View Revision Marks

 HYPERLINK "http://www.hl7.org/v3ballot2008May/html/infrastructure/coreprinciples/v3modelcoreprinciples.htm" Hide Revision Marks
Core Principles and Properties of HL7 Version 3 Models

	
 INCLUDEPICTURE "http://www.hl7.org/v3ballot2008May/html/support/graphics/hl7_normativeballot_logo.gif" * MERGEFORMATINET

HL7 V3 MODELS, R1
HL7 Version 3 Standard: Core Principles and Properties of Version 3 Models, Release 1
Normative Ballot 1 - May 2008

	Primary Contributer and Infrastructure & Management Co-Chair
	Grahame Grieve
Kestral Computing Pty. Ltd.

	Primary Contributer and Vocabulary Co-Chair
	W. Ted Klein
Klein Consulting, Inc.

	Primary Contributer and Modeling & Methodology Co-Chair
	George Beeler, Jr., PhD.
Beeler Consulting LLC

	Modeling & Methodology Co-Chair
	Lloyd McKenzie
McKenzie Consulting

	Modeling & Methodology Co-Chair
	Dale Nelson
Zed Logic, Inc.

	Modeling & Methodology Co-Chair
	Craig Parker, MD
RemedyMD, Inc

	Modeling & Methodology Co-Chair
	Ioana Singureanu
U.S. Department of Veterans Affairs

Last Published: 03/25/2008 9:33 AM

HL7® Version 3 Standard, © 2008 Health Level Seven®, Inc. All Rights Reserved.

HL7 and Health Level Seven are registered trademarks of Health Level Seven, Inc. Reg. U.S. Pat & TM Off

Table of Contents

Preface
i Notes to Readers
ii Known Issues in this Release
1 Introduction and Scope
2 Types of HL7 V3 Models
2.1 Instances
2.1.1 Serialization
2.2 RIM: Reference Information Model
2.2.1 How the RIM is maintained
2.3 Other V3 Static Models
2.3.1 DIM : Domain Information Model
2.3.2 CIM : Constrained Information Model
2.3.3 LIM : Local Information Model
2.4 Dynamic Models
3 Realms
3.1 Defined Realms
3.1.1 Affiliate Realms
3.1.2 Combination Realms
3.1.3 Sub-Realms
3.1.4 Generic Realms
4 Vocabulary
4.1 Code System
4.2 Concept Domain
4.2.1 Examples of Concept Domains
4.2.2 Sub-Domains
4.3 Value Sets
4.3.1 Introduction
4.3.2 Value Set Specification
4.3.3 Nested Value Sets
4.3.4 Sub-value Sets
4.3.5 Value Set / Code System Relationship
4.3.6 Value Set Versioning
5 Type Representation
5.1 Model Types for Classes
5.1.1 Expressed Models
5.1.2 Implied Models
5.1.3 Applied Models
5.2 Datatype Flavors
6 Null Flavor
6.1 Note about the name nullFlavor
6.2 Implementation Considerations
7 Update control
8 Referencing Objects
9 Identifying Objects
10 Update Mode
10.1 Model Designer Guidance
11 Accountability
12 Identification
12.1 Global Uniqueness
12.2 OID registry
12.3 OID Conflict Resolution
12.4 HL7 OID branch
13 V3 Conformance
13.1 Cardinality & Optionality
13.1.1 Testing Considerations
13.2 Vocabulary Conformance
13.2.1 Vocabulary Binding
13.2.2 Static and Dynamic Binding
13.2.3 Unbound domains
13.2.4 Additional notes on domains and value-sets
13.2.5 Value Set Binding in Implementation Guides
13.2.6 Binding Strategies
13.2.7 Binding Syntax
14 Introduction to how RIM & datatypes fit together

Preface

 i Notes to Readers

This is the first release of this document. It is intended to provide important background information for implementors trying to implement V3 Static Models, whether they are found in Messages, Documents, or Service Payloads.

 ii Known Issues in this Release

The following issues have been identified by the authors and remain to be resolved:

 ii - a Known Issue 01

Introduction and Scope (§ 1) TODO: This section is unfinished.

 ii - b Known Issue 02

RIM: Reference Information Model (§ 2.2) TODO: A paragraph about structural vocab and the class and mood codes.......

 ii - c Known Issue 03

How the RIM is maintained (§ 2.2.1) TODO:

· where to find the content.

· structural vocabularies

· datatypes

· RIM

· that some parts are subject to retrospective change

· pay attention to valueset definitions / how published

· harmonisation process

· technical note about relationship between harmonisation and ballot

 ii - d CLOSED Issue 04

Other V3 Static Models (§ 2.3) (TODO: references....)

 ii - e Known Issue 05

DIM : Domain Information Model (§ 2.3.1)TODO: DIMs are not derived from the RIM, but are developed using constructs that are accessible to experts in the domain in question [GWB: THis is NOT true. DIMS are RIM-derived either indirectly or directly. DAMs are the "accessible" models] [(was) may be derived directly from the RIM or from other DIMs (such as the clinical statement pattern).] One stage of HL7 development, see HDF xxx, is to take a developed DIM and map it to the RIM to create a RIM based model that expresses the same content as the orginial DAM. Q: How does one decide on the scope of a domain? Q: Should a DAM reflect the needs of a particular realm? or be in the "universal realm"?

 ii - f Known Issue 06

CIM : Constrained Information Model (§ 2.3.2)TODO: Only HL7 or it's affiliates may define and publish CIMs.[GWB: Not true - implementers may define CIMs, just not normative ones]

 ii - g Known Issue 07

Dynamic Models (§ 2.4)TODO: Interoperability Paradigms!

 ii - h Known Issue 08

Realms (§ 3)TODO: ??
:: rework - this should be a discussion about realms mean in vocab, not what they are.--[[User:GrahameGrieve|GrahameGrieve]] 14:59, 23 February 2008 (CST)
:: begun the rework, please comment. --[[User:Tklein|Tklein]] 18:07, 23 February 2008 (CST)

 ii - i Known Issue 09

Concept Domain (§ 4.2)TODO: ??
:: todo: how to describe/define the message development process. and why "specific vocabulary" - it's not a predefined term. --[[User:GrahameGrieve|GrahameGrieve]] 14:38, 23 February 2008 (CST)
:: not sure where to go with this in terms of how much should be described about the message development process down here in vocabulary.. --[[User:Tklein|Tklein]] 11:12, 10 March 2008 (CDT)

 ii - j CLOSED Issue 10

TODO: (§ 4.2.1.1)TODO: the following items relate to concept domains and their use as bindings to RIM elements, etc. They (may) need placement somewhere

[image: image2.jpg]basad_on 1

describes possible values of
Timirs possible values o

0.1 consmains

dascribas possibla valuas of

constrainad_by

constrains.

0.7 | has_dependent

based on 1

has_dependent

0.

& constrains.

RIM Attributes and Vocabulary Domains

· A coded element is any attribute from a V3 static model (RIM, DIM (D-MIM), CIM (R-MIM, HMD, Message Type), LIM (Template, Profile etc.)) or property from a V3 data type model where the type of that attribute or property can be specialized or generalized from the CD (concept descriptor) data type, and collections thereof. Thus, coded attributes are attributes that have a type of concept descriptor (CD), coded simple value (CS), coded value (CV), concept role (CR), coded with equivalents (CE), coded ordinal (CO), character string with code (SC), or physical quantity representation (PQR). Elements with a data type of any (ANY) are also categorized as coded elements because the ANY datatype can be constrained to CD or any of its specializations.

DISCUSSION:
:: why do we have this a bullet point? I'm not even sure what it's trying to accomplish. and I think that while the comment about ANY is potentially true, most people would be confused by it? It's not like we allow a binding on ANY anywhere. Do we? --[[User:GrahameGrieve|GrahameGrieve]] 14:58, 23 February 2008 (CST)
:: This was a footnote in the original document, and it came in as streaming text inline when the paste was done - that is not a bullet, it is a footnote mark. The asterisk was by a former reference to a 'coded element' in the original document, which was removed when we modified the nomenclature to 'coded attribute' in this document. I left this in here because I don't know if we want to keep any of this text somewhere in this document if not in this Vocabulary section; the salient point is that vocabulary is bound in lots of different kinds of models, not just the RIM ones. You can completely remove this if you'd like, or slide it in somewhere else where it might be more appropriate. This should most likely be part of the discussion on 'coded attributes' in the 'to do' list below. --[[User:Tklein|Tklein]] 11:22, 10 March 2008 (CDT)

 ii - k CLOSED Issue 11

Null Flavor (§ 6)TODO: -- insert null flavor table here --

 ii - l Known Issue 12

Accountability (§ 11)TODO:: GG: is that last bit true - can you infer anything about the dynamic model from the controlAct?

 ii - m Known Issue 13

OID registry (§ 12.2)TODO:
:: This needs revision consistent with a recent email exchange between Ted and Grahame to describe a deprecation lifecycle to be used in the conflict resolution procedures discussed below. --[[User:GrahameGrieve|Grahame Grieve]] 23:42, 21 February 2008 (CST)
:: Dunno if this is good enough, change it as you see fit. --[[User:Tklein|Tklein]] 13:21, 10 March 2008 (CDT)

 ii - n Known Issue 14

V3 Conformance (§ 13)TODO: what goes here? what goes in RCL? Not following Section Cardinality & Optionality (§ 13.1) is empty.

What goes here is foundational material: what is the notion of conformance, and what is it's architecture. How to use it, further considerations etc, belong in RCL. (so RCL has same relationship to this spec as templates, RIM, and datatypes)

 ii - o Known Issue 15

Vocabulary Conformance (§ 13.2)TODO: note this is the first set of pasted material, and is now all of the material from the value set binding document. I have not yet cleaned it up, nor put in the changes from San Antonio. --[[User:Tklein|Tklein]] 18:32, 23 February 2008 (CST)

 ii - p Known Issue 16

HL7’s Implementation of value sets (§ 13.2.4.2) TODO: --66.18.217.179 23:13, 13 April 2007 (PDT)Question: If Abstract or Specializable isn't a characteristic of the value-set, and it's not declarable as part of the binding, how is it established? Fundamentally, I think this IS a construct of the value-set definition. Two value-sets defined by referencing the same concept and all specializations, one defined as abstract and the other as specializable would be two distinct value-set definitions.

