RPS: Keywords Definition, Use And Life Cycle Management

Keith Thomas; v1, 6 June 2011
1. What’s A Keyword?
The current Submission Message definition of Keyword reads:

“A Keyword is a reference to the KeywordDefinition Act. One or more Keywords can be associated to documentation.”

But that definition is misleading because the SM definition of Keyword – code reads:

“Used if the keyword is from a coding system not from keyword definition.”
The proposed glossary definition reads:

“A keyword is a name-value pair, where the name identifies the type of keyword, and the value is a text string to be used on a document or context of use to which that keyword is applied. Keywords are applied to (i.e. used on) document and content of use instances as additional metadata to modify their retrieval, ordering (?) and display.”
In order to use a keyword effectively a computer program must be able to identify its name (i.e. type) as well as its value; that is, a program cannot tell from a keyword value alone that “super stuff” is a substance and “big factory” is a site: it needs additional information.
2. Keyword Sources

The RPS model currently allows keywords to be taken either from an external controlled CodeSet or from a definition supplied by the submitter.

It is necessary that the submitter be able to define certain kinds of keyword values because some, such as manufacturing sites, are unique to a submitter.
3. RPS As It Stands

a. Keyword Definition

Keywords may be taken from externally-managed vocabularies, which are not part of the RPS standard; however, it is a requirement that submitters be able to define keywords that are not part of such vocabularies so that these new keywords can be used on documents and CoU with equal effect.
Keyword definitions are associated with an individual application via a referenced-by act relationship.

A keyword definition act is defined as an observation class, so that it has a base value attribute of type ANY.
In the model the value attribute is currently specialized to type SET<CD> [0..1] meaning that it can carry zero or one instances of type CD (concept descriptor), which may be a simple string or a complete code set reference.
A keyword definition act also has a code, which presumably would be taken from a controlled vocabulary to specify the name (type) of keyword.
A keyword definition act has a unique id so that it can be referenced for use.
b. Keyword Definition Life Cycle
A keyword definition act has an optional replacement-of act relationship associating it with a previous keyword definition, to be used when one keyword definition replaces another. Presumably the replacement relationship causes the status code of the previous keyword definition to be set to “obsolete”.
c. Keyword Use

A Context of Use act may have zero or more referenced-by act relationships, each of which associate it with a particular keyword act. Similarly a document act may have zero or more referenced-by act relationships, each of which associate it with a particular keyword act.
A keyword act has an id, which if it is populated in a keyword object, identifies a keyword definition that supplies the name and value.
A keyword act has a code, which if it is populated in a keyword object, is at present said to identify the keyword value (as a code and a text string) taken directly from a controlled vocabulary, but the keyword name (i.e. keyword type) is not directly specified and would have to be derived in some currently unspecified way from the code set identity (given by id and name).
Either an id or a code may be used, but not both.

The association of a keyword with a CoU has been described as modifying the ordering of the document from which the CoU is derived with respect to the table of contents heading specified in the CoU’s code attribute.

It is not currently specified whether the association of a keyword with a document is intended to have a similar effect with respect to the heading specified in the document code (if a code is specified) or if the keyword is intended to be inherited by the CoUs derived from the document, or both.
d. Keyword Use Life Cycle

Keyword acts are fully dependent on the life cycle of the CoU or Document with which they are associated. They are replaced in toto when a new version of their referencing CoU or Document is created, so no life cycle record is required.
4. RPS Keyword Issues And Proposed Changes
a. Role Of A Document Keyword

I think this is properly an implementation issue, but I mention it here to make sure that we are agreed that both CoU’s and documents really should have keywords, not just one or the other.

b. Names (Types) Of Keywords Taken Directly From A Controlled Vocabulary

When a keyword is used to reference a keyword definition by id, a program can easily find the keyword name (i.e. type) from the keyword definition code and the keyword value from the keyword definition value. However, when a keyword as currently defined is used to take a keyword directly from a controlled vocabulary the keyword’s code attribute is used, which gives the value of the keyword but not its name. Perhaps the keyword name (i.e. type) could be derived from the code system name provided by the code attribute, but it would be better to explicitly provide the keyword name.

