMI' from institution "Medexter Heal thcare GmbH";

Note: If there is more than one MLM with the same name and institution, the MLM with the
latest version number is used.

Identify an MLM

medexter
clinical decision support

1616

Data Types – Fundamentals I

• Null: Special data type that signifies unknown/uncertainty

• Boolean: Includes two truth values, true and false; logical operators use tri-state logic by
using null to signify the third state, unknown/uncertainty

true
false
null

• Number: No distinction is made between integer and floating point numbers

7
7.34323

• Time: Refers to points in time; times before 1800-01-01 are not valid

2011-07-12T00:00:12
2011-07-12

• Duration: Signifies an interval of time

19.01 years
3 days 1 hours 2 minutes 54.6 seconds

• String: Streams of characters

"this is a string constant"

medexter
clinical decision support

1717

Data Types – Fundamentals II

• List: An ordered set of elements; each element can be an arbitrary data type (lists cannot
contain lists as elements)

4, 3, 5
3, true, 5, null
,1
()

• Object: May contain multiple named attributes, each of which may contain any valid data
type

MedicationDose := OBJECT [Medication, Dose, Status];
dose := NEW MedicationDose with "Ampicillin", "500mg ", "Active";
// dose refers to an object with the fields Medicat ion, Dose, Status

"Ampicillin" := dose.Medication;

• Time-of-day: Refers to points in time that are not directly linked to a specific date

23:20:00

• Day-of-week: Special data type referring to specific days of the week; represented by
constants or integer

MONDAY (1)
TUESDAY (2)
...

medexter
clinical decision support

1818

• Function that maps a given data value to a truth value between 0 and 1

• A fuzzy set represents a linguistic/clinical concept with fuzzy (non-sharp)
boundaries

• Definition of a fuzzy set
– Fuzzyset_u := FUZZY SET (18.5,0), (19.5,1), (24,1), (25,0);

x is in BMI.normal

Data Types – Fuzzy Sets

medexter
clinical decision support

1919

• Crisp border

– Defines a sharp border

– Checking if a given measurement is
greater or less than the defined crisp
border results in either true or false

– Borderline cases are not detected

• Fuzzified border

– Defines a gradual border

– Checking if a given measurement is
greater or lesser than the defined
fuzzified border results in a truth
value between 0 and 1

– Borderline cases are detected

– Weighted results for borderline cases,
all other are as usual

Data Types – Fuzzy Sets - Explanation

medexter
clinical decision support

2020

• Usual Arden Syntax

fever_limit := 38;

temperature := 37.9;

message := “patient has no fever”;

IF temperature > fever_limit THEN

message := “patient has fever”;

END IF

– Result message: “patient has no
fever”

– Borderline case is not detected

• Fuzzified Arden Syntax

fever_limit := FUZZY SET (37.5,0),
(38,1);

temperature := 37.9;

message := “patient has no fever”;

IF temperature > fever_limit THEN

message := “patient has fever”;

END IF

– Result message: “patient has fever”
(with applicability 0.8)

– Applicability is obtained by

applicability of message;

Data Types – Fuzzy Sets – Example I

medexter
clinical decision support

2121

• Usual Arden Syntax

fever_border := 38;
sub_border := 37.5;
temperature := 37.9;

message := “patient has no fever”;

IF temperature > sub_border THEN
message := “patient has fever”;
app := (temperature-sub_border)/0.5;

ELSE IF temperature > fever_border THEN
message := “patient has fever”;
app := 1;

END IF

– Variable message contains the string
“patient has fever ”

– Applicability (variable app) is the truth
value 0.8

• Fuzzified Arden Syntax

fever_border := FUZZY SET (37.5,0),
(38,1);

temperature := 37.9;

message := “patient has no fever”;

IF temperature > fever_border THEN
message := “patient has fever”;

END IF

app := applicability of message;

– Variable message contains the string
“patient has fever ”

– Applicability (variable app) is the truth
value 0.8

Data Types – Fuzzy Sets – Example II

medexter
clinical decision support

2222

• Generalization of the Boolean data type

• Value between 0 and 1

• Boolean value true is equal to the truth value 1 and the Boolean value false is equal to the
truth value 0