TODO: :: I need to go over this fine point with Stan and Russ - we have gone back and forth over this property being part of the value set definition or part of the binding definition. I think it is now in the value set definition, but need to verify. --[[User:Tklein|Tklein]] 12:34, 10 March 2008 (CDT)

 ii - q Known Issue 17

X-Domain (X-Value Set) [Deprecated] (§ 13.2.4.3) TODO: 23:13, 13 April 2007 (PDT)Comment: Guidance is required on names. At the moment, we continue to use the lower-case x prefix when creating value-sets for structural code systems

 ii - r Known Issue 18

Strategy for Model Binding to a Single Code (§ 13.2.6.3)TODO:
--66.18.217.179 23:13, 13 April 2007 (PDT)Question:What's the point of referencing the code system version. When you reference a code, you reference the code independent of version. In an instance, there's no guarantee you'll ever know the version. The semantics of a code are not allowed to change from version to version
:: the code may be retired from a code system, and there are MANY code systems used in HL7 and in the Healthcare IT community that do not follow the rules, and the semantics of a particular code sometimes does change meaning in these. --[[User:Tklein|Tklein]] 12:49, 10 March 2008 (CDT)

 ii - s Known Issue 19

Strategy for Context Binding to a Single Code (§ 13.2.6.4)
TODO: --66.18.217.179 23:13, 13 April 2007 (PDT)Question:What's the point of repeating the concept domain? It's not needed to achieve the binding, and could be FAR broader than the code you're constraining to.
(lower down)TODO: --66.18.217.179 23:13, 13 April 2007 (PDT)Question: As above
Strategy for Dynamic Context Binding of Value Sets (§ 13.2.6.5)TODO: --66.18.217.179 23:13, 13 April 2007 (PDT)Question: as above
Strategy for Static Context Binding of Value Sets (§ 13.2.6.6)TODO: --66.18.217.179 23:13, 13 April 2007 (PDT)Question: as above

 ii - t Known Issue 20

Strategy for Dynamic Context Binding of Value Sets (§ 13.2.6.5)
TODO: --66.18.217.179 23:13, 13 April 2007 (PDT)RealmCode may be asserted at more than just the root wrapper. There are use-cases where a single message instance will contain content drawn from multiple binding-realms. At the moment, it can be asserted for any class, though MnM has discussed restricting its assertion to model boundaries only (e.g. start of a payload wrapper or CMET).
:: Without getting into the complexities of multiple-thread environment evaluation whilst evaluating all the wrappers and whatever templates are in effect at the time, should this wording be changed from this latest? It is clear that at any point in the parse, a particular coded attribute will have a particular RealmCode in effect at that moment; that is the one to be passed to the terminology server. How should this be worded so that it is not so confusing? --[[User:Tklein|Tklein]] 12:58, 10 March 2008 (CDT)

 ii - u Known Issue 21

Syntax for Model Binding of Value Sets to Attributes in Static Models (§ 13.2.7.1) TODO: [Note: We need a standard syntax for making a fully qualified pathName.]
--66.18.217.179 23:13, 13 April 2007 (PDT) Suggest (ClassName.attributeName[.datatypePropertyName]+)

 ii - v Known Issue 22

TODO: Other items to be covered:
* coding strength

: should the section on Domains be here rather that up in the vocabulary section? --[[User:Tklein|Tklein]] 18:21, 23 February 2008 (CST)

introduction to how RIM & datatypes fit together

todo = from dt ballot: Explain to people how to avoid having non-null empty bags when desired. (same for list and set)

[image: image3.png]

1 Introduction and Scope

Known Issue 01 (§ 2.1) It is intended to:

· a description of the Document at a minimum sufficient for a person unfamiliar with the work to understand the document’s business, scope and relationship with HL7.

· the need for a Specification.

· This specification is a promise (actually, a covenant): what hl7 promises about V3 infrastructure that the implementers can rely on.
Because of this, the document will occasionally specify internal procedural rules that are required to support these promises

 2 Types of HL7 V3 Models

 2.1 Instances

The fundamental notion of V3 is that in order to exchange data, systems exchange serialised streams of data that are an "instance" of a V3 model under a set of rules that describe why and when the data is exchanged.

All V3 models are valid of classes linked by associations. The classes and assocations are defined in the RIM. The classes have a series of named attributes which are assigned a type defined in the datatypes. Some attributes are associated with controlled vocabularies which provide clearly defined semantic meaning to the static models. Together, the structural vocabularies, the data types and the RIM classes constitute the reference model.

All V3 instances are instances of the reference model, and conform with the rules of the reference model. V3 models usually also conform to other additional constraint models that describe how the general reference model is used to describe particular administrative or clinical healthcare information.

Instance of V3 models may have any forms of expression and be used in many contexts, such as a message payload in a message associated with an HL7 defined interaction, a CDA document, or a payload as part of a service interaction, etc.

Instances of V3 models are exchanged in the context of a dynamic model that specifies why and when the data is exchanged.

Dynamic models are discussed further below.

 2.1.1 Serialization

In order for systems to exchange the instances of a V3 model, they need some particular form of representation. As a response to industry demand, HL7 offers a defined representation of the V3 instances in XML, known as the XML ITS. Other forms of representation could be imagined, such as XMI, HUTN, ASN.1 and so forth, but there has not been sufficient demand to justify the creation of alternatives to the standard XML form.

The ITS must define not only how the instance is serialised, but also how the links from the instance to the many models that contribute to defining the meaning of the instance are expressed and/or derived from the serialized representation.

 2.2 RIM: Reference Information Model

The RIM defines all the classes that are used in V3 instances. The RIM itself is a UML class model; the classes are standard classes in the UML sense, and have associations and attributes as defined in the RIM models. All classes defined in the RIM are specialisations of the base class InfrastructureRoot which defines the attributes that support the core behaviour of V3 models as described in this specification.

The RIM makes extensive use of the two other parts of the V3 reference model, the structured vocabulary and the datatypes. Vocabulary and it's associated concepts are discussed below.

The datatypes define the set of types that may be used to define the value domains and associated semantics of the RIM class attribute. The semantics of the types are defined in the the abstract datatypes (the ITS describes how the datatypes are actually represented when serialized).

Known Issue 02 (§ 2.2)
 2.2.1 How the RIM is maintained

Known Issue 03 (§ 2.3)
 2.3 Other V3 Static Models

All other V3 Static Models are statements of constraint against the RIM to which instances of the V3 reference model may be required to conform in a particular context of use.

These models are expressed using a modeling formalism and language developed by HL7 for the purpose. This is fully defined in the HL7 Development Framework. (HDF) and the HL7 Model Interchange Format (MIF). However this is only one possible form of expression. Other forms of expression have been imagined and proposed or are under development.

Static models may be considered or represented as a direct statement of constraint or as a class model (UML) or some form of typing model (i.e. schema) in their own right. The difference in these two is largely an implementation issue; the semantics are always clear: all instances are instances of the reference model, and all other satic models are constraints on the reference model. The degree of success at representing a static model as a typing model depends on the target platform.

 2.3.1 DIM : Domain Information Model

The first level of constraint is a domain information model. This provides a solution to the information requirements of a particular problem domain. A DIM may have multiple entry points. As such, a DIM is not a directly implementable model, and is a fairly general statement of an domain with fairly general vocabulary bindings.

Known Issue 05 (§ 2.5)
 2.3.2 CIM : Constrained Information Model

CIMs represent a second level of constraint. CIMs must have single entry points, which makes them serialisable. CIMs are therefore suitable for use as implementation constructs on information systems and should be completely specified for this purpose. CIMs are generally focused on narrower problem domain that a DIM.

CIMs are either derived from a DIM directly, or from another CIM. Though technically, a CIM could also be derived from the RIM directly, this is prohibited as a matter of policy to encourage consistent design.

CIM cascades can be as deep as desired, but in most domains HL7 only defines a DIM and one layer of CIMs.

Known Issue 06 (§ 2.6)
 2.3.3 LIM : Local Information Model

Like CIMs, LIMs are a constraint model that has a single entry point. However LIMs differ from CIMs:

· LIMs may be derived from the RIM directly as well as DIMs or CIMs (though derivation from the appropriate DIM is recommended)

· LIMs may be defined and published by anyone (including HL7 and it's affiliates).

· LIMs may be incomplete models (refer to the static model definitions for further information about incomplete models).

LIMs are principally intended to be used as templates, but may be used in other fashion by site or realm agreement.

 2.4 Dynamic Models

The dynamic model specifies who exchanges information and why, and refers to a set of static model to define the information that is exchanged for a particular scenario. The form of the dynamic model is variable in different uses of V3, and the full expression form is still a subject of further development.

Known Issue 07 (§ 2.7)
 3 Realms

Known Issue 08 (§ 2.8)
For HL7, with respect to Vocabulary, Realm (previously also referred to as Context of Use) refers to a named interoperability conformance space, meaning that all static models within a particular Realm share the same conformance binding. In the context of HL7 Vocabulary, this is also commonly referred to as a Binding Realm, especially where other types of realms are being discussed. A Realm has a string name which is unique in the HL7 Standards space. In order to enable conformance, the name of a Realm is carried in a model instance.

In the interest of maximizing interoperability, and making the spaces within which interoperability is maximized as large as possible, Realms are preferred to be large-grained. A Realm is used to provide and manage the bindings/substitutions of value sets to reflect local rules, and is a parameterization permitting internationalization of vocabulary – binding different value sets to the same message design being used in a different country.

As discussed below, there have been a number of Realms defined in HL7.

 3.1 Defined Realms

 3.1.1 Affiliate Realms

Each HL7 International Affiliate has control of a Realm bounded by the geographic scope of that International Affiliate.

 3.1.2 Combination Realms

There is a need for some Realms that combine more than one country. North America represents a shared interoperability space for Cancer Registries for both the US and Canada. This Realm has been created as a combination of the US Realm and the Canadian Realm. Any Realms may be combined for such a purpose to make an interoperability space that extends beyond one country.

 3.1.3 Sub-Realms

In some circumstances, a Realm has a requirement to make smaller interoperability spaces within its own borders. This is discouraged, as it impedes broader interoperability. However, the mechanisms exist for any Realm to create such a Sub-Realm for models that are used wholly within that smaller subdivision differ from the conformance requirements of models in other Sub-Realms.

 3.1.4 Generic Realms

Four Generic Realms have been defined that are not specific to an International Affiliate or a geographic area. These generic realms should never appear in model instances, they are only used in the standards creation process. All instances must declare a particular realm (or sub-realm) based on the jurisdiction from which they originate or for which they are destined or some third jurisdiction by site-specific agreement.

 3.1.4.1 Universal Realm

The Universal Realm constitutes the core HL7 realm which by definition is invariable and fully inherited by all HL7 compliant implementations. I.e. If a Universal Realm binding exists for any domain, all implementations are expected to use the set of codes associated with that binding. No other bindings may exist. Structural elements and most datatypes are examples of contents in this realm. Contents from domain technical committees are not likely to be included in the Universal Realm and when introduced must go through special processes to ensure full international consensus on the constraint to a single binding.

 3.1.4.2 Example Realm

The example realm is used for bindings to sets of codes that are known to provide incomplete or non-implementable coverage to the associated domain. They are used to fulfill the example requirement of concept domain definition. They may also be used in the construction of realm-independent example instances. Example realms are not needed when Representative Realms exist.

 3.1.4.3 Representative Realm

Representative realm bindings are intended to be complete and implementable. However, unlike universal bindings, there is no expectation that all affiliates will choose to adopt the representative realm bound codes. Representative realm bindings provide both a starting point and as a focus for consensus, while recognizing that cultural and political variations between International Affiliates
will result in alternative bindings. To qualify for Representative Realm designation, candidate content must be sufficiently comprehensive and internally consistent to be adoptable and implementable by specialized binding realms. A representative realm binding has no official force in an affiliate. The affiliate must explicitly choose to adopt the same set of codes with an Affiliate-specific binding for the representative set of codes to come into effect when determining conformance

 3.1.4.4 Unclassified Realm

Since much proposed HL7 machinery will require the explicit specification of a realm, the creation of a realm that can accommodate content that is new and in the process of being created or legacy content that has not yet been promoted to one of the three main realms. The Unclassified Realm may also serve as a transition point for content contributed from Specialized Realms. Unclassified realms exist for HL7 administrative purposes and have no effect on implementations

 3.1.4.5 Sub-binding Realms

In some circumstances, a National Affiliate might choose to create additional binding realms narrower in scope than the affiliate-wide binding realm. The sub-binding realms might be constructed geographically (regions, states, provinces, etc.) or by type of implementation (e.g. human vs. veterinarian). Sub-binding realms can only be created by National Affiliates.

Note: Because the purpose of binding sub-realms is to allow the use of different code sets for the same message within an affiliate, they can cause interoperability issues within the Affiliate. They should therefore only be introduced after careful consideration of the interoperability consequences.

 4 Vocabulary

 As outlined above, HL7 static models consist of classes and associations: the classes comprise named attributes. Each attribute has a data type, which constrains the values the attribute may hold. Some datatypes use controlled sets of enumerated values to represent concepts : these are expressed as coded elements. A coded element is any attribute from a V3
static model (payload, wrapper, or CMET) and any property in a data type that is allowed to convey codes from a code system.
In HL7, the codes and designations of concepts to be represented in coded elements are provided by vocabularies. Vocabularies are code systems (controlled terminologies) from which concept codes and concept designations can be drawn.

The process and mechanisms for assigning collections of these concept codes and designations to the coded elements in the models is described in the section on Binding, below. Section
13, on V3 Conformance, also provides definitions required for the mechanisms implementing conformance.