This is easily done. The keyword is an OBS (observation) class which may carry both a code and a value attribute, but currently the RPS definition omits the value attribute.
By adding a value attribute of type CD to keyword we can then treat keywords as always having a name given by the code found in the code attribute, and a value given by the code in the value attribute. For example, here is a route of administration keyword taken from a controlled vocabulary.
	The id is null because the keyword is not a reference to a submitter-defined keyword but to a keyword in a controlled vocabulary.
The name (i.e. type) of the keyword is defined in the code attribute as “Route Of Admin.”, taken from a list of RPS keyword names or code sets.
The value of the keyword is defined by the value attribute as “oral” taken from a specified code set.
	

Once we make this change we should also consider making keyword definitions such that their values are supplied as members of a code set, in which case all keywords in used in keyword objects could be represented as codes in code and value. The id attribute in keyword would then always be null, and the overloading of the keyword class (by requiring either an id or a code) would be eliminated.
c. Packaging Of Keyword Definitions

The requirement that submitters be able to define new keyword values, but not new keyword types (i.e. names), presumably includes the requirement that they also be able to communicate those definitions as part of an RPS message. Otherwise vocabulary maintenance will take place outside of RPS.

The only reason to consider the details of the keyword definition in RPS is to ensure that it is compatible with the conventions of controlled vocabulary so that submitter-defined codes can be used with equal facility and effect.
It is not clear from the current standard whether the value provided in a keyword definition is to be expressed as a simple text string, or as a fully-structured concept descriptor (type CD). I think it should be the latter.
Joel Finkle has also said that there is a requirement that submitter-defined keywords be usable globally even though they are defined as associated with a particular application, which is the case currently, provided that the id of the definition is known.

I have found no explicit requirement that the keyword types, or other code types applicable to a particular application be identified for error checking; that is, any keyword, submitter-defined or from a general vocabulary, can be applied to a document or CoU pertaining to any application. This leads me to believe that the definition of a keyword in association with a particular application is merely a packaging convenience and has no specific meaning for that application.
Currently the model allows one name-value pair per keyword definition. The name is carried in the code attribute (type CD), which can provide both a code and a text form of the name. It specifies the value attribute as a DSET of type CD, and sets the multiplicity as [0..1] (obviously a typo: it should read [1..1] because a keyword definition without a value, is, well, valueless). A keyword definition has a unique id by which it can be referenced from a document or CoU.
If we recommended that the keyword definition value attribute always include as a fully-structured concept descriptor, with code, display name, code system id and name, then the keyword class could be used in a completely regular fashion as described in b. above.

It would likely simplify the submitter’s work if they were able to define a set of keywords of a given type at one time, since they are likely to change slowly and be applicable to more than one application.
Therefore I propose that we rename keyword definition as code set definition, with the following attributes:
· id: II [1..1]
· code: CD [1..1]
· title: ED [1..1]
· confidentiality code: CD [0..1]
· value: DSET<CD> [1..*]

with the following association:
· replacement of · code system reference.id
The general requirement is that the definition of code sets by a submitter carry the same information as that carried by external controlled vocabularies, or at least to the extent that such information can be expressed and used in RPS. To show that this is the case I have included a several diagrams to show what a vocabulary system would look like if it were carried in these proposed code set definition objects; however, it is important to remember that in fact only the user-defined code sets would be communicated in code set definition objects.
	FIGURE 1. Code Set Of RPS Code Sets
	FIGURE 2. A Single RPS Code Set

	
The above code set includes one entry in the value set for each code set to be used in RPS. This code set would need no code attribute value because it is the root of the tree of RPS code sets, and is used only to provide the names of those code sets.
	
This code set would takes its code attribute value from the corresponding entry in the RPS code set list, and that code carries the name, “eCTD Headings” to go with each value in the list.

Remember that neither of the preceding lists would necessarily be published in this form; they are shown only to illustrate that the information in those lists can be expressed in the proposed RPS class.

For a given regulator the list of RPS code sets would include all of the code sets, including eCTD headings, document types (e.g. STF File Tags), application types, submission types and all other types used by that regulator.

	FIGURE 3. A Submitter-Defined Code Set

	This code set definition would be included in an RPS message (associated with a particular application).