• May be the result of mapping a clinical value to a fuzzy set

• Can also be defined explicitly

Data Types – Truth Value

medexter
clinical decision support

2323

• Construct to represent a linguistic concept and its sub-concepts

• Subsumes the sub-concepts of a concept under one term

• Definition of a linguistic variable

– data:
simpleBMI := LINGUISTIC VARIABLE [underweight,norma l,overweight];

logic:
BMI := new simpleBMI ;
BMI.underweight := FUZZY SET (18.5,1), (19.5,0);
BMI.normal := FUZZY SET (18.5,0), (19.5,1), (2 4,1), (25,0);
BMI.overweight := FUZZY SET (24,0), (25,1);

Data Types – Linguistic Variable

medexter
clinical decision support

2424

Data Types – Primary Time

• In addition to its value part each data value has a primary time part and an applicability

• Primary time represents the value part’s time of creation or measurement

• By default, primary time is null

• Can be accessed using the time operator

• Database query results should contain both, the value and the primary time

- Might be the time when a blood test was drawn from the patient

- Might be the time when a medication order was placed

- Which time of a database entry is used as primary time is left to the used Arden Syntax
implementation

medexter
clinical decision support

2525

• All simple data types are endowed with additional information concerning the degree of
applicability

• Stores a truth value that refers to the degree to which it is reasonable to use the value of a
variable

• Default applicability is 1

• Can be accessed using the applicability operator

• If-then statements with a condition that evaluates to a truth value [0,1] result in a split of
the MLM execution

– Each branch will be executed under corresponding applicability

– The applicability is implicit attached to each variable of the branch

Data Types – Applicability

medexter
clinical decision support

2626

Expressions – Fundamentals

• Statement: A statement specifies a logical constraint or an action to be performed. All
statements except for the last statement in a slot must end with a semicolon (;)

let var1 be 0; // equal to: var1 := 0;

• Constant: Any data value that is explicitly represented is called a constant

true
"this is a string"

• Variable: A variable is a placeholder for a data value or special constructs (e.g. an event,
MLM, message, or destination) and represents this value in any subsequent expressions. An
assignment statement is used to assign a value to a variable

let var1 be 0; // equal to: var1 := 0;
var2 := MLM 'BMI' from institution "medexter";

• Operator: An expression may contain an operator and a number of sub-expressions called
arguments

3 + 5 //where + is the operator, 3 and 5 are the ar guments

medexter
clinical decision support

2727

Expressions - Curly Braces (Mapping Clauses)

• Are used in the data slot to signify institution-specific definitions such as database queries

• Read statement: Reads data from the host system

var1 := READ {select potassium from results where s pecimen = 'serum'};

• Event statement: Defines an event; an event can be used to call MLMs

event1 := EVENT {storage of serum potassium};

• Message statement: Text that is used by write statements

message1 := MESSAGE {increased body temperature};

• Destination statement: Target that is used by write statements

destination1 := DESTINATION {email: user@cuasdf.bitnet };

• Interface statement: function that is evaluated by host system

func_drugint := INTERFACE {char* API:Interaction (cha r*,char*) };

medexter
clinical decision support

2828

Expressions - Curly Braces (Mapping Clauses) – Example

• This assignment statement assigns the result of the read statement (using mapping clause
"SELECT measured_weight FROM DB WHERE patID = patientI D") to the variable weights

• patientID is a variable that contains the patient ID currently in use and is substituted

before execution of the mapping clause

• After evaluation of this statement, the variable weights refers to the result which is a list of

all measured weights of the patient with the given patient ID

• The content of the curly brace must be evaluated by the host system and its syntax is not
part of the Arden Syntax

• Assignment statement that assigns the event getBMI to the variable userEvent

• If the event variable is used in the evoke slot, the MLM is always executed, when this event
occurs

medexter
clinical decision support

2929

Statements – Fundamentals I

• Assignment: Places the value of an expression into a variable

<identifier> := <expression>;
LET <identifier> be <expression>;