 4.1 Code System

Within HL7, a code system is defined as a collection of coded concepts, each having associated designations and meanings. In HL7, a code allows the conversion
of a concept descriptor (a term) into another form or representation (one sign into another sign), a code, which allows unambiguous representation. Examples of code systems include ICD-9 CM, SNOMED CT, LOINC, and CPT. To meet the requirements of a code system as defined by HL7, a given code must resolve to one and only one meaning within the code system; therefore, a concept is uniquely identified by the tuple {codeSystem, code} (but see the qualification regarding versioning, below).

While a code must be unique within a code system, the same string of characters may appear in other code systems associated with different concepts. Given this definition, each table having enumerated codes in the HL7 Version 2 standard represents a different code system, since codes are sometimes used in different tables to have different meanings. For example, “M” in the gender table means Male, while “M” in the marital status table means Married
.

Some code systems have 'synonyms', where more than one code may designate the same concept in the code system. For instance, ISO 3166-1 has one collection of numeric codes representing each country in the world, a second set of 2-character alphabetic codes, and another set of 3-character alphabetic codes; e.g., the United States of America is represented as "US", "USA" and "840". In HL7, each of these strings is considered a code of the ISO 3166-1 code system: because the codes for the same concept are different, the concept “United States of America” is unambiguously defined by the code system together with any of the three code values, i.e. the synonyms in the code system do not lead to an ambiguity of the semantics of the concept.

Code systems are concept systems
, i.e., systems which organize concepts by describing the relationships
of the concepts to each other. Code systems use concept codes which are unique identifiers of concepts. There are concept systems with and without codes. Concept systems with concept codes
 identify concepts via codes, while concept systems which do not use codes use concept designations to identify concepts. The former are preferred in HL7 but the latter can be used if no other concept system is available.
A code system can be referred to as a terminology, ontology, vocabulary, or classification In the vocabulary community, these are not synonyms, but are used for different purposes. The definitions of types of controlled terminologies are the subject of much discussion. We here define these terms as used in HL7 to prevent confusion, without any aim of providing definitions valid beyond HL7.
A vocabulary in the HL7 sense is a terminology, as defined below.

 A terminology is a set of concepts designated by terms belonging to a special domain of knowledge, or subject field . A terminology is not an arbitrary collection of terms, but a collection of designations attributed to concepts making up the knowledge structure of a subject field. The concepts of a well-structured terminology should constitute a coherent concept system based on the relations
established between concepts. The meaning of each concept within a system can be determined by the intension, i.e. the unique set of characteristics constituting the concept, or its extension, i.e. the enumeration of the subordinate concepts of a concept.
Most terminologies can be classified
as either reference terminologies or interface terminologies, though there are other types, e.g. indexing terminologies (like UMLS). A reference terminology is a terminology in which every concept designation has a formal, machine-usable definition supporting data aggregation and retrieval. Interface terminologies are used to mediate between a user’s colloquial conceptualizations of concept descriptions and an
underlying reference terminology.

A terminology can be seen as a kind of ontology. An ontology has all the characteristics of a terminology, but it also uses a methodology for the description of the relationships between concepts (e.g., Description Logic) which allows humans and (depending on the methodology) machines to reason about the properties of that subject domain and to deduce knowledge from the way the concepts relate to each other.

 Ontologies allow different types of concept relationships to capture their richness. Hierarchical terminologies can be seen as rudimentary ontologies as they describe the relationships of concepts to each-other but have only one type of relationship.

A taxonomy

(synonym: classification) is a somewhat less formal system. Taxonomies often have less granular concepts than terminologies and may lack concept codes
. To be used as vocabularies in HL7, taxonomies need to have concept codes and must contain concepts at an adequate level of granularity. Like hierarchical terminologies, however, taxonomies often specify hierarchical parent-child relationships

In HL7, we refer to any of these sets of terms as a code system, as long as it can be unambiguously named and ascribed to an owning organization responsible for its content. Different purposes in the HL7 specification may have different needs for the supporting code systems. These different needs may require any of these different types of vocabulary collections.

Code systems are usually versioned by the authors of the code system. Versions may change upon new releases of a code system, or whenever the authors decide. Some systems require that concept codes remain invariant, and that if a change is needed, codes must be retired or created. Others, however, may implement changes that affect the semantics of existing codes. For these systems, the coded concept tuple {codeSystem, code} must also include the version of the code system.

Code systems can use pre- and post-coordination for composite concepts. Composite concepts are concepts formed from more than one atomic concept, for example, "excision of pituitary gland.,"
. A pre-coordinated designation of this concept is the term “hypohysectomy.” Pre-coordination is the creation of succinct, prefabricated concept designations for complex concepts. An alternative designation for this concept can be obtained by post-coordinating codes for "brain excision" and "pituitary gland," without adding a reusable designation to the source system. Post-coordination allows us to derive complex composite terms by combining the concepts they are derived from, reducing the absolute number of granular concepts. Post-coordination requires the explicit resolution of complex questions of context and semantic precedence, e.g., the preposition “of” in this example.

 4.2 Concept Domain

Coded model attributes are bound to named concept domains that indicate the kind of thing the attribute should refer to.. Concept domains exist to stipulate the intent of the coded element while deferring the association of the element to a specific coded terminology until later in the model development process. Thus, concept domains are independent of any specific vocabulary or code system.

Concept domains are universal in nature (independent of any realm). The name for a concept domain should never contain any reference to a specific realm. Concept domains are proposed as part of the HL7 standards development process and are approved by the RIM harmonization process.
A concept domain is documented by specifying a name, a narrative definition, and three or more examples of concepts that may be members of the domain category. The coded concept names must be sufficient to illustrate the intent of creating the concept domain. This can be accomplished by at least one of the following:

· Including three example concepts as part of the narrative definition;

· Binding the domain in the Example Realm to a value set containing at least three example concepts; or

· Binding the domain in either the Universal or Representative Realm to a value set deemed to contain a complete set of concepts.

The binding process and descriptions of the Universal, Representative, Unclassified and Example Realms are described later in this document.

Known Issue 09 (§ 2.9)

 4.2.1 Examples of Concept Domains

The HL7-defined concept domain HumanLanguage defines a category of like concepts specifying
the “Codes for the representation of the names of human languages.” The HumanLanguage concept domain only defines the category for the concepts that represent the different human languages. The actual coded elements for the concepts composing the content of the HumanLanguage concept domain will be defined by different code systems used by different entities.
For example, agencies in the United States may choose to use a code system containing codes that represent the Native American languages, while agencies in New Zealand may find such a code system inappropriate.

 4.2.1.1 TODO:

CLOSED Issue 10 (§ 2.10)
 4.2.2 Sub-Domains

HL7 concept domains are defined as named categories of like concepts. A sub-domain is a constrained concept domain that further limits the breadth of the semantic category covered by the parent concept domain. Such constrained domains are known as "sub-domains."

Sub-domains allow for further specialization (constraint) on the intended values for a domain. For example, a concept domain “neurological disorder” might have a sub-domain “neurological disorder, peripheral nervous system.”
Sub-domains are still concept domains: they are abstract, and are not associated with specific codes or code systems.
 4.3 Value Sets

 4.3.1 Introduction
Concept domains provide abstract specifications for the concepts appropriate to coded elements. Value sets provide concrete and implementable terms for use in coding elements.
A value set is a uniquely identifiable set of concept representations, so that any concept representation can be tested to determine whether or not it is a valid member of the value set. A concept representation may be a single concept code or a post-coordinated combination of codes . The concept representation(s) making up the value set are not defined in the value set, but in the terminologies they are drawn from.
Value sets exist to constrain the content for a coded element in an HL7 static model or data type property
. Value sets cannot have null content, and must contain at least one concept representation. Any given concept is generally (but not required to be) represented by only a single code within the value set. Identical codes from different code systems can be disambiguated by identifying the code systems they come from.

Ideally, a given concept should be represented by only a single code in a single value set. However, in unusual circumstances, a given concept can have more than one code, e.g., in cases where different case is used to signify the same concept, as 'l' and 'L' in UCUM for 'litre.'

Value set complexity may range from a simple flat list of concept codes drawn from a single code system to an unbounded multi-axial set of prospectively post-coordinated expressions drawn from multiple code systems.

Note
that all value set specifications must be able to be machine-resolved at a point in time to their contained coded concepts. Another
implication is that an HL7 terminology service must be able to perform this resolution on any value set definition in HL7.

 4.3.2 Value Set Specification

Value sets can be specified in two ways, either by enumeration (extension), or definition (intension).

 4.3.2.1 Extensional Value Set Representation (Enumeration)

An
 extensional definition explicitly enumerates all of the included concepts.

Value sets defined by extension consist of an explicitly enumerated set of codes. The simplest case is when the value set consists of only one code. The following table shows a flat list of codes that might be used as values for the coded attribute Gender.

	Table 1: Example Extensional Value Set

	Code Value
	Description

	M
	Male

	F
	Female

	U
	Unspecified

More complex variations might include hierarchical coding systems such as the following fictitious
example:

	Table 2: Example Extensional Value Set (fabricated)

	Code Value
	Level
	Description

	1123123
	1
	Education

	1343434
	2
	Diabetic Education

	1445455
	2
	Stroke Education

	2135534
	1
	Counseling

	2344566
	2
	Emotional

	3456663
	2
	Daily Living

 4.3.2.2 Intensional Value Set Definition (Definition)

An intensional definition describes value set by describing its delimiting characteristics.
Value sets defined by intension are defined by a computable expression that can be resolved to an exact list
 of codes at a particular point in time.

The intensional definition must be specific enough that it is always possible at a point in time (within a specific version of the code system) to determine whether a given value (including post coordinated collections of codes) is a member of the value set. For example, an intensional value set definition might be defined as, “All SNOMED CT concepts that are children of the SNOMED CT concept ‘Diabetes Mellitus.’”

Some common strategies used to define intensional values sets include
· Referencing a head concept and its subordinate concepts in a hierarchy.

· Referencing only the concepts subordinate to a head code (and not the head code itself).

· Creating arbitrarily complex unions, intersections, and exclusions of the two previously described types of value sets.

· Other mechanisms, including statements created using a rich expression language.

A basic problem with intensionally defined value sets is that their underlying code systems may change over time. HL7 supports two solutions to this problem.
Intensional value sets can be defined by either fixing the value set definition to a specific version of the underlying code system (when the code system supports versioning), or by decoupling the value set definition from the version of the code system. This seemingly subtle variation can have significant impact on the final list of concepts which the value set ultimately resolves to. When the value set definition is tied to the version of the code system, the value set content will remain fixed whenever it is instantiated. When the value set definition is independent of code system version, the content of the value set can vary as the value set is resolved against different versions of the code system.
 4.3.3 Nested Value Sets

When a value set entry references another value set, the child value set is referred to as a nested value set. There is no preset limit to the level of nesting allowed within value sets. Value sets cannot contain themselves, or any of their ancestors (i.e., they cannot be defined recursively). Any child value set that is referenced by this nesting may be either intensionally defined or extensionally defined. For any value set that includes child value sets, if any of the child value sets are intensionally defined, then the containing ('parent') value set is considered to be intensionally defined.

 4.3.4 Sub-value Sets

A sub-value set is a sub-set of a parent value set. It is a constraint on the content of a value set such that there are no coded concepts contained in the sub-valueSet that are not also contained with the "parent" valueSet. A sub-value set is generally created as part of the successive constraining process of model development.

 4.3.5 Value Set / Code System Relationship

Whether specified extensionally, intensionally or both, a value set can contain concepts from one or more code systems. While it can be necessary to draw concepts from multiple code systems, care must be taken to ensure that a given meaning is only represented by a code or codes from a single code system. For example, it would be inappropriate to create a value set where a given orderable item like a hematocrit could be represented by a CPT code and also by a LOINC code. If a single concept (meaning) ends up being represented by more than one code in a value set in this manner, it allows for the possibility that the same information can be recorded in two different ways. This can lead to confusion and error in analyzing the recorded data.