It takes its code attribute from the corresponsing entry in the code set of RPS code sets.

It includes all of the manufacturing codes for that submitter.

A keyword using one of these codes would be composed as follows:

	

This technique assumes that the recipient will treat the information sent in a code set definition as a code set like all others, no matter how defined.
A submitter-defined code set might be used to supplement an existing controlled vocabulary. For example, a formal, externally-managed substance vocabulary (e.g. SRS) might be the usual source of substance keyword values, but a submitter could also define their own code set to identify new substances not included in the other set.
This technique does not actually require that all submitter-defined keywords of a given type appear in a single code set definition object: each occurrence of a code set definition could add to an existing vocabulary; however, replacement of a previous code set definition would be needed to delete an individual code. In that case, technically a new version of the vocabulary should be created and submitted.
d. Sorting Headings With Keywords

There is a need to sort the headings cited in the code attribute of a CoU across a set of CoU’s. This is complicated by the need to sort keyword values within a sequence of headings (as in 3.2.s.1, 3.2.s.2 etc).
This would be out of scope for RPS were it not for the requirement that submitters be able to specify the sort order (i.e. precedence) of keywords, whether of their own definition or from a external vocabulary. In order to do so, the information must be included somewhere in an RPS message.
After examining a number of possibilities, I have concluded that the only place in an RPS message where sort information can be conveyed is in the code value and/or display name.
All we need to do is create code values that sort the way we want. There is no general requirement that the codes of controlled vocabularies sort in any particular way, and many have no meaningful order, so we may have to redefine the code values for some vocabularies. If we wish to preserve the original code values, the source component of a code can be used to do so.
To allow interfiling of keywords, we need to parameterize the sortable code values so that a program may identify and select the values to insert.

To do this requires no change to the RPS model beyond replacing the keyword definition by the code set definition, and stating the principle.

Submitters could then define sort order for keywords, and even redefine sort order for terms from external vocabularies by re-defining them in a code set definition.

For example, sorting information might be communicated and used as follows:
For the heading codes use a dotted notation, like an OID: col.col.col. ...

· call each position in the notation a column, abbreviated “col”,

· a col may contain either one or more digits or a parameter name

· a parameter name is a percent sign (%) followed by one or more letters

· the digits are to be used for sorting and the letters are parameter names

Parameter names may also be used in display name.

For this example, assume that only heading codes (as used in CoU) have parameters.

So might have:

Code

Display Name

3.2.%SU.%MF.

m3-2-S: Drug Substance

3.2.%SU.%MF.1

m3-2-S-1: %SU %MF General Information

3.2.%SU.%MF.1.1

m3-2-S-1-1: %SU %MF Nomenclature

3.2.%SU.%MF.1.2

m3-2-S-1-2: %SU %MF Structure

3.2.%SU.%MF.1.3

m3-2-S-1-3: %SU %MF General Properties

3.2.%SU.%MF.2

m3-2-S-2: %SU %MF Manufacture

Where %SU is a parameter referring to a substance keyword, and %MF refers to a manufacturing site keyword.

Suppose our substance and manufacturing codes defined for the application are

Code

Display Name

substances

SU01

Great stuff

SU02

Funny stuff

manufacturers
MF01

Sunshine Works

MF02

Underground Plant

We have conditioned the codes so that the prefix letters correspond to the parameter name and the parameter value follows.
Thus when we have a CoU bearing the keywords for substance and manufacturer we might start with the following:

Code

Display Name

COU

3.2.%SU.%MF.1.1

m3-2-S-1-1: %SU %MF - Nomenclature

Keyword1

SU01

Great stuff

Keyword2

MF01

Sunshine Works

The program would resolve code and heading by inserting the appropriate values for the parameters:

Resolved sort code:

3.2.01.01.1.1

Resolved heading:

m3-2-S-1-1: Great Stuff, Sunshine Works – Nomenclature
And

COU

3.2.%SU.%MF.1.1

m3-2-S-1-1: %SU %MF Nomenclature

Keyword1

SU02

Funny Stuff

Keyword2

MF01

Sunshine Works

Resolved sort code:

3.2.02.01.1.1

Resolved heading:

m3-2-S-1-1:Funny Stuff, Sunshine Works - Nomenclature
And

COU

3.2.%SU.%MF.1.1

m3-2-S-1-1: %SU %MF Nomenclature

Keyword1

SU01

Great stuff

Keyword2

MF02

Underground Factory

Resolved sort code:

3.2.01.02.1.1

Resolved heading:

m3-2-S-1-1: Great Stuff, Underground Plant - Nomenclature
(Of course the resolution of the heading can easily be programmatically changed to omit the parameters or format them differently; e.g. m3-2-S-1-1: substance = great stuff, manufacturer = sunshine works - Nomenclature)
To ensure that that 3.1... sorts ahead of 3.2... sorts ahead of 3.11... in a run of codes in this notation it is necessary for the digits in each column to be padded with leading zeros so that every entry in a column will be the same width, e.g. 3.01..., 3.02..., 3.11....

When sorted then our example headings would be ordered as

Code

Heading

3.2.01.01.1.1

m3-2-S-1-1: Great Stuff, Sunshine Works - Nomenclature
3.2.01.02.1.1

m3-2-S-1-1: Great Stuff, Underground Plant - Nomenclature
3.2.02.01.1.1

m3-2-S-1-1:Funny Stuff, Sunshine Works - Nomenclature
This is the most complicated case I could think of with respect to the eCTD; most of the other cases have a parameter (or 2) at the end of the string. They work the same way.

The column organization and the named parameters provide a means for software tools to allow users to easily manipulate sort order. The separate keywords provide a means for software tools to enable better searching and filtering of search results.

We could also add a parameter that referred to the CoU or document title, or one that referred to document code.
code:

displayName:

codeSystem: OID.1.1.4

codeSystemName: Route Of Admin.

code: R345

displayName:

codeSystem: OID.1.1.4

codeSystemName: Route Of Admin.

t

code: R123

displayName: oral

codeSystem: OID.1.1.4

codeSystemName: Route Of Admin.

code: C789

displayName: Route Of Admin.

codeSystem: OID.1.1

codeSystemName: RPS Code Sets

CodeSetDefintion

id: OID1.1.4

title: Route Of Administration

code:

value: {set of CD ...

...

code: C900

displayName: manufacturing site

codeSystem: OID.1.1

codeSystemName: RPS Code Sets

code: C999

displayName: Substance

codeSystem: OID.1.1

codeSystemName: RPS Code Sets

code: C789

displayName: Route Of Admin.

codeSystem: OID.1.1

codeSystemName: RPS Code Sets

code: C456

displayName: SFT File Tags

codeSystem: OID.1.1

codeSystemName: RPS Code Sets

code: C123

displayName: eCTD Headings

codeSystem: OID.1.1

codeSystemName: RPS Code Sets

CodeSetDefintion

id: OID1.1.

title: RPS Code Sets

code: {null}

value: {set of CD ...

code: M110

displayName: Little Factory

codeSystem: OID.1.1.5

codeSystemName: PharmaX Manufacturing Sites

code: C900

displayName: Manufacturing Sites.

codeSystem: OID.1.1

codeSystemName: RPS Code Sets

Keyword

id: {null}

code:

value:

code: C900

displayName: manufacturing site

codeSystem: OID.1.1

codeSystemName: RPS Code Sets

code: M200

displayName: Off-shore Factory

codeSystem: OID.1.1.5

codeSystemName: PharmaX Manufacturing Sites

code: M110

displayName: Little Factory

codeSystem: OID.1.1.5

codeSystemName: PharmaX Manufacturing Sites

t

code: R123

displayName: oral

codeSystem: OID.1.1.4

codeSystemName: Route Of Admin.

code: M100

displayName: Big Factory

codeSystem: OID.1.1.5

codeSystemName: PharmaX Manufacturing Sites

CodeSetDefintion

id: OID1.1.5

title: PharmaX Manufacturing Sites

code:

value: {set of CD ...

...

.Replacement Of

.. code set reference.id:

code: C789

displayName: Route Of Admin.

codeSystem: OID.1.1

codeSystemName: RPS Code Sets

Keyword

id: {null}

code:

value:

Keyword

id: {null}

code:

value:

Page 1 of 9