• Write: Sends texts or coded messages to a destination

write dose.Medication || " with " || dose.Dose;
write "this is an email alert" AT email_dest;

• Include: Includes object, MLM, event, interface, and resource definitions from an external
MLM

mlm2 := MLM 'my_mlm2.mlm' FROM INSTITUTION "my inst itution";
INCLUDE mlm2;

medexter
clinical decision support

3030

Statements – Fundamentals I – Example

• The first statement is an assignment, assigning the reference to the MLM; in this case
interface_birthday_definition to the variable mlmImport

• The second one is an include statement that imports all object, MLM, event, interface, and
resource definitions from the MLM mlmImport (interface_birthday_definition)

• This write statement concatenates the calculated BMI and its classification to a string and
sends this message to the default destination

medexter
clinical decision support

3131

Statements – Fundamentals II

• Loops

– While Loop: Loops as long as the condition is equal to true

WHILE <condition> DO

<block>

ENDDO;

– For Loop: loops over the elements of a list

FOR i IN (1 seqto 10) DO

... // i can be used inside of the loop

ENDDO;

FOR i IN list_of_values DO ... ENDDO;

• Conclude: Ends execution in the logic slot; if the conclude statement has a single true as

argument, the action slot is executed immediately; otherwise the MLM terminates instantly

• Argument: If a calling instance passes parameters to the called MLM, the MLM retrieves the
parameters via the argument statement

• Return: Returns the provided parameter to the calling instance (which may be another MLM
or an external instance)

medexter
clinical decision support

3232

Statements – Fundamentals II – Example

• Conclude statement

• "result.classification is present " will evaluate to true, if the classification variable
does not refer to null

• If "result.classification is present " evaluates to true, the execution of the logic slot
stops immediately and the execution of the action slot begins

• If "result.classification is present " evaluates to false, the execution of the logic slot
also stops immediately but the action slot will not be executed and the evaluation of the MLM
terminates

• Argument statement which assigns all incoming parameters to the variable patientID

• Return statement that returns the object result to the calling instance (if the MLM is called
from another MLM, it will be returned to the calling MLM)

medexter
clinical decision support

3333

Statements – If-Then-Elseif

• If-Then: Permits conditional execution based on the value of an expression

– There are 3 different types of if-then statements:

If-Then: If-Then-Else: If-Then-ElseIf:

Block1 is executed Block1 is executed if Block1 is executed if

if condition is true condition is true, otherwise condition1 is true, if

(if condition is false or condition2 is true block2

anything other than true) is executed, in all other

block2 is executed cases block3 is executed

IF <cond> THEN IF <cond> THEN IF <cond1> THEN

<block1> <block1> <block1>

ENDIF; ELSE ELSEIF <cond2> THEN

<block2> <block2>

ENDIF; ELSE

<block3>

ENDIF;

medexter
clinical decision support

3434

Statements – If-Then-Elseif – Example

• This is an If-Then-ElseIf statement signifying the following:

• If the age of the current patient is less than 19 years, null is assigned to the
classification variable (the BMI specification is only valid for persons over 19 years)

• Otherwise, if the calculated BMI is less than 18.5, the localized string for underweight is
assigned to the classification variable

• Otherwise, if the calculated BMI is less than 25 (this means >=18.5 and <25), null is
assigned to the classification variable (no alert is required if the patient is in normal
BMI)

• Otherwise (i.e., all BMIs greater than 25), the localized string for overweight is assigned
to the classification variable

medexter
clinical decision support

3535

Statements – If-Then-Else – Fuzzy Condition

• If the used condition in an If-Then-Elseif statement evaluates to a truth value between 0
and 1, both blocks are executed

• Each branch is provided with its own set of variables which are duplicated accordingly

• The degree of applicability of each variable in the if-block is multiplied with the truth value
of the condition

• In the else-block the applicability of each variable is multiplied with 1 minus the truth value
of the condition

• The general applicabilities of these blocks are called relative weights

• The weight of an MLM evaluation is 1, as long as it does not split

• The program may branch several times

• If the branches are not subsumed using the aggregate keyword, the branches are executed
in parallel and the MLM will finish with 2 or more return values (with different applicabilities)

medexter
clinical decision support

3636

Statements – If-Then-Elseif – Fuzzy Condition – Example

Source

maintenance: [...]