On the other hand, a value set is allowed to contain more than one code for a given concept as long as both codes are drawn from the same code system. For example, in the UCUM coding system “l” and “L” are both codes for liter. While this is undesirable, it is permitted for a value set to have both codes as members of the set. When this occurs, the codes are referred to as synonyms.
The
duplication is a problem when there are two systems and not when there is only one because of the semantic stewardship of concept boundaries. A code system can assert the equality of its own concept identifiers, but it cannot assert equality with concepts maintained under other systems.
 4.3.6 Value Set Versioning

Value sets are versioned. The version of a value set changes when
1. any allowed values are added to or deleted from an extensionally defined value set, or
1.
2. the defining expression of an intensionally defined value set changes.

1.

Changes
that correct the spelling of concept representations or add terms to the system but not the value set do not cause the value set version to change.

There are multiple strategies for tracking value set versions. Two of the most common are
1. to increment the version number each time a change is made to the value set, and
2. to track add/modification dates for each change to the value set.

In HL7 standards, value set versions are determined by effective date, and not by available date or by a version number. This policy has the following implications:

1. For enumerated value sets maintained by HL7, the activation date and inactivation date for individual codes in the value set must be maintained as part of the value set database.

2. For intensionally defined value sets in the HL7 value set database, the activation date and superceded date must be recorded (tracked) each time the logic of the definition is changed.

3. For externally maintained terminologies that have named/numbered releases, a table must be maintained that shows the modification dates for the named/numbered release.

4. For externally maintained terminologies that maintain modification dates for each individual code change, no additional information is needed.

4.4 Binding
to concept domains in the static models (cf. section 13)
All coded attributes in the RIM are associated with concept domains. Whenever one of these attributes is included in any HL7 static model, the association persists. However, every static model must address how and whether to further constrain its attirbutes’ domains.
· The model may be released with the same concept domain on the attribute as in the RIM. Since no model can be populated unless its concept domains are associated with value sets in a particular context or realm of use, a model following this approach cannot be instantiated.
· The Concept Domain may be constrained to a SubDomain (put in a link to the paragraph on subDomains here),. Since a sub-domain is a concept domain, this model remains abstract, and cannot be implemented.
· The attribute may be bound directly to a Value Set. This essentially removes the association of the Concept Domain and the attribute in that model, replacing it with an association with the value set for all uses of that particular model.
·

 5 Type
Representation
A type is a class or a datatype.
All HL7 models are constraints on a reference model built from the classes defined in the RIM and the datatypes defined in the abstract datatypes.

This reference model is further constrained by additional constraint models that associate new names for particular constraints on the associations and classes. These constraint models may come from a linear sequence of constraints where each model is an additional constraint on another model (and when the instance conforms to a model it also conforms to the models on which that model is derived), or an instance may conform to multiple different constraints that are not related to each other.

So any given type is an instance of the class or datatype as specified in the reference model, while at the same time conforming to multiple other different design specifications within this cascading hierarchy of models.

Every class and data type SHALL declare
conformance to a single master type. This requirement exists to ease the path of implementations in common target technologies. The type as a duple: the name of the model, and the name of the type/constraint definition in the model. Both the name of the model and the name of the type may be defined by some applicable design contract rather than expressed directly as an attribute of the class.

ITSs that describe how to represent V3 models SHALL make clear how the both parts of the type may be determined from examination of the instance, and what other resources are required at design and/or runtime to unambiguously resolve the type of the class or datatype.

Note: The InfrastructureRoot class in the RIM defines the notional attribute typeId to represent the type of the class. ITSs are not required to represent this attribute directly; some other method of representation may be chosen that is more appropriate with the base technology and consistent with the way the ITS specifies that the type information is determined from the instance.

 5.1 Model Types for Classes

For classes, the type need not be the type from a reference model; the context may specify that the expressed type is a name taken from one of the applicable constraining model. As a consequence, there are three types of models applicable to classes:

 5.1.1 Expressed Models

The expressed model is the model that contains the type expressed by the class.

Note: The existing XML ITS fixes the expressed model throughout the instance to be the static model associated with the interaction identifier specified in the root element of the interaction (or from "ClinicalDocument" for CDA). The type of a class is not usually represented directly; instead the names of the associations in the expressed model are used, and the type is determined by implication from the association name. For choices, elements of the type name may be pre-coordinated with the association name in the instance.

Note: Only complete, implementable models with one entry point (CIMs and some LIMs) may be used as expressed models.

 5.1.2 Implied Models

The implied models are specified by the derivations contained in the definition of the expressed model. All expressed models SHALL specify derivations from the RIM. Additional derivations from other models may also be specified.

Note: this means that the RIM is always an expressed or applied model.

Implementation Note: A processor can correlate the instance data against an implied model by reading the full static model for the expressed model and tracing the derivations from the expressed model to the implied model of choice. This can also be done by the developer by hard coding the derivations in the application. HL7 XML ITS schemas also provide a partial link to the RIM level definition. The implied RIM model is of such consequence that a separate pattern for identifying the RIM classes in the instance exists, using structural codes.

 5.1.3 Applied Models

Are other models to which the class conforms to but are not explicit or implicit in the type the the class conforms to. These models are usually known as templates. The applied model may be invoked explicitly in in the instance, or by specifying it in some form of design contract (e.g. interaction profile). Note that it is not necessary to declare all the constraint models that a class conforms to.

Note: The InfrastructureRoot class defines an attribute called templateId which is used to represent the set of applied models that a class conforms to. Like the typeId attribute, the templateId is notional; ITSs may define alternate methods for representation of the applied models.

ITSs that describe how to represent V3 models SHALL make clear how the applied models may be determined from examination of the instance, and what other resources are required at design and/or runtime to unambiguously resolve the applied models.

Note: If an applied model specifies derivations, then the models specified in the derivations are also implied models.

Reference: The templates specification should be consulted for further template related information.

 5.2 Datatype Flavors

For datatypes, the type must be the type from the reference model; the expressed model is always that specified in the abstract datatypes. This policy exists to ensure that implementations of the datatypes are robust for use in all the environments that V3 is used.

Datatypes may also have additional constraints associated with them. These constraints are referred to as datatype flavors. Datatype flavors are very similar to applied models, but only one flavor can be specified.

Reference: The Refinement, Constraint and Localisation should be consulted for further information about datatypes flavors.

 6 Null Flavor

It is common to encounter missing or incomplete information in healthcare. In some circumstances, why, how, or in what way the information is missing or incomplete may have some semantic significance that may make a difference to the workflow or clinical management the depends on the information.

For this reason all datatypes and RIM classes have a property called "nullFlavor" which specifies why the information does not exist, is not known or available, or cannot be expressed in the allowed value domain.

This table summarises the currently accepted values that the nullFlavor property may have it is not null:

	 Table 3: Domain NullFlavor (OID: 2.16.840.1.113883.11.10609, Source: Internal)

	lvl
	code
	name
	definition

	1
	NI
	no information
	The value is exceptional (missing, incomplete, improper). No information as to the reason for being an exceptional value is provided. This is the most general exceptional value. It is also the default exceptional value.

	2
	 INV
	invalid
	The value as represented in the instance is not an element in the constrained value domain of a variable.

	3
	 OTH
	other
	The actual value is not an element in the constrained value domain of a variable. (e.g., concept not provided by required code system).

	4
	 NINF
	negative infinity
	Negative infinity of numbers.

	4
	 PINF
	positive infinity
	Positive infinity of numbers.

	3
	 UNC
	unencoded
	No attempt has been made to encode the information correctly but the raw source information is represented (usually in originalText).

	3
	 DER
	derived
	An actual value may exist, but it must be derived from the provided information (usually an expression is provided directly).

	2
	 UNK
	unknown
	A proper value is applicable, but not known.

	3
	 ASKU
	asked but unknown
	Information was sought but not found (e.g., patient was asked but didn't know)

	4
	 NAV
	temporarily unavailable
	Information is not available at this time but it is expected that it will be available later.

	3
	 QS
	sufficient quantity
	The specific quantity is not known, but is known to be non-zero and is not specified because it makes up the bulk of the material.'Add 10mg of ingredient X, 50mg of ingredient Y, and sufficient quantity of water to 100mL.' The null flavor would be used to express the quantity of water.

	3
	 NASK
	not asked
	This information has not been sought (e.g., patient was not asked)

	3
	 TRC
	trace
	The content is greater than zero, but too small to be quantified.

	2
	 MSK
	masked
	There is information on this item available but it has not been provided by the sender due to security, privacy or other reasons. There may be an alternate mechanism for gaining access to this information.Note: using this null flavor does provide information that may be a breach of confidentiality, even though no detail data is provided. Its primary purpose is for those circumstances where it is necessary to inform the receiver that the information does exist without providing any detail.

	2
	 NA
	not applicable
	No proper value is applicable in this context (e.g., last menstrual period for a male).

A datatype or a class is known as a "null" class if it has a value for it's nullFlavor property. Null values are also known as "exceptional values". Null values are improper values that do not conform to the proper or expected value domain as described by the applicable specification (usually any model that the type claims conformance too - see typing below). The information may either be missing or partially present, or even completely present but not valid with respect to the constraints imposed by the models it conforms to. While null values may not conform to the "proper or expected value domain" as described by the specification, they must nevertheless conform to all the rules specified by the specifications to which they conform, null values SHALL only be used as specified by the models, both in regard to where and how they are used.

In this sense, null is used to create a two level conformance strategy. In some cases, a properly acceptable value domain is defined, and only information that completely conforms to the specified value domain may be provided. In other cases, a properly acceptable value domain is defined, and some information must be provided, but it may not conform to the narrow value domain if it explicitly declares that it does not conform. See the conformance section for further details.

 6.1 Note about the name nullFlavor

The property is named nullFlavor because of the similarities between the concept of a null value and the concept and behaviour of null in implementation technologies, particularly SQL and OCL. As in SQL and OCL, the value null is in the value domain of the all the types, and nulFlavors will generally propagate through operations such as comparison (i.e. the result of a comparison operation between a null value and some other value is null).

However there are some important differences between the implementation of nulls in such technologies and the HL7 nullFlavor. Most notably, in most implementation technologies, a null instance has no further information associated with it (some variation of the concept of a null pointer). This is not true of the HL7 concept of null; if a datatype or class is null, the nullFlavor property is not null, and any of the other properties might not be null.

Note: the nullFlavor property functions in a reverse sense to the data type or class; if the value is not null the nullFlavor will be null, and if the value is null, then the nullFlavor is not null - it will specify an actual nullFlavor that provides more detail as to in what way or why no proper value is supplied.

Note: In OCL, null is an instance of OclVoid which is a super type of all types. nullFlavor is not modelled the same way in HL7: a null value is still a valid instance of a particular type (see types below). If a true null is encountered in an implementation environment (i.e. the class is not represented in the XML when using the XML ITS, or is present with an xsi:nil="true" attribute), it is semantically equivalent to a null-value of NI, and all other properties not related to nullFlavor will also have nullFlavor NI.

 6.2 Implementation Considerations

When performing operations upon null values, the semantic meaning of the nullFlavor SHALL be considered. This is particularly important for equality. The only case where non-proper (NULL) values may be equal is where both values have a nullFlavor of NA and all other properties equal. In all most other cases, the outcome of comparing NULL values is also null. However, there are exceptions based on the semantic meaning of nullFlavor. For instance, in the datatypes, although direct comparison of two values with nullFlavor PINF is always null (NI), two intervals with the equal low bounds and high bounds of PINF will return true, since they specify the same set. Similarly, comparison of NINF and PINF is always False.

The "actual value" refers to the value of the information itself, rather than the information as represented in the type itself. These two may diverge when the information provided is incomplete, such as when an expression is provided. The null flavor "other" is used whenever the actual value is not in the required value domain: this may occur, for example, when the value exceeds some constraints that are defined in too restrictive a manner. For example, if the value for age is 100 yrs, but the constraining model specifies that the age must be less than 100 years, the age may still be specified, provided that the model does not make the attribute mandatory.

<value nullFlavor="OTH" value="120" unit="yr"/>
Some of the null flavors are not generally applicable to all circumstances. The nullFlavors NINF, PINF, QS, and TRC SHALL only be used in associated with datatypes that are a specialisation of the QTY type. The nullFlavor UNC SHALL only be used with any data type that has an originalText, and when UNC is used the originalText property SHALL be populated. The nullFlavor "DER" SHALL only be used with the EXPR type, and an expression SHALL be provided.

Note: NULL-flavors are potentially applicable to any class, any data type, and any property of a data value. Where the difference of null flavors is not semantically significant, ITS are not required to represent them. (this is usually appropriate for structural attributes in the RIM classes, and simple properties of the datatypes).

 7 Update control

HL7 Static models are used to represent information about the real world when it is exchanged between systems. The objects in the instance represent real world concepts about which a certain amount of information is known.

Snapshot: A methodology in which the sending system includes all the data it has into the message with no specific indications of which data items were added, replaced, or removed. The term was chosen because the source system sends a “snapshot” of the objects as it knows them.

Snapshot is typically used when information is exchanged between systems where the destination system is not known, or where it is not clear how much information the destination system already has about the real world concept.

When a receiving application processes an object that is represented using a snap shot, and it already has information about the real world concept that matches this object, the application should match objects in the instance with the information it already has, and then appropriately process the information from the message to the information it has on file (for instance, in some cases it would make sense to merge all the attributes and associations of the objects).

Potential Advantages:

· Can be easier for senders to implement

· Many sending systems implement Version 2 messages in this fashion

Potential Disadvantages

· Typically more complicated for receivers to process appropriately

· Easier for relevant data to be deleted

Update mode: A methodology in which the message designer specifies the allowable update mode values for items within the message and the message sender specifies the specific update mode value for items for items within the message.

However in some contexts, the destination system is well known and there is an implicit or explicit contract between the source and destination systems that ensures the information the destination system holds is well known to the source system. In such contexts, it is possible to only send the changes that have occurred on the source system or should occur on the destination system. These changes may be additions, deletions, and revisions to existing data. This practice is known as "update" mode.

Another use for update mode is where the source application includes all the same data items in the message specification as it would for snapshot node, but marks each value for each data item in the message specification that indicates whether it is added, replaces another item, or has not changed.

Where update mode can be used, it offers several advantages. Potential Advantages (depending how it is used):

· reduced instance size

· The receiver does not need to compare data to determine what changes the sender has made

· Where the receiver gathers data from multiple sources, it does not need to store ‘images’ of data received from a particular sender to ensure that it can adequately compare to the previously sent data when determining changes

· reduced processing time

· simpler implementation decision making

· Conveys important information for how the sending system has processed the information

· Query responses are able to document accountability information in terms of what changes were performed (see accountability below).

Potential Disadvantages:

· update mode offers the opportunity for two systems to get information out of sync, so modellers and implementors should always be careful.

· Typically requires for effort for the source system

The normal mode for V3 instances is snapshot; update mode is only allowed when the [[constraining model]] design specifically allows update mode.

Update Control interpretation depends on the context of the message type:

1. When used in a message driven by a state-transition notification or a state-transition fulfillment request trigger event (where the focal class is an object owned by the sending system), the update control represents the change that occurred on the sending system as a result of the state change associated with the trigger event. The recipient is not bound to make the same changes as those done on the sending system.

2. When used in a message driven by a state-transition request trigger event (where the focal class is an object owned by the receiving system), the update control represents the change that is desired by the sending system as a result of that trigger event. If the recipient accepts the request, they must make the requested changes.

3. When used in a query response message, the update control represents the most recent change that has occurred to the sender’s object within back to a specified time. The committee may allow the time from which changes are reported to be specified by a query parameter or fixed by the query definition. If not otherwise specified, the start time is the first time the system became aware of the object.

 8 Referencing Objects

When the destination system is well known and there is an implicit or explicit contract between the source and destination systems that ensures the information the destination system holds is well known to the source system, the destination system may simply wish to refer to an object rather than providing full details of the object. Rather than updating the object in either snapshot or update mode, the destination system should use the information provided to identify an existing instance of data.

It is not necessary for the destination system to already have information, only for the system or the appropriate users to know how to locate the information that the reference pertains to.

For this reason the concept of referencing objects is more widespread than the use of update mode. Nevertheless, the concept of reference is tightly related to the concept of update mode - an object will either be passed in as a snapshot, an update, or a reference.

Although complex scenarios involve mixes of these modes can be envisaged, HL7 does not support mixing these in order to keep the processing complexity from getting out of control. If an object is passed a reference, there SHALL be no expectation that any updates to the object may occur. If an object is represented using update Mode, any information provided as part of the object that has no associated update instructions SHALL be ignored.

 9 Identifying Objects

Whether an object is being conveyed using snapshot mode, update mode, or as a reference, the key first step for most processing systems is to correctly locate an existing record for the concept that the object represents, if one exists.

In order to accomplish this, the system must correctly identify the object. In most cases, the identification will be implicit or explicit in the contracts that control the system communication. However in some cases it will be necessary for the source system to clearly identify the attributes that should be used to identify the object.

For example, a source system may wish to indicate which of several identifiers associated with an object should be used to identify the object. In this case, the semantic properties of the identifier itself - scope and reliability - are generally preferred as the criteria for choosing which identifier should be used, but in a few cases it may be necessary to clearly identify a particular information.

Another case is where the source systems does not know the relevant identifiers for the object, but is able to define some key criteria for identification of the concept. For instance, the source system may know that the patient had an episode of care on a given date, but not the identifier assigned to the episode of care by any relevant system.

Source systems are able to clearly identify the attributes of an object that it expects should be used to identify the object correctly.

The general implication of these rules is that when an object is sent using update mode or as a reference, only the information that is required in order to correctly identify the object is sent, along with any specific updates for update mode, and that all the information provided should be clearly labelled. However it isn't always clear how much information is required to correctly identify the reference, so additional useful information is always allowed. Generally it would be expected that this additional information would be of use in some human intervention procedure if automated resolution of the reference failed.

Data types are not subject to identification - the full value of the datatype is itself the identity of the value.

In the absence of any explicit agreement or information in the instance, the default method for resolving identity is that all of identifiers in the objects id field must match the record on the destination system.

 10 Update Mode

HL7 provides a single property called updateMode to support the concepts defined in Update Control, Referencing Objects, and Identifying Objects.

Note: a more appropriate name might be useCode, but the property name is updateMode for backwards compatibility reasons.

Note: The updateMode property actually applies to associations and attributes, not to classes and datatypes, though it is formally defined on the types.

The value of the updateMode property identifies how the attribute or association contributes to the processing of the instance. HL7 models strictly control the use of the updateMode attribute; it may only be populated with a value that the [[constraining model (internal reference)]] allows. If there is no value, then the constraining model should be consulted for guidance on how the instance should be processed.

The updateMode property can have one of the following values:

	Table 4: Table of Update Mode Values

	Code
	Name
	Description

	A
	Add
	The item was (or is to be) added, having not been present immediately before. (If it is already present, this may be treated as an error condition.)

	D
	Delete
	The item was (or is to be) removed (sometimes referred to as deleted). If the item is part of a collection, delete any matching items.

	R
	Replace
	The item existed previously and has (or is to be) revised. (If an item does not already exist, this may be treated as an error condition.)

	AR
	Add or Replace
	The item was (or is to be) either added or replaced. --[Delete: (This option is included to support one specific case, discussed below. Its general use is discouraged, the preferred metdodology is to use the combination of the individual Add and Replace values.)]--

	N
	No Change
	There was (or is to be) no change to the item. This is primarily used when this element has not changed, but other attributes in the instance have changed.

	U
	Unknown
	It is not specified whether or what kind of change has occurred to The item, or whether The item is present as a reference or identifying property. (replaces: It’s not specified whether the item was (or is to be) added, revised, or not changed.)

	REF
	reference
	This item provides enough information to allow a processing system to locate the full applicable record by identifying the object.

	K
	Key
	This item is part of the identifying information for this object.

Notes:
1. Portions requiring harmonisation proposals in italics

2. R and AR may not be applied to multiple attribute values within a DSET, BAG or LIST. If a single attribute value is marked with a R is used to update a collection, the single value replaces all the items in the collection

3. REF may only be applied to associations, not attributes.

4. U is semantically equivalent to a nullFlavor of NI. However due to some methodological issues in V3, a specific code is required to in some circumstances.

5. If an item is deleted from a collection, all matching items should be deleted from the collection

 10.1 Model Designer Guidance

This section is intended for people designing static models, typically HL7 domain committees.

When designing a model, a committee may allow UpdateMode to be used on attributes and associations identified by the committee. To enable UpdateMode, the committee must select the set of permitted updateMode values.

In addition to identifying the allowed set of values, the committee may also choose to identify a ‘default’ updateMode for the attribute or association. This is the updateMode that will be assumed by the receiver if none is specified in the instance.

updateMode of “Replace” is not permitted on Entity.id, Role.id, Participation.id and Act.id attribute. If an identifier was captured erroneously, the incorrect submission should be nullified and the record resubmitted with the correct identifier. If a new identifier has been issued, replacing the old identifier, this should be handled as a supersedes or replaces relationship between the class with the old identifier and the class with the new identifier.

If no UpdateMode set is enabled for an attribute or association, it is the same as if the UpdateMode were set to ‘Unknown’. The effective behavior is that of ‘Snapshot’. I.e. the current element value is specified with no indication of whether it was changed or not.

The allowed UpdateMode set available for RIM attributes is empty by default. This means that committees must specifically enable UpdateMode by declaring an allowed set of Update Modes within their design for each attribute or association in their DIM where they want them to be used. Once an UpdateMode set has been defined in the DIM, any derived models (CIM, serialized static models or serialized message models). I.e. Update Modes may be removed from the allowed set, but never added.

If a committee defines update modes for a particular attribute or association, implementers must support the allowed update mode set to be conformant. (Failure to support the complete set defined by the committee may result in interoperability problems.) Implementers should be able to document what update modes they support in their conformance profile, but failure to support those identified by the committee that defined the artifact is considered non-conformant.

The committee does not need to define a default update mode, and may define a default at any derived model. Once a default is defined, it may not be removed or changed in any subsequently derived models. I.e. if a default is defined in an R-MIM, it may not be changed or removed in serialized static models or Message Types derived from that R-MIM. Because of this restriction, committees are discouraged from defining a default UpdateMode at the DIM level.

Update modes should not be specified in templates, as they are intended to be used across multiple different static models that make their own rules about use of updateMode.

Notes:
1. UpdateMode is not a concept that should appear in all, or even in most models developed by committees. It should be treated as an ‘advanced modeling concept’, and only employed in models where the facilitator is certain that the concept is needed to adequately reflect the needs identified by their committee. Furthermore it should only be enabled on those attributes or associations where there is an identified need. When a facilitator has identified a perceived requirement for UpdateMode in their model, they are encouraged to bring the requirement to the Modeling and Methodology Technical Committee for review.

2. UpdateMode will primarily be used for trigger events where the state transition is “revise” and for query responses; however, it may be appropriate in other circumstances. Committees are encouraged to discuss additional patterns for usage so that they may be reflected in this document.

3. UpdateMode should not be enabled in Transmission or ControlAct wrappers.

4. There is no way to Remove a single element from a BAG where there are multiple matching elements because there is no means to indicate which occurrence within the bag is to be removed.

5. Id attributes should never be sent with an UpdateMode of Replace. If such a use-case arises, it will addressed as a future methodology change.

6. Classes that do not carry an id attribute cannot be identified at all.

 11 Accountability

In addition to using update Mode to describe the changes that have happened or should happen, instances can also carry accountability information relating to the information in the message, both associations and attributes. The accountability information can include the time range during which the information was or is valid, and a link to the control act associated with the value. The control act can describe who made the change, when the change was made, what application made the change, and some context for the change in the overall dynamic model.

Known Issue 12 (§ 2.12)
Generally, this form of accountability history is used in registry-type systems where there is a strong need for the receiver to establish the authority on which a particular piece of data is being changed. Understanding the details can be important in helping a receiver make the determination whether they wish to adopt the change.