knowledge: [...]

logic:

//define linguistic variable

//BMI as above

[...]

myBMI := 24.8;

x := myBMI <= BMI.overweight;

if x then

// this branch is executed

// with applicability 0.8

<then_block>

else

// this branch is executed

// with applicability 0.2

<else_block>

endif;

[...]

end:

Arden Syntax Fuzzy Arden Syntax

medexter
clinical decision support

3737

Statements - If-Then-Aggregate

if x then
<then_block>

else
<else_block>

endif AGGREGATE;

• Combination of the variable values in each execution
branch according to their applicability

• Example:
FiO2_change is -5 in the „then“ branch with applicability 0.8
FiO2_change is -10 in the „else“ branch with applicability 0.2
after aggregating the branches FiO2_change is -6 with
applicability 1

medexter
clinical decision support

3838

Statements – Object Statements

• Object: Assigns an object declaration to a variable (objects are the only data types in Arden
Syntax that are first declared and then "instantiated")

MedicationDose := OBJECT [Medication, Dose, Status];

• New: Causes the creation of a new object (based on the used object declaration)

dose1 := NEW MedicationDose; //empty object
dose2 := NEW MedicationDose with "Ampicillin", "500m g", "Active";

• Dot: Selects an attribute from an object, based on the name following the dot. The dot
operator is used to access the fields of an object

"John" := patient.Name.FirstName;

NameType := object [FirstName, LastName];

/* Assume namelist contains a list of 2 NameType obje cts */

("John", "Paul") := namelist.FirstName;

medexter
clinical decision support

3939

Statements – Object Statements – Example

• The first statement creates an object declaration with two fields and assigns this
declaration to the variable bmiResult

• The second statement creates an empty instance of the bmiResult object and assigns this
to the variable result

• Concatenates the content of the field bmi and the content of the field classification of the
object result to a string and sends this message to the default destination

• The dot operator (". ") is used to access the fields of an object

• The field BMI of the object result will be filled with the formatted text containing the
calculated BMI

medexter
clinical decision support

4040

Statements - Call Statements

• MLM calls: When the MLM call statement is executed, the current MLM is interrupted, and
the named MLM is called; parameters are passed to the named MLM

/* Define find_allergies MLM */

find_allergies := MLM 'find_allergies';

(allergens, reactions):= call find_allergies with p atientID;

• Event calls: When the event call statement is executed, the current MLM is interrupted, and
all the MLMs whose evoke slots refer to the named event are executed; parameters are
passed to the named MLMs

allergy_found := EVENT {allergy found};

reactions := call allergy_found with allergy, patie ntID;

• Interface calls: When the interface call statement is executed, the current MLM is
interrupted, and the interface is executed; parameters are passed to the interface

/* Define find_allergies external function*/

find_allergies := INTERFACE
{\\RuleServer\AllergyRules\my_institution\find_alle rgies.exe};

(allergens, reactions):= call find_allergies with p atientID;

medexter
clinical decision support

4141

Statements – Call Statements - Nested MLMs

• MLM calls are used to externalize
blocks of calculation which may
be used by several MLMs or are
additionally used in other knowledge bases

• The call statement in MLM1 immediately invokes MLM2 (the execution of MLM1 suspends)

• The parameter (parameter1) is passed to MLM2 and is accessed using the argument

expression

• The passed parameter is assigned to the variable id

• When MLM2 is completed, the result of MLM2 is passed back to MLM1 and assigned to the
variable size

medexter
clinical decision support

4242

Statements - Call Statements – Example

• The MLM statement assigns a reference pointing to the MLM read_Size_MLM , to the
variable mlmForReadSize

• This variable is used in the call statement to call the referred MLM

• The call statement passes the content of the variable patientID (the patient ID that
constitutes the context of the current MLM) to the MLM read_Size_MLM

• The execution of the current MLM is suspended while the called MLM is evaluated