Accountability information will be handled by using the HXIT generic type extension. This extension will be applicable to both attributes and to associations. To provide support for accountability information in addition to a time stamps, the HXIT extension will be modified to allow for the presence of either a simple time stamps or a ControlAct.id reference. The reference will allow the changes to an individual attribute or association to be associated with the ControlAct that changed it. The ControlAct can be used to convey such information as event time, author, authoring organization, data-enterer, reason, and any other accountability information deemed to be important.

When working with interactions triggered by a state-transition notification, a state-transition request or a state-transition fulfillment request, the individual ControlAct classes associated with the changes to each attribute or association will be sent as ‘Components’ of the ControlAct in the ControlAct wrapper. When working with query response interactions, the ControlAct classes will be attached to the focal class of the query response via a subject association.

Multiple associations and attributes may reference a single ControlAct, or each may reference a separate one.

Committees must explicitly enable exposing the Accountability History link for a given attribute or association.

 12 Identification

One of the founding principles of V3 models is the importance or properly identifying objects and concepts correctly.

 12.1 Global Uniqueness

All identifiers must be globally unique to prevent false positive comparisons between identifiers.

Globally unique identifiers may be achieved by use of either Universally Unique Identifiers (UUIDs—see ISO/IEC 11578:1996) or Object Identifiers (OIDs—see ITU-T X.660 or ISO/IEC 9834-3). UUIDs are globally unique by virtue of the method of their generation. OIDs are globally unique if the OID registration procedures defined by ISO in the 9834 series of standards are followed. A series of local identifiers may be made globally unique by prefixing them with a common global identifier.

The instance identifier (II) type
has a root, which must be populated, and an extension, which is optional. Together, the root and extension must be globally unique following the logic described above.

Note: there are few specific situations where only a local identifier is available. A typical example is on a point of care device. In these cases, either the context of use assigns a global identifier root, or the identifier is incomplete (some flavor of null).

 12.2 OID registry

For some concepts, it is not enough that they be globally unique; the identification must also be consistent among a group of systems exchanging V3 instances. Some concepts must be consistently identified within a realm, such as Social Security Numbers
in the USA. Other concepts, notably shared standards such as HL7-defined concepts, ISO standards, and ICD-N and SNOMED terminologies, need to be consistently identified by all systems producing and consuming V3 instances.

One
 way to produce common consistent identification of these various kinds of objects is to maintain a central system where these identification concepts are registered. HL7 maintains an OID registry for this exact purpose. Any identifiers of interest to HL7 implementers may be registered on the HL7 OID registry, which includes

· OIDs issued by HL7 that refer to objects or concepts defined by HL7,
· OIDs issued by HL7 that refer to externally defined objects or concepts, and
· externally issued OIDs that refer to externally defined objects or concepts.
Note: The presence of an OID on the HL7 OID registry does not mean that HL7 claims responsibility for the concept of object identified, only that it is of interest to some HL7 customer. If the OID is in the HL7 OID branch, then HL7 has issued the OID, and accepts responsibility for working with the owner of the object or concept to maintain the identification of the concept.

HL7 assigns an OID to each of its code systems, as well as to external standard coding systems that are being used with HL7 and HL7 Affiliate specifications. HL7 also assigns OIDs to public identifier-assigning authorities (e.g., U.S. State driver’s license bureaus, U.S. Social Security Administration, HIPAA Provider ID registry, other countries’ Social Security
Administrations, Citizen ID registries, etc.).

The HL7 registered OIDs SHOULD be used for these organizations and namespaces, regardless whether these organizations have other OIDs assigned from other sources.

HL7 will also assign OIDs in its branch for HL7 users and vendors upon their request. When this is done, the registration authority (RA) for all OIDs under this assigned OID is delegated to the person or organization so assigned. The understanding is that they will have sole responsibility for further OID assignment below their new 'root' and will perform such assignment consistent with the ISO standards governing OIDs. Any objects that are subsequently assigned by these RA delegates may be registered in the HL7 OID registry. Once this is done, the OID so registered shall be used to identify the object in subsequent HL7 messages.

In some cases, technical errors are made during the OID assignment and registration processes. Occasionally, an OID that has been registered for some time must be retired and replaced with one that solves the technical difficulty. In these cases, the erroneous OID entry SHALL be identified as “Deprecated,” and the OID that replaces it SHALL be identified in the OID registry. After a period of 2 years, the deprecated OID will be set to “Retired,” but it and its identified replacement SHALL remain in the HL7 OID registry.

Known Issue 13 (§ 2.13) [“describe a deprecation lifecycle to be used in the conflict resolution procedures discussed below”]
 12.3 OID Conflict Resolution

When assigning OIDs to third parties or entities, HL7 investigates whether an OID is already assigned for such entities through other sources. If a preexisting OID is found, HL7 records the OID in the registry, but HL7 does not assign a duplicate OID in the HL7 branch. If no OID is found, HL7 will create one in the HL7 branch. If an appropriate third party can be identified, , HL7 will notify the party when an OID is being assigned for that party in the HL7 branch.

Though HL7 exercises due diligence before assigning an OID in the HL7 branch to third parties, itis not possible, given the lack of a global OID registry mechanism, to make absolutely certain that there is no preexisting OID assignment for such third-party entities. Furthermore, external assigning authorities may encounter the same issue, failing to discover that HL7 has assigned an OID and assigning a duplicate. When such cases of duplicate assignment are discovered, HL7 works to resolve this situation via
the deprecation process outlined above for technical errors.

 12.4 HL7 OID branch

The HL7 root OID is 2.16.840.1.113883. All OIDs that HL7 assigns are issued within the space defined by this OID. This OID has immediate sub-spaces as summarised in this table:

	Table 5: Defined Sub-spaces
Beneath the HL7 OID Root

	Identity

	Use

	0
	HL7 Root OID

	1
	HL7 registered internal objects (other than published documents and organizational bodies)

	2
	HL7 organizational bodies and groups

	3
	External groups that have been issued an HL7 OID root for their own use as Registration Authorities

	4
	Registered externally maintained identifier systems

	5
	HL7 Internal Coding Systems

	6
	Registered external coding systems (with an HL7 issued OID)

	7
	HL7 published documents

	8
	HL7 OID registered documentation products and artifacts

	9
	HL7 Registered conformance profiles

	10
	HL7 Registered Templates

	11
	HL7 defined and registered value sets

	12
	HL7 Version 2.x tables as code systems

	13
	Externally authored and curated value sets, HL7 registered

	19
	HL7 Examples Root used for published examples; meaningless identifier, not to be used for any actual entities

 13 V3 Conformance

Known Issue 14 (§ 2.14)
 13.1 Cardinality & Optionality

 13.1.1 Testing Considerations

 13.2 Vocabulary Conformance

Known Issue 15 (§ 2.15)
Vocabulary binding is an HL7 framework which allows the choice
of correct (HL7 compliant) vocabulary upon V3 message instantiation. It consists of defining collections of vocabulary that must be used in coded attributes, identifying the coded attributes and models in which they are located, and declaring the circumstances under which those collections must be used. The application of the conformance framework supports HL7 compliant Vocabulary Binding upon message instantiation.

 13.2.1 Vocabulary Binding

In order to be implemented and meet conformance, a static model’s coded elements must be associated with value sets that can be resolved to all
legal values that may be carried in that model component. Such an association is referred to as a vocabulary binding.

13.2.1.1 Binding Schedule Mechanisms

There are two schedule mechanisms of binding an attribute or data type property to a value set that HL7 has agreed to support.
Model Binding involves binding a coded attribute or data type property in a static model directly to a value set.
The contents of the value set bound in the child model must be consistent with the concept domain definition in the parent model. Where the corresponding attribute or property in the parent model is a value-set or is a domain which has been bound to a value-set, the value-set bound to the child model attribute or property must be the same or a subset of the parent model value-set.

Context Binding involves binding a coded attribute or data type property to a concept domain/realm (context of use) combination. This combination is resolved to a specific value set at runtime. The concept domain and realm are used as keys to identify a single value set. This type of binding is used primarily when the value set to be bound is not known at message design time. Because the realm associated with the instance is identified within the instance, it is possible for a receiver who knows the message specification (and thus the concept domain) to determine the appropriate value-set to validate against.
 13.2.2 Binding Version Mechanisms
There are three version mechanisms for binding vocabulary to coded model elements, each of which may be used with each of the two schedule mechanisms described above (model binding and context binding): these are Static Binding, the Single Code and Dynamic Binding.
 Static binding is a binding to a specified version of a value set. As a result, the allowed values of the value set do not change automatically as new values are added to a value set. A static binding is fully specified when the binding references a specific version (date) as well as the value-set OID/unique name.

Dynamic binding is a binding to a value set without a specified version. As a result, the allowed values for a coded item automatically change as the value set is maintained over time. This means that for dynamic binding, the binding is to the most current version of the value set at a given point in time.
Dynamic binding is fully specified when the binding references the value-set OID/unique name. It need not specify a version date: it stipulates that the most recent version be used at runtime.

Single Code binding is defined as the binding of a single code to a coded attribute or data type property in a static model. It can be seen as a special case of static binding with a value set of size one.

 13.2.3 Unbound domains

In some situations, a concept domain referenced in an implementable HL7 static model might not have an applicable binding for the affiliate making use of the model (no universal binding and no Affiliate binding for that affiliate). In that case, the domain is considered to be un-bound. The determination of the set of codes to use remains subject to site-specific negotiation until such time as an applicable binding is created for that affiliate or universally.

 13.2.4 Additional notes on domains and value-sets

 13.2.4.1 Concept Domain and Value Set Naming Conventions

HL7 concept domains, and value sets will be named according to the following rules:

· All concept domains and value sets will use “camel back” style names.

· The name will be restricted to the basic 26-character alphabet and the digits 0-9 using ASCII characters. White space (tabs, spaces), punctuation (periods, commas, colons, semicolons, parentheses, quotes, etc.), underscore, hyphens or other separators are not allowed in the name.

· The leading character must be upper-case alpha

· Concept domain and concept sub-domain names should be accurate labels for the concept spaces that they designate. Concept domain and concept sub-domain names should never include realm or code-system specific information. The concept domain name should also be independent of the RIM attribute where possible, so that the concept domain can be re-used with different attributes. For example, a concept domain should be called “HumanGender” rather than “PatientGender” so that the same domain could be bound to the “GuarantorGender” attribute.

· Value sets may be named by combining the name of the concept domain with other contextual information that will uniquely identify the value set; this is very helpful when a value set is appropriate for only a single sub-domain (which is most often the case). If a value set is expected to be used in more than one concept domain, then a more general name that clearly identifies the usage of the value set should be created.

· For example, the following would be appropriate names:

· Concept Domain: HumanGender

· Value Set: HumanGenderUSRealm

· Concept Domain: Country

· Value Set: CountryFIPS

 13.2.4.2 Root concepts
Value set MAY be referenced as abstract or specializable. If a value set is referenced as abstract, the “navigational concept" - the root concept of which all other concepts in the value set are specializations - is not selectable. If specializable, the root concept (head code) is selectable, meaning that highest level concept can be selected without further refinement.
The terms “abstract” and “specializable” may be thought of as referring to the root concept as an object-oriented class, which may be concrete (usable) and specializable, or abstract (not usable except via specialization).
NOTE: Being abstract or specializable is not a property of value set itself, but is an indication that for any specified context, the value set should be referenced
as either abstract or specializable.Known Issue 16 (§ 2.16)

[image: image4.jpg]B et

prm—r

5 g [

reeences o
T ke iy

Value Sets
 13.2.4.3 X-Domain (X-Value Set) [Deprecated
]

In HL7, there are so called “X-domains.” “X-Domain” is a misnomer: a more proper name would be “x-value sets,” since they are really HL7 defined value sets or sub value sets. X-Domains came into existence to address a muddling between the code system hierarchy and value sets. Earlier versions of the vocabulary maintenance tools didn’t distinguish between a value set that included concepts X, Y and Z and a concept code with subtypes X, Y and Z. The prefix “X-” was added to value sets that were intended to represent simple collections, not conceptual hierarchies. A rule
was established that new concept codes couldn’t be introduced within an “X-” domain. They first had to be entered elsewhere in the coding scheme hierarchy and then added separately to the “X-” domain. As time permits, all X-Domains will be replaced by value sets.