• The return value of the called MLM is assigned to the variable size

medexter
clinical decision support

4343

Statements - Triggers

• Simple Trigger: A trigger statement specifies an event or a set of events; as soon as any of
the events occur, the MLM is triggered; they may only be used in the evoke slot

data:

penicillin_storage := event {store penicillin order}

cephalosporin_storage := event {store cephalosporin order}

;;

evoke:

penicillin_storage OR cephalosporin_storage;;

• Delayed Trigger: Permits the MLM to be triggered some time after an event occurs

MONDAY ATTIME 13:00 AFTER TIME OF penicillin_storag e;

• Constant Time Trigger: Allows the MLM to be triggered at a specific time

2011-01-01T00:00:00

• Periodic Event Trigger: Allows the MLM to be triggered at specified time intervals after the
occurrence of an event

every 2 hours for 1 day starting today at 12:00 aft er time of event3

every 1 day for 14 days starting 2011-01-01T00:00:0 0

medexter
clinical decision support

4444

Statements - Triggers – Example

• The event statement assigns the reference of the event getBMI to the variable userEvent

• This variable is used in the evoke slot

• The MLM is triggered immediately after the referred event occurs

• If the evoke slot is changed to the above version, the MLM is triggered on the following
Monday at 13:00, after the occurrence of the referred to event

medexter
clinical decision support

4545

Operators – List Operators

• Concatenation: Appends two lists or turns a single element into a list of length one

(4,2) := 4, 2;

(,3) := , 3;

• Merge: Combines two lists, appends a single item to a list, or creates a list from two single
items; then sorts the results in chronological order based on the primary times of the
elements

/* data1 has data value 2 and primary time 2013-01- 02T00:00:00, and data2
has data values 1 and 3 and primary times 2013-01-0 1T00:00:00 and 2013-01-
03T00:00:00 */

(1, 2, 3) := data1 MERGE data2

null := (4,3) MERGE (2,1) // no primary time -> res ult is null

• Sort: Reorganizes a list based on either the element values (keyword data) or the primary
times (keyword time); default keyword is data

(1, 2, 3, 3) := SORT (1,3,2,3);

(10, 20, 30) := SORT DATA (20, 10, 30);

(30, 20, 10) := REVERSE (SORT DATA (20, 10, 30));

(30, 20, 10) := SORT TIME data3; /* assuming that d ata3 contains the
values 10, 20, 30 with primary times 2013-01-03T00: 00:00, 2013-01-
02T00:00:00 and 2013-01-01T00:00:00 */

medexter
clinical decision support

4646

Operators – Logical Operators

• And: Performs the logical conjunction of its two arguments; if either argument is false (even
if the other is not Boolean), the result is false; if both arguments are true, the result is true;
otherwise null is the result

false := true AND false

null := true AND null

false := false AND null

0.4 := (0.5 AS TRUTH VALUE) AND (0.4 AS TRUTH VALUE)

• Or: Performs the logical disjunction of its two arguments; if any argument is true the result
is true; if both arguments are false, the result is false; otherwise null is the result

true := true OR false

false := false OR false

true := true OR null

null := false OR null

null := false OR 3.4

0.5 := (0.5 AS TRUTH VALUE) OR (0.4 AS TRUTH VALUE)

• Not: True becomes false, false becomes true, and anything else becomes null

true := NOT false

null := NOT null

0.8 := NOT (0.2 as TRUTH VALUE)

medexter
clinical decision support

4747

Operators – Comparison Operators

• <,>,<=,=>,=, <>: These operators have their common meaning; these operators can
handle any data type; if one argument is null or types do not match, null is returned

• Is within … to …: Checks if the first argument is within the range specified by the second
and third argument (inclusive)

true := 3 IS WITHIN 2 TO 5

false := 3 IS WITHIN 5 TO 2

• Is within … following …: Checks if a time is within a defined time period

false := 2011-03-08T00:00:00 IS WITHIN 3 days FOLLO WING 2011-03-
10T00:00:00

• Is in: Checks membership of the first argument in the second argument (list)

false := 2 IS IN (4,5,6)

(false,true) := (3,4) IS IN (4,5,6)

• Is string|number|null etc.: Returns true if the argument is of the given type

medexter
clinical decision support

4848

Operators – Comparison Operators – Example

• "less than " is a synonym to <

• "the age is less than 19 years " clearly returns true if the age is strictly under 19

medexter
clinical decision support

4949

Operators – Comparison Operators – Fuzzy Comparison

• The behavior of the comparison operators is different to the standard case when a crisp
value is compared to a fuzzy set

• x is in BMI.normal
Returns the truth value (u(x)) to that the crisp value (x) is mapped by the fuzzy set

• x <= BMI.normal
Returns the maximum of the mappings of all y ≥ x (green shape)

• x >= BMI.normal
Returns the maximum of the mappings of all y ≤ x (blue shape)

x is in BMI.normal

x <= BMI.normal

x >= BMI.normal

medexter
clinical decision support

5050

Operators – String Operators I

• Concatenation: Converts its arguments into strings and then concatenates them

"null3" := null || 3

"45" := 4 || 5

"list=(1,2,3)" := "list=" || (1,2,3)

• Formatted with: Formats a string with a given pattern (like printf in ANSI C)

"The result was 10.61 mg"

:= 10.60528 FORMATTED WITH "The result was %.2f mg"

"The date was Jan 10 2011"

:= 2011-01-10T17:25:00 FORMATTED WITH "The date was %.2t"

• Localized: Returns a string that has been previously defined in the language slot of the
MLM’s resources category, using a given or the current system’s language

"Caution, the patient ..." := LOCALIZED 'msg' by "e n_US";

"Achtung, der Patient ..." := LOCALIZED 'msg' by "d e";

"Caution, the patient ..." := LOCALIZED 'msg'; //us e system language

medexter
clinical decision support

5151

Operators – String Operators I – Example I

• The concatenation operator concatenates the string the BMI field of the object result
refers to with the string the classification field of the object result refers to and the
string ". "

• "localized ' msg' " will return the format pattern in the current system language

• The formatted with operator will then apply this pattern to the calculated BMI

• The result (a string) is assigned to the BMI field of the object result

• Assuming the calculated BMI is 29.4324 and the system language is English, the result of
this formatted with expression is "The patient’s BMI 29.4 is not in the normal
range and is classified as "

medexter
clinical decision support

5252

Operators – String Operators I – Example II

• The localized operator will return that string which is assigned to the term ' over ' in the

resources category

• The operator will obtain the string from the language slot that matches the current
language of the system the engine is running on

• If there is no language slot for the current system language, the defined default language is
used

• Assuming English as the current system language, the whole statement will assign
"Overweight " to the field classification of the object result

medexter
clinical decision support

5353

Operators – String Operators II

• Uppercase, Lowercase: Converts all characters of a given string to lowercase/uppercase

"EXAMPLE STRING" := UPPERCASE "Example String";

"example string" := LOWERCASE "Example String";

• Substring: Returns a substring of characters from a given string

"ab" := SUBSTRING 2 CHARACTERS FROM "abcdef";

"def" := SUBSTRING 3 CHARACTERS STARTING AT 4 FROM "abcdef";

• Matches pattern: Determines if a string matches a pattern (similar to LIKE in SQL)

true := "fatal heart attack" MATCHES PATTERN "%hear t%";

false := "fatal heart attack" MATCHES PATTERN "hear t";

• Length: Returns the length of a given string

7 := LENGTH OF "Example";

medexter
clinical decision support

5454

Operators – Arithmetic Operators

• +, -, *, /, **: Are used in their common meaning, except one argument is null or types do
not match

2 days := 6 days / 3;

9 := 3 ** 2;

• Cosine, Sine: Calculates the cosine/sine of its argument

1 := COSINE 0;

• Log: Returns the natural logarithm of its argument

0 := LOG 1;

• Abs: Returns the absolute value of its argument

1.5 := ABS (-1.5);

• Ceiling: Returns the smallest integer greater than or equal to its argument

-3 := CEILING (-3.9);