Known Issue 17 (§ 2.17)
 13.2.5 Value Set Binding in Implementation Guides
Implementation guides SHALL conform to the following constraints.

1. All value sets shall be defined or referenced in the HL7 value set database and/or a realm-specific value set database that conforms to the HL7 value set design and structure. A reference may be used (in place of an in situ definition) to point to a definition in an appropriate terminology specific constraint formalism that provides an accessible and non-ambiguous definition of a value set.
2. The person or organization that creates and adds the value set to the HL7 value set database shall be responsible for insuring that the content of the value set is maintained. In the case of intensionally defined value sets, the maintainer has to ensure that that the designation list obtained by resolving the intensional definition remains consistent with the semantics of the class attribute to which it is bound.
3. An OID shall be assigned to every value set. OIDs for value sets in the HL7 owned Realms (Universal, Example, and Representative) should be registered in the HL7 OID registry. A value set MAYoptionally be assigned a name. If a value set is maintained in the HL7 value set database and has a name, the name shall be globally unique within the value set namespace, and the name shall be chosen in such a manner as to be descriptive in a globally unique namespace. The value set name shall be different from the name of the Vocabulary Domain. (E.g. “Human Language” would not be an appropriate value-set name, while “USRecognizedIsoHumanLanguages1993” would be an appropriately descriptive name.) Value set OIDs and names SHALL not change.

4. An implementation guide shall identify a value set by reference to its OID. The globally unique name MAYbe included for readability.

5. The creators of an implementation guide may make local names for value sets. If the implementation guide uses local names for value sets, then the implementation guide shall include a table that shows the cross reference from the local name to the OID. Where possible, the globally unique name of the value set from the HL7 value set database will be used as the local name. Local names for the value sets must be unique only within the implementation guide.

6. The implementation guide may contain a copy of the value set definition to facilitate ease of review and balloting. The value set definition could be the expression for an intensionally defined value set, or all or part of an enumerated value set. The definition included in the implementation guide is a copy for documentation purposes only:it is not the source of truth for the definition of the value set, and it SHOULD be so annotated.

7. For purposes of this discussion, if any part of a value set is intensionally defined, the whole value set is considered to be intensional.

8. A new value set shall be created when the construction policy or versioning policy needs to be different from those of existing value sets. If, for a similar set of codes, one group needs an enumerated value set and another group needs an intensionally defined value set, two value sets shall be created. The two needs cannot be met by a single value set. This situation might occur if one group wants to control orderable drugs by creating their own formulary list, and a different group wants drugs to be orderable as soon as they become part of a nationally maintained database. These divergent needs can only be met by defining two separate value sets, even though both value sets would contain codes for orderable drugs.

9. Traceability of value set contents over time means that one can determine for a given coded attribute or data type property in a message the exact set of codes that constituted the value set at the time the data was created. Traceability can only be accomplished if, for each coded attribute in the data, the effective date of the value set that was used in data creation is known. (Note: There is currently no field in current message or coded data type specifications to allow communication of the identity and version of the value set in messages. The requirement for traceability needs to be discussed further and the use case for traceability confirmed with the membership of HL7. We may want to add the value set and value set effective date as optional elements of coded data types.)

10. In situations where old and new data are sent using the same message definition and the value set bindings are different in the different eras, the terminology server will use the creation date of the data
as one of the parameters for selecting the correct value set for a given message. (Note: There is currently no field in current messages that requires the communication of data creation date in messages. In most cases, Act.author.time would work as a valid surrogate for data creation date.)

11. A degenerate case of Model Constrained static binding exists where there is a need for binding a particular coded attribute to a specific single code. Rather than creating a value set consisting of a single code value, and developing all the supporting administrative machinery, this binding may be accomplished as Single-code binding, which is Model Constrained static binding to a specific code drawn from a specific code system, with optional inclusion of the version date.
12. There are many kinds of static models that can or will exist in the future, including R-MIMs, CMETs, templates and profiles. All of these models may include binding to concept domains and/or value sets. A given attribute value must conform to all of the value set bindings expressed in all static models or run-time bindings that are applicable for that instance of data. Note that it is possible that different translations present within the attribute may be used to satisfy the binding expectations of different static models.

 13.2.6 Binding Strategies

For each type of binding (model, context), there are three available methods: dynamic, static and single code. This means that in HL7, six binding strategies are available (three for each binding type). We will first discuss model, then context binding strategies.
	
	Model
	Context

	Static
	Realm known at design time

Domain known at design time

Value set known at design time

Value set version known at design time
	Realm known at design time

Domain known at design time

Value set known at intermediate time

Value set version known at intermediate time

	Dynamic
	Realm known at design time

Domain known at design time

Value set known at design time

Value set version not known at design time
	Realm known at design time

Domain known at design time

Value set known at intermediate time

Value set version not known at intermediate time

	Single
	Code known at design time
	Code known at intermediate time

	

	Design time

	Intermediate time

	Run time

	Realm Known
	All
	[none]
	[none]

	Domain Known
	All
	[none]
	[none]

	Value set known
	Model-all
	Context-all
	[none]

	Value set version known
	Model-Static
	Context-Static
	Dynamic-all

 13.2.6.1 Strategies for Model Binding

13.2.6.1.1. Dynamic Model Binding of Value sets

This method is used when binding a value set to a coded attribute or data type property in a static model at design time where the coded content of the value set is generated based upon the binding
date. Dynamic Model Binding for both extensionally and intensionally defined value sets (native or imported) is accomplished by referencing the OID or the name (or both) of the value set in the binding statement; the date of the expansion of the value set is the effective time of the model operation on the value set (such as validation).
 13.2.6.1.2 Static Model Binding of Value Set

This method is used when binding a value set to a coded attribute or data type property in a static model at design time. Static Model Binding for both extensionally and intensionally defined value sets (native or imported) is accomplished by referencing the value set OID or name (or both) and the effective date of the value set in the binding statement. The date of the binding statement is the effective date of the expansion of the value set (for intensionally defined value sets).

13.2.6.1.3 Model Binding to a Single Code

This method is used when binding a single code to a coded attribute or data type property in a static model at design time. The binding is accomplished by stating the code, the code system OID or name (or both) and optionally the effective date of the code system version.

Known Issue 18 (§ 2.18)
13.2.6.2 Strategies for Context Binding
13.2.6.2.1 Dynamic Context Binding of Value Sets

This method is used when a concept domain is bound to a coded attribute or data type property in a static model and the reference is to be resolved to a dynamic value set at compile or run time. The following elements must be known in order to resolve the domain name to a specific value set:

1. The identity of the static model

2. The unique identity of the coded attribute or data type property in the static model (ClassName.attributeName[.datatypePropertyName])

3. The concept domain that is bound to the coded attribute or data type propertyKnown Issue 19 (§ 2.19)
4. The binding-realm within which the data exchange is to occur
5. The OID or name (or both) of the value set

The first three properties are part of the model binding statement for the model. The last two properties are part of the Context Binding statement contained
in the terminology server. The Binding-Realm is passed as part of the context as the message is parsed (RealmCode); the concept domain, the realm, and the value set must be available to the terminology server, and may be included in an implementation guide. Known Issue 20 (§ 2.20)

13.2.6.2.2 Static Context Binding of Value Sets

This method is used when a concept domain is bound to a coded attribute or data type property in a static model and the reference is to be resolved to a static value at run or compile time. The following elements must be known to resolve the domain name to a specific value set:

1. The identity of the static model
2. The unique identity of the coded attribute or data type property in the static model (ClassName.attributeName[.datatypePropertyName]+)
3. The concept domain that is bound to the coded attribute or data type property. Known Issue 19 (§ 2.19)
4. The binding-realm within which the data exchange is to occur
5. The OID or name (or both) of the value set

6. The effective date
of the value set

The first three properties are part of the model binding statement for the model. The last three properties are part of the Situation Constrained statement
. The Binding-Realm is passed in a message instance wrapper (RealmCode); the concept domain, the realm, the value set, and the effective date must be available to the terminology server, and may be included in an implementation guide.

 13.2.6.2.3 Context Binding to a Single Code

This method is used when a concept domain is bound to a coded attribute or data type property in a static model and the reference is to be resolved to a single code in a code set at runtime. The following elements must be known to resolve the domain name to a specific coded value:

1. The identity of the static model

2. The unique identity of the coded attribute or data type property in the static model (ClassName.attributeName[.datatypePropertyName]+)

3. The concept domain that is bound to the coded attribute or data type propertyKnown Issue 19 (§ 2.19)
4. The binding-realm within which the data exchange is to occur

5. The code, the code system OID or name (or both) and optionally the effective date of the code system versionKnown Issue 19 (§ 2.19)

6.
7.
8.
9.

 13.2.7 Binding Syntax
 13.2.7.1 Syntax for Model Binding of Value Sets to Attributes in Static Models

General description of the syntax and reserved words
The modal verbs "SHALL", "SHOULD", and “MAY” in this syntax are to be interpreted as described in the HL7 Version 3 Publishing Facilitator's Guide. (Their negatives, “SHALL NOT,” SHOULD NOT,” and “NEED NOT” are not used in this specification
.)
In the syntax descriptions below, SHALL equates to CNE as defined in other HL7 documents SHOULD equates to CWE as defined in other HL7 documents

The keywords "DYNAMIC" and "STATIC" SHALL be interpreted as defined above (subsection 13.2.2). For CDA, pathName is a standard XPath statement. The name of the immediate containing structure is assumed to be known and is not explicitly stated in the pathName.

For V3 messaging, pathname should be a fully qualified reference to an attribute in the static model. Known Issue 21 (§ 2.21)
Narrative Syntax
for Model Constrained dynamic binding
The value for (“pathName of coded element”) (SHALL | SHOULD) be selected from ValueSet ([valueSetOID] | [valueSetName] [OR ([valueSetOID] | [valueSetName]]) DYNAMIC

ValueSetOID or valueSetName or both SHALL be present. No value set name can be named “DYNAMIC” or “OR”.

If the “OR” syntax is used, the order in which the value sets are listed expresses the order of preference for the value sets
.

Examples of Dynamic Model Binding:

· The value for “ClinicalDocument/code” SHALL be selected from ValueSet 1.2.34.1.25
 LoincDocumentTypeCode DYNAMIC.
Or

· The value for “ClinicalDocument/code” SHOULD be selected from ValueSet 1.2.34.1.25 LoincDocumentTypeCode OR ValueSet 1.2.34.1.26 SnomedCtDocumentTypeCode DYNAMIC.
Or

· The value for “ClinicalDocument/code” SHOULD be selected from ValueSet 1.2.34.1.25 LoincDocumentTypeCode DYNAMIC.
Or

· The value for “ClinicalDocument/code” SHALL be selected from ValueSet 1.2.34.1.25 DYNAMIC.
Or

· The value for “ClinicalDocument/code” SHOULD be selected from ValueSet LoincDocumentTypeCode DYNAMIC.

Alternatively, these parameters can be specified in a table.
Table form for Model Constrained dynamic binding
	Table 6: Table form for Model Constrained dynamic binding

	ELEMENT IDENTIFICATION
	STRENGTH
	VALUE SET OID
	VALUESETNAME
	FLEXIBILITY

	CLINICALDOCUMENT/CODE
	SHALL
	2.16.840.1.113883.11.217892
	LoincDocumentTypeCode
	DYNAMIC

	CLINICALDOCUMENT/CODE
	SHALL
	2.16.840.1.113883.11.XXXXX
	SnomedCtDocumentTypeCode

	DYNAMIC

	CLINICALDOCUMENT/CODE
	SHOULD
	2.16.840.1.113883.11.217892
	LoincDocumentTypeCode
	DYNAMIC

	CLINICALDOCUMENT/CODE
	SHALL
	2.16.840.1.113883.11.217892
	
	DYNAMIC

	CLINICALDOCUMENT/CODE
	SHOULD
	
	LoincDocumentTypeCode
	DYNAMIC

Narrative Syntax for Static Model binding:
The value for (“pathName of coded element”) (SHALL | SHOULD) be selected from ValueSet ([valueSetOID] | [valueSetName] [OR ([valueSetOID] | [valueSetName]]) STATIC (valueSetEffectiveDate)

ValueSetOID or valueSetName must be present. No value set name can be named “STATIC” or “OR”.

If the “OR” syntax is used, the order in which the value sets are listed expresses the order of preference for the value sets.

ValueSetEffectiveDate will be specified with the literal syntax for the XML ITS of the HL7 Version 3 Point in Time (TS) data type.

Examples of Static Model Binding:
· The value for “ClinicalDocument/code” SHALL be selected from ValueSet 1.2.34.1.25 LoincDocumentTypeCode STATIC 20061017.
Or

· The value for “ClinicalDocument/code” SHALL be selected from ValueSet 1.2.34.1.25 LoincDocumentTypeCode OR ValueSet 1.2.34.1.26 SnomedCtDocumentTypeCode STATIC 20061017.
Or

· The value for “ClinicalDocument/code” SHOULD be selected from ValueSet 1.2.34.1.25 LoincDocumentTypeCode STATIC 20061017.
Or

· The value for “ClinicalDocument/code” SHALL be selected from ValueSet 1.2.34.1.25 STATIC 20061017.
Or

· The value for “ClinicalDocument/code” SHOULD be selected from ValueSet LoincDocumentTypeCode STATIC 20061017.

Table form for Static Model Binding
	Table 7: Table form for Static Model Binding

	Path
	Strength
	Value Set OID
	Name
	Flexibility
	Effective Date

	ClinicalDocument/code
	shall
	2.16.840.1.113883.11.217892
	LoincDocumentTypeCode
	static
	20061017

	ClinicalDocument/code
	shall
	2.16.840.1.113883.11.XXXXX
	SnomedCtDocumentTypeCode
	static
	20061017

	ClinicalDocument/code
	should
	2.16.840.1.113883.11.217892
	LoincDocumentTypeCode
	static
	20061017

	ClinicalDocument/code
	shall
	2.16.840.1.113883.11.217892
	
	static
	20061017

	ClinicalDocument/code
	should
	1.2.34.1.25
	LoincDocumentTypeCode
	static
	20061017

Narrative Syntax for Single-code binding (Static Model Binding to one exact code)
The value for (“pathName of coded element”) SHALL be (code [“displayName”] codeSystemOID [codeSystemName] STATIC [effective date]

The effective date SHALL be specified when it is necessary for distinguishing the proper meaning of the code.

No code system name can be “STATIC”.

Example for Static Model Binding to one exact code
· The value for “ClinicalDocument/code” SHALL be 42134-7 “DischargeSummary” 2.16.840.1.113883.6.1 LOINC STATIC 20061017.

Table form for Static Model Binding to one exact code
	Table 8: Table form for Static Model Binding to one exact code

	Path
	Strength
	code
	codeSystemOID
	codeSystemName
	Flexibility
	Effective Date

	ClinicalDocument/code
	shall
	42134-7
	2.16.840.1.113883.6.1
	LOINC
	static
	20061017

 13.2.7.2 Syntax for Context Binding of Value Sets to concept domains in Static Models

General description of the syntax and reserved words

.

·
·

Narrative Syntax for concept domain Dynamic Context Binding:
The VocabularyDomain for (“pathName of coded element”) SHALL be (DomainName) The ValueSet for (DomainName) in (RealmName) (SHALL | SHOULD) be ([valueSetOID] | [valueSetName] | [OR ([valueSetOID] | [valueSetName]]) DYNAMIC.

If the “OR” syntax is used, the order in which the value sets are listed expresses the order of preference for the value sets.

Example for concept domain Dynamic Context Binding:
· The ConceptDomain for “DocumentType/code” SHALL be MyDocumentType
The ValueSet for MyDocumentType in NorthAmerica SHALL be 2.16.840.1.113883.11.217892 LoincDocumentTypeCode DYNAMIC.

Or

· The ConceptDomain for “DocumentType/code” SHALL be MyDocumentType
The ValueSet for MyDocumentType in NorthAmerica SHALL be 2.16.840.1.113883.11.217892 LoincDocumentTypeCode Or 2.16.840.1.113883.11.XXXXX SnomedCtDocumentTypeCode DYNAMIC.

Table representation of Dynamic Context Binding information in the terminology server
	Table 9: Table representation of Dynamic Context Binding information in the terminology server

	Model
	Path
	Domain
	Realm
	Value Set OID
	ValueSetName
	Flexibility

	TPLTCD3
	DocumentType/code
	MyDocumentType
	NorthAmerica
	2.16.840.1.113883.11.217892
	LoincDocumentTypeCode
	Dynamic

Note that the leftmost three columns are the stipulated in the model, and the rightmost four columns are determined at runtime.
Narrative Syntax for concept domain Static Context Binding
The VocabularyDomain for (“pathName of coded element”) (SHALL) be (DomainName)
The ValueSet for (DomainName) in (RealmName) (SHALL | SHOULD) be ([valueSetOID] | [valueSetName] | [OR ([valueSetOID] | [valueSetName]]) STATIC (valueSetEffectiveDate).

If the “OR” syntax is used, the order in which the value sets are listed expresses the order of preference for the value sets.

Example for concept domain Static Context Binding:
· The VocabularyDomain for “DocumentType/code” SHALL be MyDocumentType.
The value set for MyDocumentType in NorthAmerica is 2.16.840.1.113883.11.217892 LoincDocumentTypeCode STATIC 20061017

Or

· The VocabularyDomain for “DocumentType/code” SHALL be MyDocumentType.
The value set for MyDocumentType in NorthAmerica is 2.16.840.1.113883.11.217892 LoincDocumentTypeCode OR 2.16.840.1.113883.11.XXXXX SnomedCtDocumentTypeCode STATIC 20061017

Table representation of Static Context Binding information in the terminology server
	Table 10: Table representation of Static Context Binding information in the terminology server

	Model
	Path
	Domain
	Realm
	Value Set OID
	ValueSetName
	Effective Date
	Flexibility

	TPLTCD3
	DocumentType/code
	MyDocumentType
	US
	2.16.840.1.113883.11.217892
	LoincDocumentTypeCode
	20061017
	Static

Note that the leftmost three columns are stipulated in the model, and the rightmost five columns are determined at runtime.

 14 Introduction to how RIM & datatypes fit together

	View Revision Marks

 HYPERLINK "http://www.hl7.org/v3ballot2008May/html/infrastructure/coreprinciples/v3modelcoreprinciples.htm" Hide Revision Marks
	Return to top of page

� This example is from Dolin RH et al.: Selective Retrieval of Pre- and Post-coordinated SNOMED Concepts, Proc AMIA Symp. 2002; 210–214

�At first this looks like an affiliate realm. Then it doesn’t. Is it a Draft Standard? “Representative” doesn’t seem to mean anything very obvious here.

�Is a binding realm different from a realm? Should this section be consolidated with the Sub-Realms section (3.1.3)?

�V3 only? Yes.

�It's not obvious why binding is part of Conformance: see attached Principles outline

�The most concrete thing here is “conversion,” which doesn’t seem like the most fundamental concept.

How about “. . . allows the use of an unambiguous value (a code) to represent a concept, whatever the language or ambiguity of its associated terms.”?

�A definition of code would be useful—my attempt included here.

�The example is valuable, however problematic the domain definition.

�How do I deal with this: “This is an explanation for V2, and the same applies for V3 - since mnemonics are used as the code. Don't have a good suggestion at this time, but this example should explain how the V3 mnemonic/code works, not V2”

�Need a definition.

�Must they define relationships?

This paragraph might be best left out. Do we need to articulate that a code system is a concept system? I’m not sure it has any subsequent effect.

�Need a definition

�Again, must it include relationships?

Or, do we follow the later comment that a vocabulary can be a terminology OR a taxonomy—and remove the “a vocabulary is a terminology” statement?

�Can we include examples of interface and reference terminologies?

�Simplified a bit—but I did not want to complicate things with 'some other enumerated domain, most likely a ref. term."

�It might not be amiss to add a note about hierarchical terminologies, which could be considered rudimentary ontologies with one type of relationship.

�Done.

�

�Is “concept code” a synonym for what most of us call a “code”? Do we need the distinction? I keep thinking there must be an important difference, but I don’t think we meet one in here.

�Issue 09 by Grahame Grieve says “how to describe/define the message development process” – but this is probably not the adequate place for this.

�Actually, “specified by,” if we want to go there.

�“. . . to specify the values valid for a domain in a specific model.”

�

1. That’s not actually implied. Is it true?

2. “Unbounded” in the previous paragraph seems to contradict the requirement that a value set be enumerable.

�I’m not sure that’s a different implication. Unless we are introducing a constraint to the concept of “machine-resolvable.”

�The reference isn’t really necessary: Webster’s defines “extension.”

I’ve done a bit of violence to it by calling the concepts “included” rather than “subordinate,” since the root is a “set” rather than a “concept.” The mereological chasm yawns.

More firmly, I delete the last phrase because it introduces abstract concepts that we don’t use.

Actually, given the next paragraph, this whole paragraph should go.

�Is there a simple actual example we could use?

�Again, must it be enumerable, or can it be open?

�This section is unclear. It could use an example.

�This is a guess.

�Does the valueset version change if the version of code from which it obtains its concept representations changes?

�Mif will answer

�Binding should be treated once. Either move 13.2 here or move this there.

�This is about implementation—probably a later section of CP.

�Where?

�What is the II type? This has not been defined.

�Ballot comment Neg-Mj “The rules in this section should be updated to allow for real world OID registration issues and to describe what implementors should expect” – I do not know how to deal with this

�pls. spell out

�There are the UUIDs, too—not really addressed here.

�Is this term common internationally?

�Another guess

�Is the alignment problem a copy-and-paste artifact?

�Recommend reorganization

Introduction (13.2, 13.2.1)

Strategies (13.2.1.1, 13.2.1.2, 13.2.6, 13.2.7)

Implementation (13.2.5)

Notes (balance)

�The relationship between of binding and conformance is not at all clear.

What is described here seems to be binding, not conformance.

I assume “conformance” refers to some process of testing models or instances for adherence to specifications. If it means “binding,” it’s confusing.

Perhaps this paragraph could be disposed.

�Again: do you have to be able to enumerate them all, or is it enough to be able to test a candidate against it? Can SNOMED + postcoordination be exhaustively eunumerated?

�This is true for any binding.

�Added this to make congruent with section 13.2.6

�Is it too late to choose another term? How about “versioning mechanisms”?

�Added this to make congruent with section 13.2.6

�Ballot comments suggest this should not be in chapter 13 – we also need to resolve KI 16

�Where is this reference made—in the binding?

�Section does not “emerge from flow” of document – right place?

�The relevance of the rule is not clear, nor is the approach for resolving the muddle.

�The message? The object?

�The intro sections from 13.2.1 are clearer and should replace these. Still, a table may help distinguish. Two candidates included.

�Dynamic: shouldn’t this be instance generation date?

�Earlier, TS is expunged, presumably to keep this document impl-agnostic.

�Isn’t that what is being identified?

�This does get a bit impl-specific. The realm is in the TS, not the instance?

�See above

�If you don’t yet know the value set, how can you know whether it will be bound statically? Static context binding seems prima facie to be unlikely.

�What is this?

�Is this true? I don’t see them, and I assume any intersection-type operation would be performed on value set generation, not binding.

�This looks a bit like a regular expression (though it doesn’t parse). Perhaps natural language would work as well.

�Is the number limited to two?

�This OID (and following) not found; does not match table. Propose to replace with 2.16.840.1.113883.11.217892.

Need SNOMED DTC OID.

�This does not represent the “OR” option.

�This section is redundant

PAGE
17