• Truncate: Removes any fractional part of a number

-1 := TRUNCATE (-1.5)

medexter
clinical decision support

5555

Operators – Arithmetic Operators – Example

• The BMI is calculated by dividing the current weight of the patient through the square of
the current size

• The result is assigned to the field BMI of the object result

• The current age of the patient is calculated by subtracting the birthday from the current
time

• The keyword currenttime is used to refer to the current system time

• Assuming that the birthday is 1977-12-12 and the current time is 2011-06-12T00:00:00 ,
after evaluating the statement, the variable age will refer to the duration 33.5 years

medexter
clinical decision support

5656

Operators – Temporal Operators

• After, Before: Addition/subtraction of a duration and a time

2011-03-15T00:00:00 := 2 days AFTER 2011-03-13T00:0 0:00

2011-03-11T00:00:00 := 2 days BEFORE 2011-03-13T00: 00:00

• Time of day: Extracts the time-of-day from a given time

14:23:17.3 := TIME OF DAY OF 2011-01-03T14:23:17.3

/* let time of data0 be 2011-01-01T12:00:00 */

12:00:00 := TIME OF DAY OF (TIME OF data0)

• Day of week: Returns a positive integer from 1 to 7 that represents the day of the week of
a specified time

5 := DAY OF WEEK OF 2011-08-27T13:20:00

1 := DAY OF WEEK OF now // in case the current day is Monday

medexter
clinical decision support

5757

Operators – Aggregation Operators I

• Count: Returns the number of items of a list

4 := COUNT (12,13,14,null);

• Exist: Returns true if there is at least one non-null item in a list

true := EXIST (12,13,14)

false := EXIST null

• Average: Calculates the average of a number, time, or duration list

14 := AVERAGE (12,13,17)

04:10:00 := AVERAGE (03:10:00, 05:10:00)

• Sum: Calculates the sum of a number or duration list

39 := SUM (12,13,14)

7 days := SUM (1 day, 6 days)

• Median: Calculates the median value of a number, time, or duration list

13 := MEDIAN (12,17,13)

3 days := MEDIAN (1 hour, 3 days, 4 years)

medexter
clinical decision support

5858

Operators – Aggregation Operators II

• Variance: Returns the sample variance of a numeric list

2.5 := VARIANCE (12,13,14,15,16)

• Min, Max: Returns the smallest/largest value in a homogeneous list of an ordered type

14 := MAXIMUM (12,13,14)

• Last, First: Returns the value at the end/beginning of a list

14 := LAST (12,13,14)

• Latest, Earliest: Returns the value with the latest/earliest primary time in a list

• Seqto: Generates a list of integers in ascending order

(2,3,4) := 2 SEQTO 4

(-3,-2,-1) := (-3) SEQTO (-1)

() := 4 SEQTO 2

• Reverse: Generates a new list with the elements in reverse order

(3,2,1) := reverse (1,2,3)

medexter
clinical decision support

5959

Operators – Aggregation Operators II – Example

• After evaluating the read statement, the variable weights refers to a list containing all

weights ever measured for the specific patient

• For calculating the BMI, only the latest measured weight is relevant

• The latest operator extracts the weight with the latest primary time (each result item from
the read statement has both a value and a primary time that denotes the time when the
value was measured or inserted into the database)

• The latest weight is assigned to the variable weight

medexter
clinical decision support

6060

Operators – Time and Object Operators

• Time: Returns the primary time of the provided parameter

2011-03-15T15:00:00 := TIME OF data0;

• Attime: Constructs a time value from two time and time-of-day arguments

2011-06-20T15:00:00 := now ATTIME 15:00:00;

2001-01-01T14:30:00 := TIME OF intuitive_new_millen ium ATTIME 14:30:00;

• Clone: Returns a copy of its argument (used for objects)

2011-03-15T15:00:00 := CLONE OF 2011-03-15T15:00:00 ;

medexter
clinical decision support

6161

Operators – Time and Object Operators – Example

• The condition of the If-Then-Else statement uses the time operator to access the
primary time of the variable weight

• It is checked whenever the primary time is 6 months before the current system time

• If the primary time is not within the last 6 months, the MLM concludes false

medexter
clinical decision support

6262

THE END

